V-type ATPase
   HOME

TheInfoList



OR:

Vacuolar-type ATPase (V-ATPase) is a highly conserved evolutionarily ancient enzyme with remarkably diverse functions in eukaryotic organisms. V-ATPases acidify a wide array of intracellular organelles and pumps protons across the
plasma membranes The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
of numerous cell types. V-ATPases couple the energy of ATP hydrolysis to proton transport across intracellular and plasma membranes of eukaryotic cells. It is generally seen as the polar opposite of
ATP synthase ATP synthase is a protein that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). It is classified under ligases as it changes ADP by the formation ...
because ATP synthase is a proton channel that uses the energy from a proton gradient to produce ATP. V-ATPase however, is a proton pump that uses the energy from ATP hydrolysis to produce a proton gradient. The Archaea-type ATPase (A-ATPase) is a related group of
ATPase ATPases (, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca2+ + Mg2+)-ATPase, HCO3−-ATPase, adenosine triphosphatase) are ...
s found in
archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebac ...
that often work as an
ATP synthase ATP synthase is a protein that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). It is classified under ligases as it changes ADP by the formation ...
. It forms a clade V/A-ATPase with V-ATPase. Most members of either group shuttle protons (), but a few members have evolved to use sodium ions () instead.


Roles played by V-ATPases

V-ATPases are found within the membranes of many organelles, such as endosomes, lysosomes, and secretory vesicles, where they play a variety of roles crucial for the function of these organelles. For example, the proton gradient across the yeast vacuolar membrane generated by V-ATPases drives calcium uptake into the vacuole through an antiporter system. In synaptic transmission in neuronal cells, V-ATPase acidifies synaptic vesicles. Norepinephrine enters vesicles by V-ATPase . V-ATPases are also found in the plasma membranes of a wide variety of cells such as
intercalated cells The collecting duct system of the kidney consists of a series of tubules and ducts that physically connect nephrons to a minor calyx or directly to the renal pelvis. The collecting duct system is the last part of nephron and participates in ele ...
of the kidney, osteoclasts (bone resorbing cells), macrophages,
neutrophils Neutrophils (also known as neutrocytes or heterophils) are the most abundant type of granulocytes and make up 40% to 70% of all white blood cells in humans. They form an essential part of the innate immune system, with their functions varying in ...
,
sperm Sperm is the male reproductive cell, or gamete, in anisogamous forms of sexual reproduction (forms in which there is a larger, female reproductive cell and a smaller, male one). Animals produce motile sperm with a tail known as a flagellum, whi ...
, midgut cells of insects, and certain tumor cells. Plasma membrane V-ATPases are involved in processes such as pH homeostasis, coupled transport, and tumor metastasis. V-ATPases in the acrosomal membrane of sperm acidify the acrosome. This acidification activates proteases required to drill through the plasma membrane of the
egg An egg is an organic vessel grown by an animal to carry a possibly fertilized egg cell (a zygote) and to incubate from it an embryo within the egg until the embryo has become an animal fetus that can survive on its own, at which point the a ...
. V-ATPases in the osteoclast plasma membrane pump protons onto the bone surface, which is necessary for bone resorption. In the intercalated cells of the kidney, V-ATPases pump protons into the urine, allowing for bicarbonate reabsorption into the blood. In addition, other variety of biological processes, such as toxin delivery, viral entry, membrane targeting, apoptosis, regulation of cytoplasmic pH, proteolytic process, and acidification of intracellular systems, are important roles of V-ATPases. V-ATPases also play a significant role in cell morphogenesis development. Disruption of the gene vma-1 gene which encodes for the catalytic subunit (A) of the enzyme severely impairs the rate of growth, differentiation, and the capacity to produce viable spores in fungus Neurospora crassa.


