Theta-type Plasmid
   HOME

TheInfoList



OR:

A plasmid is a small,
extrachromosomal DNA Extrachromosomal DNA (abbreviated ecDNA) is any DNA that is found off the chromosomes, either inside or outside the nucleus of a cell. Most DNA in an individual genome is found in chromosomes contained in the nucleus. Multiple forms of extrachromo ...
molecule within a cell that is physically separated from
chromosomal DNA A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins ar ...
and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; however, plasmids are sometimes present in
archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebac ...
and eukaryotic organisms. In nature, plasmids often carry genes that benefit the survival of the organism and confer selective advantage such as
antibiotic resistance Antimicrobial resistance (AMR) occurs when microbes evolve mechanisms that protect them from the effects of antimicrobials. All classes of microbes can evolve resistance. Fungi evolve antifungal resistance. Viruses evolve antiviral resistance. ...
. While chromosomes are large and contain all the essential genetic information for living under normal conditions, plasmids are usually very small and contain only additional genes that may be useful in certain situations or conditions. Artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms. In the laboratory, plasmids may be introduced into a cell via transformation. Synthetic plasmids are available for procurement over the internet. Plasmids are considered '' replicons'', units of DNA capable of replicating autonomously within a suitable host. However, plasmids, like viruses, are not generally classified as life. Plasmids are transmitted from one bacterium to another (even of another species) mostly through
conjugation Conjugation or conjugate may refer to: Linguistics *Grammatical conjugation, the modification of a verb from its basic form * Emotive conjugation or Russell's conjugation, the use of loaded language Mathematics *Complex conjugation, the change ...
. This host-to-host transfer of genetic material is one mechanism of horizontal gene transfer, and plasmids are considered part of the mobilome. Unlike viruses, which encase their genetic material in a protective protein coat called a capsid, plasmids are "naked" DNA and do not encode genes necessary to encase the genetic material for transfer to a new host; however, some classes of plasmids encode the conjugative "sex" pilus necessary for their own transfer. Plasmids vary in size from 1 to over 400 k bp, and the number of identical plasmids in a single cell can range anywhere from one to thousands under some circumstances.


History

The term ''plasmid'' was introduced in 1952 by the American molecular biologist Joshua Lederberg to refer to "any extrachromosomal hereditary determinant." The term's early usage included any bacterial genetic material that exists extrachromosomally for at least part of its replication cycle, but because that description includes bacterial viruses, the notion of plasmid was refined over time to comprise genetic elements that reproduce autonomously. Later in 1968, it was decided that the term plasmid should be adopted as the term for extrachromosomal genetic element, and to distinguish it from viruses, the definition was narrowed to genetic elements that exist exclusively or predominantly outside of the chromosome and can replicate autonomously.


Properties and characteristics

In order for plasmids to replicate independently within a cell, they must possess a stretch of DNA that can act as an origin of replication. The self-replicating unit, in this case, the plasmid, is called a replicon. A typical bacterial replicon may consist of a number of elements, such as the gene for plasmid-specific replication initiation protein (Rep), repeating units called iterons, DnaA boxes, and an adjacent AT-rich region. Smaller plasmids make use of the host replicative enzymes to make copies of themselves, while larger plasmids may carry genes specific for the replication of those plasmids. A few types of plasmids can also insert into the host chromosome, and these integrative plasmids are sometimes referred to as episomes in prokaryotes. Plasmids almost always carry at least one gene. Many of the genes carried by a plasmid are beneficial for the host cells, for example: enabling the host cell to survive in an environment that would otherwise be lethal or restrictive for growth. Some of these genes encode traits for antibiotic resistance or resistance to heavy metal, while others may produce virulence factors that enable a bacterium to colonize a host and overcome its defences or have specific metabolic functions that allow the bacterium to utilize a particular nutrient, including the ability to degrade recalcitrant or toxic organic compounds. Plasmids can also provide bacteria with the ability to fix nitrogen. Some plasmids, however, have no observable effect on the phenotype of the host cell or its benefit to the host cells cannot be determined, and these plasmids are called cryptic plasmids. Naturally occurring plasmids vary greatly in their physical properties. Their size can range from very small mini-plasmids of less than 1-kilobase pairs (kbp) to very large megaplasmids of several megabase pairs (Mbp). At the upper end, little differs between a megaplasmid and a minichromosome. Plasmids are generally circular, but examples of linear plasmids are also known. These linear plasmids require specialized mechanisms to replicate their ends. Plasmids may be present in an individual cell in varying number, ranging from one to several hundreds. The normal number of copies of plasmid that may be found in a single cell is called the plasmid copy number, and is determined by how the replication initiation is regulated and the size of the molecule. Larger plasmids tend to have lower copy numbers. Low-copy-number plasmids that exist only as one or a few copies in each bacterium are, upon cell division, in danger of being lost in one of the segregating bacteria. Such single-copy plasmids have systems that attempt to actively distribute a copy to both daughter cells. These systems, which include the parABS system and
parMRC system The ParMRC system is a mechanism for sorting DNA plasmids to opposite ends of a bacterial cell during cell division. It has three components: ParM, an actin-like protein that forms a long filament to push two plasmids apart, ParR, which binds the ...
, are often referred to as the partition system or partition function of a plasmid.


