HOME

TheInfoList



OR:

Selective laser melting (SLM) is one of many proprietary names for a metal
additive manufacturing 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer co ...
(AM) technology that uses a bed of powder with a source of heat to create metal parts. Also known as direct metal laser sintering (DMLS), the ASTM standard term is powder bed fusion (PBF). PBF is a rapid prototyping, 3D printing, or
additive manufacturing 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer co ...
technique designed to use a high power-density
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
to melt and fuse metallic powders together.


History

Selective laser melting is one of many proprietary powder bed fusion technologies, started in 1995 at the
Fraunhofer Institute The Fraunhofer Society (german: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., lit=Fraunhofer Society for the Advancement of Applied Research) is a German research organization with 76institutes spread throughout Germany ...
ILT in
Aachen Aachen ( ; ; Aachen dialect: ''Oche'' ; French and traditional English: Aix-la-Chapelle; or ''Aquisgranum''; nl, Aken ; Polish: Akwizgran) is, with around 249,000 inhabitants, the 13th-largest city in North Rhine-Westphalia, and the 28th- ...
, Germany, with a German research project, resulting in the so-called basic ILT SLM patent. Already during its pioneering phase Dr. Dieter Schwarze and Dr. Matthias Fockele from F&S Stereolithographietechnik GmbH located in
Paderborn Paderborn (; Westphalian: ''Patterbuorn'', also ''Paterboärn'') is a city in eastern North Rhine-Westphalia, Germany, capital of the Paderborn district. The name of the city derives from the river Pader and ''Born'', an old German term for t ...
collaborated with the ILT researchers Dr. Wilhelm Meiners and Dr. Konrad Wissenbach. In the early 2000s F&S entered into a commercial partnership with MCP HEK GmbH (later on named MTT Technology GmbH and then SLM Solutions GmbH) located in
Lübeck Lübeck (; Low German also ), officially the Hanseatic City of Lübeck (german: Hansestadt Lübeck), is a city in Northern Germany. With around 217,000 inhabitants, Lübeck is the second-largest city on the German Baltic coast and in the stat ...
in northern Germany. Today Dr. Dieter Schwarze is with SLM Solutions GmbH and Dr. Matthias Fockele founded Realizer GmbH. The
ASTM International ASTM International, formerly known as American Society for Testing and Materials, is an international standards organization that develops and publishes voluntary consensus technical standards for a wide range of materials, products, systems, an ...
F42 standards committee has grouped selective laser melting into the category of "laser sintering", although this is an acknowledged misnomer because the process fully melts the metal into a solid homogeneous fully dense mass, unlike
selective laser sintering Selective laser sintering (SLS) is an additive manufacturing (AM) technique that uses a laser as the power and heat source to sinter powdered material (typically nylon or polyamide), aiming the laser automatically at points in space defined ...
(SLS) which is a true
sintering Clinker nodules produced by sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing ...
process. Another name for selective laser melting is direct metal laser sintering (DMLS), a name deposited by the EOS brand, however misleading on the real process because the part is being melted during the production, not sintered, which means the part is fully dense. This process is in all points very similar to other SLM processes, and is often considered as an SLM process. A similar process is
electron beam melting Electron-beam additive manufacturing, or electron-beam melting (EBM) is a type of additive manufacturing, or 3D printing, for metal parts. The raw material (metal powder or wire) is placed under a vacuum and fused together from heating by an e ...
(EBM), which uses an electron beam as the energy source.