Structure

The yeast V-ATPase is the best characterized. There are at least thirteen subunits identified to form a functional V-ATPase complex, which consists of two domains. The subunits belong to either the Vo domain (membrane associated subunits, lowercase letters on the figure) or the V1 domain (peripherally associated subunits, uppercase letters on the figure). The V1 includes eight subunits, A-H, with three copies of the catalytic A and B subunits, three copies of the stator subunits E and G, and one copy of the regulatory C and H subunits. In addition, the V1 domain also contains the subunits D and F, which form a central rotor axle. The V1 domain contains tissue-specific subunit isoforms including B, C, E, and G. Mutations to the B1 isoform result in the human disease distal renal tubular acidosis and sensorineural deafness. The Vo domain contains six different subunits, a, d, c, c', c", and e, with the stoichiometry of the c ring still a matter of debate with a decamer being postulated for the tobacco hornworm ('' Manduca sexta'') V-ATPase. The mammalian Vo domain contains tissue-specific isoforms for subunits a and d, while yeast V-ATPase contains two organelle-specific subunit isoforms of a, Vph1p, and Stv1p. Mutations to the a3 isoform result in the human disease infantile malignant osteopetrosis, and mutations to the a4 isoform result in distal renal tubular acidosis, in some cases with sensorineural deafness. The V1 domain is responsible for ATP hydrolysis, whereas the Vo domain is responsible for proton translocation. ATP hydrolysis at the catalytic nucleotide binding sites on subunit A drives rotation of a central stalk composed of subunits D and F, which in turn drives rotation of a barrel of c subunits relative to the a subunit. The complex structure of the V-ATPase has been revealed through the structure of the ''M. Sexta'' and Yeast complexes that were solved by single-particle cryo-EM and negative staining, respectively. These structures have revealed that the V-ATPase has a 3-stator network, linked by a collar of density formed by the C, H, and a subunits, which, while dividing the V1 and Vo domains, make no interactions with the central rotor axle formed by the F, D, and d subunits. Rotation of this central rotor axle caused by the hydrolysis of ATP within the catalytic AB domains results in the movement of the barrel of c subunits past the a subunit, which drives proton transport across the membrane. A
stoichiometry Stoichiometry refers to the relationship between the quantities of reactants and products before, during, and following chemical reactions. Stoichiometry is founded on the law of conservation of mass where the total mass of the reactants equal ...
of two protons translocated for each ATP hydrolyzed has been proposed by Johnson. In addition to the structural subunits of yeast V-ATPase, associated proteins that are necessary for assembly have been identified. These associated proteins are essential for Vo domain assembly and are termed Vma12p, Vma21p, and Vma22p. Two of the three proteins, Vma12p and Vma22p, form a complex that binds transiently to Vph1p (subunit a) to aid its assembly and maturation. Vma21p coordinates assembly of the Vo subunits as well as escorting the Vo domain into vesicles for transport to the Golgi.


V1

The V1 domain of the V-ATPase is the site of ATP hydrolysis. Unlike Vo, the V1 domain is hydrophilic. This soluble domain consists of a hexamer of alternating A and B subunits, a central rotor D, peripheral stators G and E, and regulatory subunits C and H. Hydrolysis of ATP drives a conformational change in the six A, B interfaces and with it rotation of the central rotor D. Unlike with the ATP synthase, the V1 domain is not an active ATPase when dissociated.


Subunit C

V-ATPase (Vacuolar-ATPase) C represents the
C terminal The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
subunit that is part of the V1 complex, and is localised to the interface between the V1 and Vo complexes.


=Subunit C function

= The C subunit plays an essential role in controlling the assembly of V-ATPase, acting as a flexible stator that holds together the catalytic (V1) and membrane (VO) sectors of the enzyme . The release of subunit C from the ATPase complex results in the dissociation of the V1 and Vo subcomplexes, which is an important mechanism in controlling V-ATPase activity in
cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
. Essentially, by creating a high electrochemical gradient and low pH, this powers the enzyme to create more ATP.


Subunits E, G

These related subunits make up the stalk(s) of A/V-ATPase. They are important in assembly, and may function as pushrods in activity. E has a cap to connect to A/B, while G does not. They likely evolved from a single protein by
gene duplication Gene duplication (or chromosomal duplication or gene amplification) is a major mechanism through which new genetic material is generated during molecular evolution. It can be defined as any duplication of a region of DNA that contains a gene. ...
.


Subunit H

Subunit H, is only involved in activity and not in assembly. This subunit also acts as an inhibitor of free V1 subunits; it stops ATP hydrolysis when V1 and Vo are dissociated.


Vo

The Vo domain is responsible for proton translocation. Unlike the F-type
ATP synthase ATP synthase is a protein that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). It is classified under ligases as it changes ADP by the formation ...
, the Vo domain generally transports protons against their own concentration gradient. Rotation of the Vo domain transports the protons in movement coordinated with the V1 domain, which is responsible for ATP hydrolysis. The Vo domain is hydrophobic and composed of several dissociable subunits. These subunits are present in the Vo domain to make this a functional proton translocase; they are described below.