Classifications and types

Plasmids may be classified in a number of ways. Plasmids can be broadly classified into conjugative plasmids and non-conjugative plasmids. Conjugative plasmids contain a set of transfer genes which promote sexual conjugation between different cells. In the complex process of
conjugation Conjugation or conjugate may refer to: Linguistics *Grammatical conjugation, the modification of a verb from its basic form * Emotive conjugation or Russell's conjugation, the use of loaded language Mathematics *Complex conjugation, the change ...
, plasmids may be transferred from one bacterium to another via sex pili encoded by some of the transfer genes (see figure). Non-conjugative plasmids are incapable of initiating conjugation, hence they can be transferred only with the assistance of conjugative plasmids. An intermediate class of plasmids are mobilizable, and carry only a subset of the genes required for transfer. They can parasitize a conjugative plasmid, transferring at high frequency only in its presence. Plasmids can also be classified into incompatibility groups. A microbe can harbour different types of plasmids, but different plasmids can only exist in a single bacterial cell if they are compatible. If two plasmids are not compatible, one or the other will be rapidly lost from the cell. Different plasmids may therefore be assigned to different incompatibility groups depending on whether they can coexist together. Incompatible plasmids (belonging to the same incompatibility group) normally share the same replication or partition mechanisms and can thus not be kept together in a single cell. Another way to classify plasmids is by function. There are five main classes: * Fertility
F-plasmid The fertility factor (first named F by one of its discoverers Esther Lederberg; also called the sex factor in ''E. coli'' or the F sex factor; also called F-plasmid) allows genes to be transferred from one bacterium carrying the factor to another ...
s, which contain ''tra'' genes. They are capable of
conjugation Conjugation or conjugate may refer to: Linguistics *Grammatical conjugation, the modification of a verb from its basic form * Emotive conjugation or Russell's conjugation, the use of loaded language Mathematics *Complex conjugation, the change ...
and result in the expression of sex pili. * Resistance (R) plasmids, which contain genes that provide resistance against
antibiotic An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention of ...
s or
poison Poison is a chemical substance that has a detrimental effect to life. The term is used in a wide range of scientific fields and industries, where it is often specifically defined. It may also be applied colloquially or figuratively, with a broa ...
s. Historically known as R-factors, before the nature of plasmids was understood. * Col plasmids, which contain genes that code for bacteriocins, proteins that can kill other bacteria. * Degradative plasmids, which enable the digestion of unusual substances, e.g. toluene and
salicylic acid Salicylic acid is an organic compound with the formula HOC6H4CO2H. A colorless, bitter-tasting solid, it is a precursor to and a metabolite of aspirin (acetylsalicylic acid). It is a plant hormone, and has been listed by the EPA Toxic Substance ...
. * Virulence plasmids, which turn the bacterium into a pathogen. e.g. Ti plasmid in ''
Agrobacterium tumefaciens ''Agrobacterium radiobacter'' (more commonly known as ''Agrobacterium tumefaciens'') is the causal agent of crown gall disease (the formation of tumours) in over 140 species of eudicots. It is a rod-shaped, Gram-negative soil bacterium. Sympto ...
'' Plasmids can belong to more than one of these functional groups.