Process

Selective laser melting is able to process a variety of alloys, allowing prototypes to be functional hardware made out of the same material as production components. Since the components are built layer by layer, it is possible to design complex freeform geometries, internal features and challenging internal passages that could not be produced using conventional manufacturing techniques such as casting or otherwise machined. SLM produces fully dense durable metal parts that work well as both functional prototypes or end-use production parts. The process starts by slicing the 3D
CAD Computer-aided design (CAD) is the use of computers (or ) to aid in the creation, modification, analysis, or optimization of a design. This software is used to increase the productivity of the designer, improve the quality of design, improve co ...
file data into layers, usually from 20 to 100 micrometers thick, creating a 2D cross-section of each layer; this file format is the industry standard .stl file used on most layer-based 3D printing or
stereolithography Stereolithography (SLA or SL; also known as vat photopolymerisation, optical fabrication, photo-solidification, or resin printing) is a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a lay ...
technologies. This file is then loaded into a file preparation software package that assigns parameters, values and physical supports that allow the file to be interpreted and built by different types of additive manufacturing machines. With selective laser melting, thin layers of atomized metal powder are evenly distributed using a re-coating mechanism onto a substrate plate, usually metal, that is fastened to an indexing platform that moves in the vertical (Z) axis. This takes place inside a chamber containing a tightly controlled atmosphere of
inert gas An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. The noble gases often do not react with many substances and were historically referred to ...
, either argon or nitrogen at oxygen levels below 1000 parts per million. Once each layer has been distributed, each 2D slice of the part geometry is fused by selectively melting the powder. This is accomplished with a high-power laser beam, usually an
ytterbium Ytterbium is a chemical element with the symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. However, like the othe ...
fiber laser with hundreds of watts. The laser beam is directed in the X and Y directions with two high frequency scanning mirrors and remains in focus along the layer utilising an F-Theta lens arrangement. The laser energy is intense and focused enough to permit full melting (fusion) of the particles to form a solid structure. The process is repeated layer after layer until the part is complete. SLM machines predominantly uses a high-powered Yb-fiber optic
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
with standard laser powers ranging from 100 - 1000W. Inside the build chamber area, there is a material dispensing platform and a build platform along with a recoater system (blade or roller) used to evenly spread new powder across the build platform. . Parts are built up additively layer by layer, typically using layers 30-60 micrometers thick.


Materials

Selective laser melting (SLM) machines can operate with a work space up to 1 m (39.37 in) in X, Y and Z. Some of the materials being used in this process can include Ni based super alloys, copper, aluminum, stainless steel, tool steel, cobalt chrome, titanium and tungsten. SLM is especially useful for producing tungsten parts because of the high melting point and high ductile-brittle transition temperature of this metal. In order for the material to be used in the process it must exist in atomized form (powder form). These powders are generally gas atomized prealloys, being the most economical process to obtain spherical powders on an industrial scale. Sphericity is desired because it guarantees a high flowability and packing density, which translates into fast and reproducible spreading of the powder layers. To further optimize flowability, narrow grain size distributions with a low percentage of fine particles like 15 - 45 µm or 20 - 63 µm are typically employed. Currently available alloys used in the process include AISI 316L, AISI 304, C67, F53, H13, 17-4 PH and 15-5
stainless steel Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's corros ...
,
maraging steel Maraging steels (a portmanteau of "martensitic" and "aging") are steels that are known for possessing superior strength and toughness without losing ductility. ''Aging'' refers to the extended heat-treatment process. These steels are a special clas ...
,
cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, pr ...
chromium Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal. Chromium metal is valued for its high corrosion resistance and hardne ...
,
inconel Inconel is a registered trademark of Special Metals Corporation for a family of austenitic nickel-chromium-based superalloys. Inconel alloys are oxidation-corrosion-resistant materials well suited for service in extreme environments subjected t ...
625 and 718, copper-based alloys (CW510 Brass, Ecobrass, Bronze),
aluminum Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It has ...
AlSi10Mg, and
titanium Titanium is a chemical element with the symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
Ti6Al4V. The mechanical properties of samples produced using selective laser melting sintering differ from those manufactured using casting. AlSiMg samples produced using direct metal laser sintering exhibit a higher yieldengineering than those constructed of commercial as-cast A360.0 alloy by 43% when constructed along the xy-plane and 36% along the z-plane. While the yield strength of AlSiMg has been shown to increase in both the xy-plane and z-plane, the elongation at break decreases along the build direction. These improvement of the mechanical properties of the direct metal laser sintering samples has been attributed to a very fine microstructure. Additionally, industry pressure has added more superalloy powders to the available processing including AM108.  It is not only the Print operation and orientation that provides a change in material properties, it is also the required post processing via Hot Isostatic Pressure (HIP) Heat Treat and shot peen that change mechanical properties to a level of noticeable difference in comparison to equiaxed cast or wrought materials.  Based on research done at the Tokyo Metropolitan University, it is shown that creep rupture and ductility are typically lower for additive printed Ni based superalloys compared to wrought or cast material. The directionality of print is a major influencing factor along with grain size. Additionally, wear properties are typically better as seen with the studies done on additive Inconel 718 due to surface condition; the study also demonstrated the laser power's influence on density and microstructure. Material Density that is generated during the laser processing parameters can further influence crack behavior such that crack reopening post HIP process is reduced when density is increased. It is critical to have a full overview of the material along with its processing from print to required post-print to be able to finalize the mechanical properties for design use.