Subunit a/I

The 116kDa subunit (or subunit a) and subunit I are found in the Vo or Ao complex of V- or A-ATPases, respectively. The 116kDa subunit is a transmembrane
glycoprotein Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycos ...
required for the assembly and proton transport activity of the ATPase complex. Several isoforms of the 116kDa subunit exist, providing a potential role in the differential targeting and regulation of the V-ATPase for specific organelles. The function of the 116-kDa subunit is not defined, but its predicted structure consists of 6–8 transmembranous sectors, suggesting that it may function similar to subunit a of FO.


Subunit d/C

Subunit d in V-ATPases, called subunit C in A-ATPases, is a part of the Vo complex. They fit onto the middle of the c ring, so are thought to function as a rotor. There are two versions of this subunit in eukaryotes, d/d1 and d2. In mammals, d1 (
ATP6V0D1 V-type proton ATPase subunit d 1 is an enzyme that in humans is encoded by the ''ATP6V0D1'' gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''gener ...
) is the ubiquitously expressed version and d2 (
ATP6V0D2 ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d2 is a protein in humans that is encoded by the ATP6V0D2 gene. It is part of proton pumps in the plasma membranes of osteoclasts and aids with extracellular acidification in bone resorption. ...
) is expressed in specific cell types only.


Subunit c

Similar to the F-type ATP synthase, the transmembrane region of the V-ATPase includes a ring of membrane-spanning subunits that are primarily responsible for proton translocation. Dissimilar from the F-type ATP synthase, however, the V-ATPase has multiple related subunits in the c-ring; in fungi such as yeast there are three related subunits (of varied stoichiometry) and in most other eukaryotes there are two.


V-ATPase assembly

Yeast V-ATPases fail to assemble when any of the genes that encode subunits are deleted except for subunits H and c". Without subunit H, the assembled V-ATPase is not active, and the loss of the c" subunit results in uncoupling of enzymatic activity. The precise mechanisms by which V-ATPases assembly are still controversial, with evidence suggesting two different possibilities. Mutational analysis and ''in vitro'' assays have shown that preassembled Vo and V1 domains can combine to form one complex in a process called independent assembly. Support for independent assembly includes the findings that the assembled Vo domain can be found at the vacuole in the absence of the V1 domain, whereas free V1 domains can be found in the cytoplasm and not at the vacuole. In contrast, ''in vivo'' pulse-chase experiments have revealed early interactions between Vo and V1 subunits, to be specific, the a and B subunits, suggesting that subunits are added in a step-wise fashion to form a single complex in a concerted assembly process.


V-ATPase evolution

A relatively new technique called ancestral gene resurrection has shed new light on the evolutionary history of the V-ATPase. It has been shown how the V-ATPase structure of the ancestral form consisting of two different proteins evolves into the fungi version with three different proteins.Snapshot view of the V-ATPase molecular machine: animals vs. fungi
University of Oregon (Accessed 2012-01-11)
The V-Type ATPase is similar to the archaeal (so called) A-Type ATP synthase, a fact that supports an archaeal origin of eukaryotes (like Eocyte Hypothesis, see also Lokiarchaeota). The exceptional occurrence of some lineages of archaea with F-type and of some lineages of bacteria with A-type ATPase respectively is regarded as a result of horizontal gene transfer.


Regulation of V-ATPase activity

V-ATPases are known to be specifically inhibited by macrolide antibiotics, such as concanamycin (CCA) and balifomycin A1. ''In vivo'' regulation of V-ATPase activity is accomplished by reversible dissociation of the V1 domain from the Vo domain. After initial assembly, both the insect '' Manduca sexta'' and yeast V-ATPases can reversibly disassemble into free Vo and V1 domains after a 2- to 5-minute deprivation of glucose. Reversible disassembly may be a general mechanism of regulating V-ATPase activity, since it exists in yeast and insects. Reassembly is proposed to be aided by a complex termed RAVE (regulator of -ATPase of vacuolar and endosomal membranes). Disassembly and reassembly of V-ATPases does not require new protein synthesis but does need an intact
microtubular Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50  micrometres, as wide as 23 to 27  nm and have an inner diameter between ...
network.