RNA plasmids

Although most plasmids are double-stranded DNA molecules, some consist of single-stranded DNA, or predominantly double-stranded RNA. RNA plasmids are non-infectious extrachromosomal linear RNA replicons, both encapsidated and unencapsidated, which have been found in fungi and various plants, from algae to land plants. In many cases, however, it may be difficult or impossible to clearly distinguish RNA plasmids from RNA viruses and other infectious RNAs.


Vectors

Artificially constructed plasmids may be used as vectors in
genetic engineering Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including t ...
. These plasmids serve as important tools in genetics and biotechnology labs, where they are commonly used to clone and amplify (make many copies of) or
express Express or EXPRESS may refer to: Arts, entertainment, and media Films * '' Express: Aisle to Glory'', a 1998 comedy short film featuring Kal Penn * '' The Express: The Ernie Davis Story'', a 2008 film starring Dennis Quaid Music * ''Express'' ...
particular genes. A wide variety of plasmids are commercially available for such uses. The gene to be replicated is normally inserted into a plasmid that typically contains a number of features for their use. These include a gene that confers resistance to particular antibiotics ( ampicillin is most frequently used for bacterial strains), an origin of replication to allow the bacterial cells to replicate the plasmid DNA, and a suitable site for cloning (referred to as a multiple cloning site). DNA structural instability can be defined as a series of spontaneous events that culminate in an unforeseen rearrangement, loss, or gain of genetic material. Such events are frequently triggered by the transposition of mobile elements or by the presence of unstable elements such as non-canonical (non-B) structures. Accessory regions pertaining to the bacterial backbone may engage in a wide range of structural instability phenomena. Well-known catalysts of
genetic instability Genome instability (also genetic instability or genomic instability) refers to a high frequency of mutations within the genome of a cellular lineage. These mutations can include changes in nucleic acid sequences, chromosomal rearrangements or an ...
include direct, inverted, and tandem repeats, which are known to be conspicuous in a large number of commercially available cloning and expression vectors. Insertion sequences can also severely impact plasmid function and yield, by leading to
deletion Deletion or delete may refer to: Computing * File deletion, a way of removing a file from a computer's file system * Code cleanup, a way of removing unnecessary variables, data structures, cookies, and temporary files in a programming language * ...
s and rearrangements, activation, down-regulation or inactivation of neighboring
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. The ...
. Therefore, the reduction or complete elimination of extraneous
noncoding Non-coding DNA (ncDNA) sequences are components of an organism's DNA that do not encode protein sequences. Some non-coding DNA is transcribed into functional non-coding RNA molecules (e.g. transfer RNA, microRNA, piRNA, ribosomal RNA, and regula ...
backbone sequences would pointedly reduce the propensity for such events to take place, and consequently, the overall recombinogenic potential of the plasmid.


Cloning

Plasmids are the most-commonly used bacterial cloning vectors. These cloning vectors contain a site that allows DNA fragments to be inserted, for example a multiple cloning site or polylinker which has several commonly used restriction sites to which DNA fragments may be ligated. After the gene of interest is inserted, the plasmids are introduced into bacteria by a process called transformation. These plasmids contain a selectable marker, usually an antibiotic resistance gene, which confers on the bacteria an ability to survive and proliferate in a selective growth medium containing the particular antibiotics. The cells after transformation are exposed to the selective media, and only cells containing the plasmid may survive. In this way, the antibiotics act as a filter to select only the bacteria containing the plasmid DNA. The vector may also contain other marker genes or reporter genes to facilitate selection of plasmids with cloned inserts. Bacteria containing the plasmid can then be grown in large amounts, harvested, and the plasmid of interest may then be isolated using various methods of plasmid preparation. A plasmid cloning vector is typically used to clone DNA fragments of up to 15 kbp. To clone longer lengths of DNA, lambda phage with lysogeny genes deleted, cosmids, bacterial artificial chromosomes, or yeast artificial chromosomes are used.


Protein production

Another major use of plasmids is to make large amounts of proteins. In this case, researchers grow bacteria containing a plasmid harboring the gene of interest. Just as the bacterium produces proteins to confer its antibiotic resistance, it can also be induced to produce large amounts of proteins from the inserted gene. This is a cheap and easy way of mass-producing the protein the gene codes for, for example,
insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the ''INS'' gene. It is considered to be the main anabolic hormone of the body. It regulates the metabolism o ...
.