Overview and benefits

SLM is a fast developing process that is being implemented in both research and industry. This advancement is very important to both material science and the industry because it can not only create custom properties but it can reduce material usage and give more degrees of freedom with designs that manufacturing techniques can't achieve. Selective laser melting is very useful as a full-time materials and process engineer. Requests such as requiring a quick turnaround in manufacturing material or having specific applications that need complex geometries are common issues that occur in industry. Having SLM would really improve the process of not only getting parts created and sold, but making sure the properties align with whatever is needed out in the field. Current challenges that occur with SLM are having a limit in processable materials, having undeveloped process settings and metallurgical defects such as cracking and porosity. The future challenges are being unable to create fully dense parts due to the processing of aluminum alloys. Aluminum powders are lightweight, have high reflectivity, high thermal conductivity, and low laser absorptivity in the range of wavelengths of the fiber lasers which are used in SLM. These challenges can be improved with doing more research in how the materials interact when being fused together.


Defect formation

Despite the large successes that SLM has provided to
additive manufacturing 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer co ...
, the process of melting a powdered medium with a concentrated laser yields various microstructural defects through numerous mechanisms that can detrimentally affect the overall functionality and strength of the manufactured part. Although there are many defects that have been researched, we will review some of the major defects that may arise from SLM in this section. Two of the most common mechanical defects include lack of fusion (LOF) or cracking within solidified regions. LOF involves the entrapment of gas within the structure rather than a cohesive solid. These defects can arise from not using a laser source with adequate power or scanning across the powdered surface too quickly, thereby melting the metal insufficiently and preventing a strong bonding environment for solidification. Cracking is another mechanical defect in which low
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
and high thermal expansion coefficients generate sufficiently high amounts of internal stresses to break bonds within the material, especially along
grain boundaries In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional crystallographic defect, defects in the crystal structure, and tend to decrease the ...
where dislocations are present. Additionally, although SLM solidifies a structure from
molten metal Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which inc ...
, the thermal fluid dynamics of the system often produces
inhomogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
compositions or unintended
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
which can cumulatively affect the overall strength and fatigue life of a printed structure. For example, the directed laser beam can induce
convection currents Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convec ...
upon direct impact in a narrow "keyhole" zone or throughout the semi-molten metal that can impact the material’s overall composition. Similarly, it is found that during solidification,
dendritic Dendrite derives from the Greek word "dendron" meaning ( "tree-like"), and may refer to: Biology *Dendrite, a branched projection of a neuron *Dendrite (non-neuronal), branching projections of certain skin cells and immune cells Physical * Dendr ...
microstructures progress along temperature gradients at different speeds, thus producing different segregation profiles within the material. Ultimately, these thermal fluid dynamical phenomena generate unwanted inconsistencies within the printed material, and further research into mitigating these effects will continue to be necessary. Pore formation is a very important defect when samples are printed using SLM. Pores are revealed to form during changes in laser scan velocity due to the rapid formation then collapse of deep keyhole depressions in the surface which traps inert shielding gas in the solidifying metal. Lastly, secondary effects that arise from the laser beam can unintentionally affect the structure’s properties. One such example is the development of secondary phase precipitates within the bulk structure due to the repetitive heating within solidified lower layers as the laser beam scans across the powder bed. Depending on the composition of the precipitates, this effect can remove important elements from the bulk material or even embrittle the printed structure. Not only that, in powder beds containing oxides, the power of the laser and produced convection currents can vaporize and "splatter"
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
s at other locations. These oxides accumulate and have a non-wetting behavior, thereby producing a slag that not only removes the beneficial nature of oxide within the composition but also provides a mechanistically favorable microenvironment for material cracking.


Mechanical properties

High
temperature gradient A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes the most rapidly around a particular location. The temperature gradient is a dimensional quantity expressed in units of degree ...
s are presented during selective laser melting (SLM) processes, which causes non-equilibrium conditions at the solid/liquid interface, thereby leading to rapid solidification as the melt pool undergoes a phase transformation from liquid to solid. As a consequence, a wide range of effects might take place like the formation of non-equilibrium phases and changes in the microstructure. For the reasons above, the mechanical properties of alloys produced by SLM can deviate substantially from those conventionally manufactured counterparts in their as-built state. A central characteristic of SLM-manufactured alloys is large
anisotropy Anisotropy () is the property of a material which allows it to change or assume different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physic ...
in mechanical properties . While the grain structure in cast metals is typically characterized by roughly uniform, isotropic grains, alloys manufactured using SLM exhibit substantial elongation of grains in the build direction. The anisotropy in grain structure is associated with anisotropy in the distribution of defects, the direction of crack propagation, and ultimately the mechanical properties. On the other hand, because of the special thermo-kinetic features associated with SLM, there are many novel microstructural architectures unique to this process . As a new processing technique, SLM can produce a unique microstructure that is difficult to achieve using conventional techniques.