Human diseases


Osteopetrosis

Osteopetrosis is generic name that represents a group of heritable conditions in which there is a defect in osteoclastic bone resorption. Both dominant and recessive osteopetrosis occur in humans. Autosomal dominant osteopetrosis shows mild symptoms in adults experiencing frequent bone fractures due to brittle bones. A more severe form of osteopetrosis is termed autosomal recessive infantile malignant osteopetrosis. Three genes that are responsible for recessive osteopetrosis in humans have been identified. They are all directly involved in the proton generation and secretion pathways that are essential for bone resorption. One gene is
carbonic anhydrase The carbonic anhydrases (or carbonate dehydratases) () form a family of enzymes that catalyze the interconversion between carbon dioxide and water and the dissociated ions of carbonic acid (i.e. bicarbonate and hydrogen ions). The active site ...
II (CAII), which, when mutated, causes osteopetrosis with
renal tubular acidosis Renal tubular acidosis (RTA) is a medical condition that involves an accumulation of acid in the body due to a failure of the kidneys to appropriately acidify the urine. In renal physiology, when blood is filtered by the kidney, the filtrate pas ...
(type 3). Mutations to the chloride channel ClC7 gene also lead to both dominant and recessive osteopetrosis. Approximately 50% of patients with recessive infantile malignant osteopetrosis have mutations to the a3 subunit isoform of V-ATPase. In humans, 26 mutations have been identified in V-ATPase subunit isoform a3, found in osteoclasts, that result in the bone disease autosomal recessive osteopetrosis.


Distal renal tubular acidosis (dRTA)

The importance of V-ATPase activity in renal proton secretion is highlighted by the inherited disease distal
renal tubular acidosis Renal tubular acidosis (RTA) is a medical condition that involves an accumulation of acid in the body due to a failure of the kidneys to appropriately acidify the urine. In renal physiology, when blood is filtered by the kidney, the filtrate pas ...
. In all cases, renal tubular acidosis results from a failure of the normal renal mechanisms that regulate systemic pH. There are four types of renal tubular acidosis. Type 1 is distal renal tubular acidosis and results from a failure of the cortical collecting duct to acidify the urine below pH 5. Some patients with
autosomal recessive In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and t ...
dRTA also have
sensorineural hearing loss Sensorineural hearing loss (SNHL) is a type of hearing loss in which the root cause lies in the inner ear or sensory organ (cochlea and associated structures) or the vestibulocochlear nerve (cranial nerve VIII). SNHL accounts for about 90% of rep ...
. Inheritance of this type of RTA results from either mutations to V-ATPase subunit isoform B1 or isoform a4 or mutations of band 3 (also called AE1), a Cl-/HCO3- exchanger. Twelve different mutations to V-ATPase isoform B1 and twenty-four different mutations in a4 lead to dRTA.
Reverse transcription A reverse transcriptase (RT) is an enzyme used to generate complementary DNA (cDNA) from an RNA template, a process termed reverse transcription. Reverse transcriptases are used by viruses such as HIV and hepatitis B to replicate their genomes, ...
polymerase chain reaction studies have shown expression of the a4 subunit in the intercalated cell of the kidney and in the cochlea. dRTA caused by mutations in the a4 subunit gene in some cases can be associated with deafness due to a failure to normally acidify the endolymph of the
inner ear The inner ear (internal ear, auris interna) is the innermost part of the vertebrate ear. In vertebrates, the inner ear is mainly responsible for sound detection and balance. In mammals, it consists of the bony labyrinth, a hollow cavity in the ...
.


X-linked myopathy with excessive autophagy (XMEA)

X-linked myopathy with excessive autophagy X-linked myopathy with excessive autophagy (XMEA) is a rare childhood onset disease characterized by slow progressive vacuolation and atrophy of skeletal muscle. There is no known cardiac or intellectual involvement. Presentation The incidence o ...
is a rare genetic disease resulting from mutations in the VMA21 gene. The disease has a childhood onset and results in a slowly progressive muscle weakness, typically beginning in the legs, and some patients can eventually require wheelchair assistance with advanced age. The Vma21 protein assists in assembly of the V-ATPase, and XMEA associated mutations result in decreased activity of the V-ATPase and increased lysosomal pH.


Nomenclature

The term Vo has a lowercase letter "o" (not the number "zero") in subscript. The "o" stands for oligomycin, which binds to the homologous region in F-ATPase. It is worth noting that the human gene notations at NCBI designate it as "zero" rather than the letter "o". For example, the gene for the human c subunit of Vo is listed in NCBI gene database as "ATP6V0C" (with a zero), rather than "ATP6VOC" (with an "o"). Many pieces of literature make this mistake as well.


See also

*
ATP synthase ATP synthase is a protein that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). It is classified under ligases as it changes ADP by the formation ...
* F-ATPase * Na+/K+-ATPase


References


External links

* {{DEFAULTSORT:V-Atpase Enzymes Transport proteins Transmembrane proteins