Gene therapy

Plasmids may also be used for gene transfer as a potential treatment in gene therapy so that it may express the protein that is lacking in the cells. Some forms of gene therapy require the insertion of therapeutic genes at pre-selected chromosomal target sites within the human genome. Plasmid vectors are one of many approaches that could be used for this purpose. Zinc finger nucleases (ZFNs) offer a way to cause a site-specific double-strand break to the DNA genome and cause homologous recombination. Plasmids encoding ZFN could help deliver a therapeutic gene to a specific site so that cell damage, cancer-causing mutations, or an immune response is avoided.


Disease models

Plasmids were historically used to genetically engineer the embryonic stem cells of rats to create rat genetic disease models. The limited efficiency of plasmid-based techniques precluded their use in the creation of more accurate human cell models. However, developments in adeno-associated virus recombination techniques, and zinc finger nucleases, have enabled the creation of a new generation of isogenic human disease models.


Episomes

The term ''episome'' was introduced by François Jacob and
Élie Wollman Élie Léo Wollman (July 4, 1917 – June 1, 2008) was a French microbial geneticist who first described plasmids (what he termed "episomes"), and served as vice director of research for the Pasteur Institute for twenty years. He was awarded th ...
in 1958 to refer to extra-chromosomal genetic material that may replicate autonomously or become integrated into the chromosome. Since the term was introduced, however, its use has changed, as ''plasmid'' has become the preferred term for autonomously replicating extrachromosomal DNA. At a 1968 symposium in London some participants suggested that the term ''episome'' be abandoned, although others continued to use the term with a shift in meaning. Today, some authors use ''episome'' in the context of prokaryotes to refer to a plasmid that is capable of integrating into the chromosome. The integrative plasmids may be replicated and stably maintained in a cell through multiple generations, but at some stage, they will exist as an independent plasmid molecule. In the context of eukaryotes, the term ''episome'' is used to mean a non-integrated extrachromosomal closed circular DNA molecule that may be replicated in the nucleus. Viruses are the most common examples of this, such as herpesviruses, adenoviruses, and polyomaviruses, but some are plasmids. Other examples include aberrant chromosomal fragments, such as double minute chromosomes, that can arise during artificial gene amplifications or in pathologic processes (e.g., cancer cell transformation). Episomes in eukaryotes behave similarly to plasmids in prokaryotes in that the DNA is stably maintained and replicated with the host cell. Cytoplasmic viral episomes (as in poxvirus infections) can also occur. Some episomes, such as herpesviruses, replicate in a rolling circle mechanism, similar to
bacteriophage A bacteriophage (), also known informally as a ''phage'' (), is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν ('), meaning "to devour". Bacteri ...
s (bacterial phage viruses). Others replicate through a bidirectional replication mechanism (''Theta type'' plasmids). In either case, episomes remain physically separate from host cell chromosomes. Several cancer viruses, including Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, are maintained as latent, chromosomally distinct episomes in cancer cells, where the viruses express oncogenes that promote cancer cell proliferation. In cancers, these episomes passively replicate together with host chromosomes when the cell divides. When these viral episomes initiate lytic replication to generate multiple virus particles, they generally activate cellular innate immunity defense mechanisms that kill the host cell.


Plasmid maintenance

Some plasmids or microbial hosts include an addiction system or postsegregational killing system (PSK), such as the hok/sok (host killing/suppressor of killing) system of plasmid R1 in '' Escherichia coli''. This variant produces both a long-lived
poison Poison is a chemical substance that has a detrimental effect to life. The term is used in a wide range of scientific fields and industries, where it is often specifically defined. It may also be applied colloquially or figuratively, with a broa ...
and a short-lived antidote. Several types of plasmid addiction systems (toxin/ antitoxin, metabolism-based, ORT systems) were described in the literature and used in biotechnical (fermentation) or biomedical (vaccine therapy) applications. Daughter cells that retain a copy of the plasmid survive, while a daughter cell that fails to inherit the plasmid dies or suffers a reduced growth-rate because of the lingering poison from the parent cell. Finally, the overall productivity could be enhanced. In contrast, plasmids used in biotechnology, such as pUC18, pBR322 and derived vectors, hardly ever contain toxin-antitoxin addiction systems, and therefore need to be kept under antibiotic pressure to avoid plasmid loss.