Nickel-based superalloys

Enhancements in creep resistance,
ultimate tensile strength Ultimate tensile strength (UTS), often shortened to tensile strength (TS), ultimate strength, or F_\text within equations, is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials t ...
and
toughness In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing.
Inconel Inconel is a registered trademark of Special Metals Corporation for a family of austenitic nickel-chromium-based superalloys. Inconel alloys are oxidation-corrosion-resistant materials well suited for service in extreme environments subjected t ...
IN625, a precipitation-hardened nickel-chromium alloy, showed equal or even higher creep strength at elevated temperatures of 650 ̊C and 800 ̊C than wrought IN625. However, SLM-manufactured IN625 exhibited inferior
ductility Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stres ...
under creep testing conditions. By deploying cyclic heat treatments, both SLM and wrought IN625 obtained some additional strength. The amount of extra strength in the alloys was generally proportional to the matrix volume fraction of γ’’ phase (at 650 ̊C) and δ phase (at 800 ̊C). The fatigue strength and hardness of SLM-manufactured alloys when handling cyclic loads at high temperature, however, tends to be significantly inferior to that of cast or wrought alloys. For another superalloy
Inconel Inconel is a registered trademark of Special Metals Corporation for a family of austenitic nickel-chromium-based superalloys. Inconel alloys are oxidation-corrosion-resistant materials well suited for service in extreme environments subjected t ...
IN718, researchers found the additively manufactured material showed large columnar grains with an orientation parallel to the building direction, whereas the wrought material showed a fine-grained structure with no significant texture. SLM-based additive manufacturing of nickel superalloys still poses significant challenges due to these alloys’ complex composition. With multiple alloying elements and high aluminum/titanium fraction, these materials, when consolidated through SLM form various secondary phases, which affects the processability and leading to weakness within the structure.


Iron-based alloys (Stainless steels)

Stainless steel grade 316L is an austenitic iron-based alloy that features a low carbon content (< 0.03%). Tensile tests and creep tests of 316L steel performed at 600 °C and 650 °C concluded that the SLM steel reached the minimum creep rate at significantly lower creep strains, around one decade lower, compared to the wrought counterpart. The cellular structure is considered to be the main cause of the differences in deformation behavior, especially during the first creep stage, primarily because it limits the work-hardening capacity of the material. The
ultimate tensile strength Ultimate tensile strength (UTS), often shortened to tensile strength (TS), ultimate strength, or F_\text within equations, is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials t ...
(UTS) is also lower for AM specimens since strain hardening is insignificant. The fracture in the SLM-manufactured material is mainly between the grains. The grain boundary damage leads to cracking and subsequently to the failure of the material. The deformation is caused and accelerated by the appearance of precipitates at the grain boundaries. The higher stacking fault energy (SFE) of SLM 316L steel presumably also contributed to its creep behavior.