Yeast plasmids

Yeasts naturally harbour various plasmids. Notable among them are 2 μm plasmids—small circular plasmids often used for
genetic engineering Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including t ...
of yeast—and linear pGKL plasmids from '' Kluyveromyces lactis'', that are responsible for
killer phenotypes A killer is someone or something that kills, such as a murderer or a serial killer. Killer may also refer to: Arts, entertainment, and media Fictional characters * Killer (''Home and Away''), a character from ''Home and Away'' * Killer Kane, ...
. Other types of plasmids are often related to yeast cloning vectors that include: * ''Yeast integrative plasmid (YIp)'', yeast vectors that rely on integration into the host chromosome for survival and replication, and are usually used when studying the functionality of a solo gene or when the gene is toxic. Also connected with the gene URA3, that codes an enzyme related to the biosynthesis of pyrimidine nucleotides (T, C); * ''Yeast Replicative Plasmid (YRp)'', which transport a sequence of chromosomal DNA that includes an origin of replication. These plasmids are less stable, as they can be lost during budding.


Plant mitochondrial plasmids

The mitochondria of many higher plants contain
self-replicating Self-replication is any behavior of a dynamical system that yields construction of an identical or similar copy of itself. Biological cells, given suitable environments, reproduce by cell division. During cell division, DNA is replicated and ca ...
, extra-chromosomal linear or circular DNA molecules which have been considered to be plasmids. These can range from 0.7 kb to 20 kb in size. The plasmids have been generally classified into to two categories- circular and linear. Circular plasmids have been and found in many different plants, with those in '' Vicia faba and Chenopodium album'' being the most studied and whose mechanism of replication is known. The circular plasmids can replicate using the θ model of replication (as in ''Vicia faba'') and through rolling circle replication (as in ''C.album''). Linear plasmids have been identified in some plant species such as '' Beta vulgaris'', ''
Brassica napus Rapeseed (''Brassica napus ''subsp.'' napus''), also known as rape, or oilseed rape, is a bright-yellow flowering member of the family Brassicaceae (mustard or cabbage family), cultivated mainly for its oil-rich seed, which naturally contains a ...
,
Zea mays Maize ( ; ''Zea mays'' subsp. ''mays'', from es, maíz after tnq, mahiz), also known as corn (North American and Australian English), is a cereal grain first domesticated by indigenous peoples in southern Mexico about 10,000 years ago. Th ...
'', etc. but are rarer than their circular counterparts. The function and origin of these plasmids remains largely unknown. It has been suggested that the circular plasmids share a common ancestor, some genes in the mitochondrial plasmid have counterparts in the nuclear DNA suggesting inter-compartment exchange. Meanwhile, the linear plasmids share structural similarities such as invertrons with viral DNA and fungal plasmids, like fungal plasmids they also have low GC content, these observations have led to some hypothesizing that these linear plasmids have viral origins, or have ended up in plant mitochondria through horizontal gene transfer from pathogenic fungi.


Plasmid DNA extraction

Plasmids are often used to purify a specific sequence, since they can easily be purified away from the rest of the genome. For their use as vectors, and for molecular cloning, plasmids often need to be isolated. There are several methods to isolate plasmid DNA from bacteria, ranging from the miniprep to the maxiprep or bulkprep. The former can be used to quickly find out whether the plasmid is correct in any of several bacterial clones. The yield is a small amount of impure plasmid DNA, which is sufficient for analysis by restriction digest and for some cloning techniques. In the latter, much larger volumes of bacterial suspension are grown from which a maxi-prep can be performed. In essence, this is a scaled-up miniprep followed by additional purification. This results in relatively large amounts (several hundred micrograms) of very pure plasmid DNA. Many commercial kits have been created to perform plasmid extraction at various scales, purity, and levels of automation.