Applications

The types of applications most suited to the selective laser melting process are complex geometries and structures with thin walls and hidden voids or channels on the one hand or low lot sizes on the other hand. Advantage can be gained when producing hybrid forms where solid and partially formed or lattice type geometries can be produced together to create a single object, such as a hip stem or acetabular cup or other orthopedic implant where
osseointegration Osseointegration (from Latin ''osseus'' " bony" and ''integrare'' "to make whole") is the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant ("load-bearing" as defined by Albrekt ...
is enhanced by the surface geometry. Much of the pioneering work with selective laser melting technologies is on lightweight parts for aerospace where traditional manufacturing constraints, such as tooling and physical access to surfaces for machining, restrict the design of components. SLM allows parts to be built additively to form
near net shape Near-net-shape is an industrial manufacturing technique. As the name implies, the initial production of the item is very close to the final, or ''net'', shape. This reduces the need for surface finishing. By minimizing the use of finishing methods ...
components rather than by removing waste material. Traditional high-volume manufacturing techniques have a relatively high set-up cost (e.g.
Injection moulding Injection moulding (U.S. spelling: injection molding) is a manufacturing process for producing parts by injecting molten material into a mould, or mold. Injection moulding can be performed with a host of materials mainly including metals (for ...
,
Forging Forging is a manufacturing process involving the shaping of metal using localized compressive forces. The blows are delivered with a hammer (often a power hammer) or a die. Forging is often classified according to the temperature at which i ...
,
Investment casting Investment casting is an industrial process based on lost-wax casting, one of the oldest known metal-forming techniques. The term "lost-wax casting" can also refer to modern investment casting processes. Investment casting has been used in var ...
). While SLM currently has a high cost per part owing to its time sensitivity and the overall capital costs of the equipment. However, for limited quantise of bespoke customisable parts, the process remains attractive for a number or uses. This is the case e.g. for spares/replacement parts for obsolete equipment and machines (e.g. vintage cars) or customisable products like implants designed for individual patients . Tests by NASA's
Marshall Space Flight Center The George C. Marshall Space Flight Center (MSFC), located in Redstone Arsenal, Alabama (Huntsville postal address), is the U.S. government's civilian rocketry and spacecraft propulsion research center. As the largest NASA center, MSFC's first ...
, which is experimenting with the technique to make some difficult-to-fabricate parts from nickel alloys for the
J-2X The J-2X is a liquid-fueled cryogenic rocket engine that was planned for use on the Ares rockets of NASA's Constellation program, and later the Space Launch System. Built in the United States by Aerojet Rocketdyne (formerly, Pratt & Whitney Rocket ...
and
RS-25 The Aerojet Rocketdyne RS-25, also known as the Space Shuttle Main Engine (SSME), is a liquid-fuel cryogenic rocket engine that was used on NASA's Space Shuttle and is currently used on the Space Launch System (SLS). Designed and manufactu ...
rocket engine A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordanc ...
s, show that difficult to make parts made with the technique are somewhat weaker than forged and milled parts but often avoid the need for welds which are weak points. This technology is used to manufacture direct parts for a variety of industries including aerospace, dental, medical and other industries that have small to medium size, highly complex parts and the tooling industry to make direct tooling inserts or those requiring short lead times. The technology is used both for rapid prototyping, as it decreases development time for new products, and production manufacturing as a cost saving method to simplify assemblies and complex geometries. The Northwestern Polytechnical University of China is using a similar system to build structural titanium parts for aircraft. An
EADS Airbus SE (; ; ; ) is a European multinational aerospace corporation. Airbus designs, manufactures and sells civil and military aerospace products worldwide and manufactures aircraft throughout the world. The company has three divisions: '' ...
study shows that use of the process would reduce materials and waste in aerospace applications. On September 5, 2013 Elon Musk tweeted an image of
SpaceX Space Exploration Technologies Corp. (SpaceX) is an American spacecraft manufacturer, launcher, and a satellite communications corporation headquartered in Hawthorne, California. It was founded in 2002 by Elon Musk with the stated goal of ...
's regeneratively-cooled
SuperDraco SuperDraco is a hypergolic propellant rocket engine designed and built by SpaceX. It is part of the SpaceX Draco family of rocket engines. A redundant array of eight SuperDraco engines provides fault-tolerant propulsion for use as a launch escap ...
rocket engine chamber emerging from an EOS 3D metal printer, noting that it was composed of the
Inconel Inconel is a registered trademark of Special Metals Corporation for a family of austenitic nickel-chromium-based superalloys. Inconel alloys are oxidation-corrosion-resistant materials well suited for service in extreme environments subjected t ...
superalloy. In a surprise move, SpaceX announced in May 2014 that the flight-qualified version of the SuperDraco engine is fully
printed Printing is a process for mass reproducing text and images using a master form or template. The earliest non-paper products involving printing include cylinder seals and objects such as the Cyrus Cylinder and the Cylinders of Nabonidus. The ea ...
, and is the first fully printed
rocket engine A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordanc ...
. Using Inconel, an alloy of nickel and iron, additively-manufactured by direct metal laser sintering, the engine operates at a
chamber pressure Within firearms, chamber pressure is the pressure exerted by a cartridge case's outside walls on the inside of a firearm's chamber when the cartridge is fired. The SI unit for chamber pressure is the megapascal (MPa), while the American SAAMI uses ...
of at a very high temperature. The engines are contained in a printed protective nacelle, also DMLS-printed, to prevent fault propagation in the event of an engine failure. The engine completed a full
qualification Qualification is either the process of qualifying for an achievement, or a credential attesting to that achievement, and may refer to: * Professional qualification, attributes developed by obtaining academic degrees or through professional exper ...
test in May 2014, and is slated to make its first
orbital spaceflight An orbital spaceflight (or orbital flight) is a spaceflight in which a spacecraft is placed on a trajectory where it could remain in space for at least one orbit. To do this around the Earth, it must be on a free trajectory which has an altit ...
in April 2018. The ability to 3D print the complex parts was key to achieving the low-mass objective of the engine. According to
Elon Musk Elon Reeve Musk ( ; born June 28, 1971) is a business magnate and investor. He is the founder, CEO and chief engineer of SpaceX; angel investor, CEO and product architect of Tesla, Inc.; owner and CEO of Twitter, Inc.; founder of The Bori ...
, "It’s a very complex engine, and it was very difficult to form all the cooling channels, the injector head, and the throttling mechanism. Being able to print very high strength advanced alloys ... was crucial to being able to create the SuperDraco engine as it is." The 3D printing process for the SuperDraco engine dramatically reduces lead-time compared to the traditional
cast Cast may refer to: Music * Cast (band), an English alternative rock band * Cast (Mexican band), a progressive Mexican rock band * The Cast, a Scottish musical duo: Mairi Campbell and Dave Francis * ''Cast'', a 2012 album by Trespassers William * ...
parts, and "has superior
strength Strength may refer to: Physical strength *Physical strength, as in people or animals * Hysterical strength, extreme strength occurring when people are in life-and-death situations *Superhuman strength, great physical strength far above human c ...
,
ductility Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stres ...
, and fracture resistance, with a lower variability in materials properties." Also in 2018, the
FDA The United States Food and Drug Administration (FDA or US FDA) is a federal agency of the Department of Health and Human Services. The FDA is responsible for protecting and promoting public health through the control and supervision of food ...
approved the first-ever 3D printed spine implant made from titanium using SLM.