Conformations

Plasmid DNA may appear in one of five conformations, which (for a given size) run at different speeds in a gel during
electrophoresis Electrophoresis, from Ancient Greek ἤλεκτρον (ḗlektron, "amber") and φόρησις (phórēsis, "the act of bearing"), is the motion of dispersed particles relative to a fluid under the influence of a spatially uniform electric fie ...
. The conformations are listed below in order of electrophoretic mobility (speed for a given applied voltage) from slowest to fastest: * '' Nicked open-circular'' DNA has one strand cut. * ''Relaxed circular'' DNA is fully intact with both strands uncut but has been enzymatically ''relaxed'' (supercoils removed). This can be modeled by letting a twisted extension cord unwind and relax and then plugging it into itself. * ''Linear'' DNA has free ends, either because both strands have been cut or because the DNA was linear ''in vivo''. This can be modeled with an electrical extension cord that is not plugged into itself. * ''
Supercoiled DNA supercoiling refers to the amount of twist in a particular DNA strand, which determines the amount of strain on it. A given strand may be "positively supercoiled" or "negatively supercoiled" (more or less tightly wound). The amount of a st ...
'' (or ''covalently closed-circular'') DNA is fully intact with both strands uncut, and with an integral twist, resulting in a compact form. This can be modeled by twisting an extension cord and then plugging it into itself. * ''Supercoiled denatured'' DNA is like ''supercoiled DNA'', but has unpaired regions that make it slightly less compact; this can result from excessive alkalinity during plasmid preparation. The rate of migration for small linear fragments is directly proportional to the voltage applied at low voltages. At higher voltages, larger fragments migrate at continuously increasing yet different rates. Thus, the resolution of a gel decreases with increased voltage. At a specified, low voltage, the migration rate of small linear DNA fragments is a function of their length. Large linear fragments (over 20 kb or so) migrate at a certain fixed rate regardless of length. This is because the molecules 'respirate', with the bulk of the molecule following the leading end through the gel matrix. Restriction digests are frequently used to analyse purified plasmids. These enzymes specifically break the DNA at certain short sequences. The resulting linear fragments form 'bands' after
gel electrophoresis Gel electrophoresis is a method for separation and analysis of biomacromolecules ( DNA, RNA, proteins, etc.) and their fragments, based on their size and charge. It is used in clinical chemistry to separate proteins by charge or size (IEF ...
. It is possible to purify certain fragments by cutting the bands out of the gel and dissolving the gel to release the DNA fragments. Because of its tight conformation, supercoiled DNA migrates faster through a gel than linear or open-circular DNA.


Software for bioinformatics and design

The use of plasmids as a technique in molecular biology is supported by
bioinformatics Bioinformatics () is an interdisciplinary field that develops methods and software tools for understanding biological data, in particular when the data sets are large and complex. As an interdisciplinary field of science, bioinformatics combi ...
software. These programs record the DNA sequence of plasmid vectors, help to predict cut sites of restriction enzymes, and to plan manipulations. Examples of software packages that handle plasmid maps are ApE,
Clone Manager Clone Manager is a commercial bioinformatics software work suite of Sci-Ed, that supports molecular biologists with data management and allows them to perform certain ''in silico In biology and other experimental sciences, an ''in silico'' exp ...
, GeneConstructionKit, Geneious,
Genome Compiler Twist Bioscience is a public biotechnology company based in South San Francisco that manufactures synthetic DNA and DNA products for customers in a wide range of industries. Twist was founded in 2013 by Emily Leproust, Bill Banyai, and Bill Pec ...
, LabGenius, Lasergene, MacVector, pDraw32, Serial Cloner, VectorFriends, Vector NTI, and WebDSV. These pieces of software help conduct entire experiments in silico before doing wet experiments.


Plasmid collections

Many plasmids have been created over the years and researchers have given out plasmids to plasmid databases such as the non-profit organisation
Addgene
an
BCCM/LMBP
One can find and request plasmids from those databases for research. Researchers also often upload plasmid sequences to th
NCBI database
from which sequences of specific plasmids can be retrieved.


See also


References


Further reading


General works

* * *


Episomes

* * * * * * *


External links


International Society for Plasmid Biology and other Mobile Genetic Elements

What is Biotechnology


{{Authority control Gene delivery Mobile genetic elements Molecular biology Molecular biology techniques