Industry applications

* Aerospace – Air ducts, fixtures or mountings holding specific aeronautic instruments, laser-sintering fits both the needs of commercial and military aerospace * Manufacturing – Laser-sintering can serve niche markets with low volumes at competitive costs. Laser-sintering is independent of economies of scale, thus liberating one from focusing on batch size optimization. * Medical – Medical devices are complex, high value products. They have to meet customer requirements exactly. These requirements do not only stem from the operator's personal preferences: legal requirements or norms that differ widely between regions also have to be complied with. This leads to a multitude of varieties and thus small volumes of the variants offered. * Prototyping – Laser-sintering can help by making design and functional prototypes available. As a result, functional testing can be initiated quickly and flexibly. At the same time, these prototypes can be used to gauge potential customer acceptance. * Tooling – The direct process eliminates tool-path generation and multiple machining processes such as EDM. Tool inserts are built overnight or even in just a few hours. Also the freedom of design can be used to optimize tool performance, for example by integrating conformal cooling channels into the tool.


Other applications

* Parts with cavities, undercuts, draft angles * Fit, form, and function models * Tooling, fixtures, and jigs * Conformal cooling channels * Rotors and impellers * Complex bracketing Laser melting can produce chemical structures (pure metals, their
oxides An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
and
carbides In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece. Interstitial / Metallic carbides The carbides of the ...
), and physical structures (homogeneous,
alloys An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, ...
, composites, gold-iron, gold-cobalt, gold-nickel alloys).


Potential

Selective laser melting or additive manufacturing, sometimes referred to as
rapid manufacturing 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer ...
or
rapid prototyping Rapid prototyping is a group of techniques used to quickly fabricate a scale model of a physical part or assembly using three-dimensional computer aided design (CAD) data. Construction of the part or assembly is usually done using 3D printin ...
, is in its infancy with relatively few users in comparison to conventional methods such as machining, casting or forging metals, although those that are using the technology have become highly proficient. Like any process or method selective laser melting must be suited to the task at hand. Markets such as aerospace or medical orthopedics have been evaluating the technology as a manufacturing process. Barriers to acceptance are high and compliance issues result in long periods of certification and qualification. This is demonstrated by the lack of fully formed international standards by which to measure the performance of competing systems. The standard in question is ASTM F2792-10 Standard Terminology for Additive Manufacturing Technologies.


Difference from selective laser sintering (SLS)

The use of SLS refers to the process as applied to a variety of materials such as plastics, glass, and ceramics, as well as metals. What sets SLM apart from other 3D printing process is the ability to fully melt the powder, rather than heating it up to a specific point where the powder grains can fuse together, allowing the
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
of the material to be controlled. On the other hand, SLM can go one step further than SLS, by using the laser to fully melt the metal, meaning the powder is not being fused together but actually liquified long enough to melt the powder grains into a
homogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
part. Therefore, SLM can produce stronger parts because of reduced porosity and greater control over crystal structure, which helps prevent part failure. Additionally, certain types of nanoparticles with minimized lattice misfit, similar atomic packing along matched crystallographic planes and thermodynamic stability can be introduced into metal powder to serve as grain refinement nucleates to achieve crack-free, equiaxed, fine-grained microstructures. However, SLM is only feasible when using a single metal powder.


Benefits

SLM has many benefits over traditional manufacturing techniques. The ability to quickly produce a unique part is the most obvious because no special tooling is required and parts can be built in a matter of hours. SLM is also one of the few additive manufacturing technologies being used in production. Since the components are built layer by layer, it is possible to design internal features and passages that could not be cast or otherwise machined. Complex geometries and assemblies with multiple components can be simplified to fewer parts with a more cost-effective assembly. DMLS does not require special tooling like
casting Casting is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify. The solidified part is also known as a ''casting'', which is ejected ...
s, so it is convenient for short production runs.


Environmental impact

There are various components, environments, and material considerations that can affect the environmental impact that the SLM process has. First, the embodied energy that was used to make the printer, which has more than 500 parts, contributes around 124,000 MJ for a standard Renishaw AM250. It is important to note that the most prominent material is steel, which is 100% recyclable. To truly take advantage of the recyclability, a cradle-to-cradle approach can be implemented to ensure that all steel parts are properly discarded of at their end-life through disassembly. The electric use is often the most energy intensive part of the printer, as the high power lasers, chillers, configurations, and part separation all contribute to this. Less volume of parts, more active time, more active idle time (coolers running), and electrical discharge machining (EDM) all increase the energy usage. The higher end of on-site energy during use can be around 640 MJ per part while more efficient use is around 40 MJ per part. In this, a main factor that can be optimized for environmental friendliness is the use of fully renewable energy rather than electric made through gas or coal. Considering now
embodied energy Embodied energy is the sum of all the energy required to produce any goods or services, considered as if that energy was incorporated or 'embodied' in the product itself. The concept can be useful in determining the effectiveness of energy-produ ...
of the total lifecycle, at the energy intensive end is less efficient printing processes totaling 2400+ MJ per part while more efficient processes can be as low as 140 MJ per part. Ultimately, the total embodied energy considering all parts made is dependent on many factors but is almost always dominant during the printing phase and more specifically during long idle times and post-processing part removal through EDM. The exception to this is in research environments where the machine is not constantly used and use is more infrequent, in this case, the embodied energy from primary processing and manufacturing is dominant. Transportation costs will vary on manufacturing plants and consumers but these values are often negligible (<1%) in comparison to other high impacting parts of the SLM lifecycle. Other factors that are negligible, yet sometimes varied, are: inert gas use, material (powder) waste, materials used, atomization, and disposal of machine components. Depending on the part made and its intended use, SLM can help make more lightweight parts with complex dimensions which reduce both energy intensive post-processing machining such as EDM or a computer numerical control (CNC) machining and decrease part weight. Often a direct comparison can only be made by looking at parts made through two different processes. An example is a manufactured by
investment casting Investment casting is an industrial process based on lost-wax casting, one of the oldest known metal-forming techniques. The term "lost-wax casting" can also refer to modern investment casting processes. Investment casting has been used in var ...
and SLM, where 10853.34 kWh and 10181.57kWh were used to make the same part, respectively. Also conventional manufacturing contributed to 7,325 kgCO2 while AM had 7,027 kgCO2 of emissions. This means that in this specific scenario AM is beneficial by 4%, which could be significant over the 25,578 aircraft worldwide. Another example is the 1kg weight reduction through a hydraulic valve body which estimates a saving of 24,500L of
jet fuel Jet fuel or aviation turbine fuel (ATF, also abbreviated avtur) is a type of aviation fuel designed for use in aircraft powered by gas-turbine engines. It is colorless to straw-colored in appearance. The most commonly used fuels for commercial a ...
and 63 tons of CO2 emissions from a lightweight design and decreased material used compared to traditional manufacturing methods. SLM is often a more sustainable option due to decreased raw material use, less complex tool use, lightweight part potential, near-perfect final geometries, and on-demand manufacturing.


Constraints

The aspects of size, feature details and surface finish, as well as print through dimensional error in the Z axis may be factors that should be considered prior to the use of the technology. However, by planning the build in the machine where most features are built in the x and y axis as the material is laid down, the feature tolerances can be managed well. Surfaces usually have to be polished to achieve mirror or extremely smooth finishes. For production tooling, material density of a finished part or insert should be addressed prior to use. For example, in injection molding inserts, any surface imperfections will cause imperfections in the plastic part, and the inserts will have to mate with the base of the mold with temperature and surfaces to prevent problems. Independent of the material system used, the SLM process leaves a grainy
surface finish Surface finish, also known as surface texture or surface topography, is the nature of a surface as defined by the three characteristics of lay, surface roughness, and waviness.. It comprises the small, local deviations of a surface from the perf ...
due to "powder particle size, layer-wise building sequence and he spreading of the metal powder prior to sintering by the powder distribution mechanism" Metallic support structure removal and post processing of the part generated may be a time-consuming process and require the use of
machining Machining is a process in which a material (often metal) is cut to a desired final shape and size by a controlled material-removal process. The processes that have this common theme are collectively called subtractive manufacturing, which utilizes ...
,
EDM EDM or E-DM may refer to: Music * Electronic dance music * Early Day Miners, American band Science and technology * Electric dipole moment * Electrical discharge machining * Electronic distance measurement *Entry, Descent, and landing demonstrat ...
and/or grinding machines having the same level of accuracy provided by the RP machine. Laser polishing by means of shallow surface melting of SLM produced parts is able to reduce
surface roughness Surface roughness, often shortened to roughness, is a component of surface finish (surface texture). It is quantified by the deviations in the direction of the normal vector of a real surface from its ideal form. If these deviations are large, ...
by use of a fast-moving laser beam providing "just enough heat energy to cause melting of the surface peaks. The molten mass then flows into the surface valleys by
surface tension Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) to f ...
,
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
and laser pressure, thus diminishing the roughness." When using rapid prototyping machines, files, which do not include anything but raw mesh data in binary (generated from Solid Works,
CATIA CATIA (, an acronym of computer-aided three-dimensional interactive application) is a multi-platform software suite for computer-aided design (CAD), computer-aided manufacturing (CAM), computer-aided engineering (CAE), 3D modeling and Product ...
, or other major CAD programs) need further conversion to and files (the format required for non-stereolithography machines). Software converts file to files, as with the rest of the process, there can be costs associated with this step.


Machine components

The typical components of a SLM machine include: laser source, roller, platform piston, removable build plate, supply powder, supply doses (e.g. piston), and optics and mirrors. The typical build envelope across most platforms are (e.g., for EOS M 290) of 250 x 250 x 325 mm, and the ability to 'grow' multiple parts at one time,


See also

* 3D printing *
Desktop manufacturing 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer co ...
*
Digital fabricator Digital modeling and fabrication is a design and production process that combines 3D modeling or computing-aided design (CAD) with additive and subtractive manufacturing. Additive manufacturing is also known as 3D printing, while subtractive manufa ...
*
Direct digital manufacturing 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer co ...
*
List of notable 3D printed weapons and parts This is a list of notable 3D printed weapons and parts. The table below lists noteworthy 3D printed weapons (mainly firearms) and parts of weapons as well as items with a defense-related background. It includes 3D printed weapons and parts creat ...
*
Rapid manufacturing 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer ...
*
Selective laser sintering Selective laser sintering (SLS) is an additive manufacturing (AM) technique that uses a laser as the power and heat source to sinter powdered material (typically nylon or polyamide), aiming the laser automatically at points in space defined ...
*
Solid freeform fabrication 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer ...
*
Stereolithography Stereolithography (SLA or SL; also known as vat photopolymerisation, optical fabrication, photo-solidification, or resin printing) is a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a lay ...


References


External links

*
Rapidmade blog
{{DEFAULTSORT:Also if more people understand the material properties and how they interact with specific heat (such as lasers) and different alloys, then there is a better chance we can understand how to avoid these defects and make this process more streamlined. As an advocate for creating new inventions that can help this world, understanding additive manufacturing and how to successfully implement SLM would be a great benefit to our society. 1995 establishments in Germany 1995 introductions 3D printing processes German inventions Laser applications