star
A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
at the center of the
Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
. It is a nearly perfect
ball
A ball is a round object (usually spherical, but can sometimes be ovoid) with several uses. It is used in ball games, where the play of the game follows the state of the ball as it is hit, kicked or thrown by players. Balls can also be used f ...
of hot
plasma
Plasma or plasm may refer to:
Science
* Plasma (physics), one of the four fundamental states of matter
* Plasma (mineral), a green translucent silica mineral
* Quark–gluon plasma, a state of matter in quantum chromodynamics
Biology
* Blood pla ...
, heated to
incandescence
Incandescence is the emission of electromagnetic radiation (including visible light) from a hot body as a result of its high temperature. The term derives from the Latin verb ''incandescere,'' to glow white. A common use of incandescence is ...
by
nuclear fusion
Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manifest ...
reactions in its core. The Sun radiates this
energy
In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
mainly as
light
Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 tera ...
,
ultraviolet
Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nanometer, nm (with a corresponding frequency around 30 Hertz, PHz) to 400 nm (750 Hertz, THz), shorter than that of visible light, but longer than ...
, and
infrared
Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
radiation, and is the most important source of energy for
life
Life is a quality that distinguishes matter that has biological processes, such as signaling and self-sustaining processes, from that which does not, and is defined by the capacity for growth, reaction to stimuli, metabolism, energ ...
on
Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
.
The Sun's radius is about , or 109 times that of Earth. Its mass is about 330,000 times that of
Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, comprising about 99.86% of the total mass of the Solar System. Roughly three-quarters of the Sun's
mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
consists of
hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
(~73%); the rest is mostly
helium
Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
(~25%), with much smaller quantities of heavier elements, including
oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
,
carbon
Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent
In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
,
neon
Neon is a chemical element with the symbol Ne and atomic number 10. It is a noble gas. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered (along with krypton ...
, and
iron
Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
.
The Sun is a
G-type main-sequence star
A G-type main-sequence star (Spectral type: G-V), also often, and imprecisely called a yellow dwarf, or G star, is a main-sequence star (luminosity class V) of spectral type G. Such a star has about 0.9 to 1.1 solar masses and an effective temp ...
(G2V). As such, it is informally, and not completely accurately, referred to as a yellow dwarf (its light is actually white). It formed approximately 4.6 billionAll numbers in this article are
short scale
The long and short scales are two of several naming systems for integer power of 10, powers of ten which use some of the same terms for different magnitudes.
For whole numbers smaller than 1,000,000,000 (109), such as one thousand or one m ...
. One billion is 109, or 1,000,000,000. years ago from the
gravitational collapse
Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formatio ...
of matter within a region of a large
molecular cloud
A molecular cloud, sometimes called a stellar nursery (if star formation is occurring within), is a type of interstellar cloud, the density and size of which permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen ...
. Most of this matter gathered in the center, whereas the rest flattened into an orbiting disk that became the Solar System. The central mass became so hot and dense that it eventually initiated
nuclear fusion
Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manifest ...
in its
core
Core or cores may refer to:
Science and technology
* Core (anatomy), everything except the appendages
* Core (manufacturing), used in casting and molding
* Core (optical fiber), the signal-carrying portion of an optical fiber
* Core, the centra ...
. It is thought that almost all stars form by this process.
Every second, the Sun's core fuses about 600 million tons of hydrogen into helium, and in the process converts 4 million tons of matter into energy. This energy, which can take between 10,000 and 170,000 years to escape the core, is the source of the Sun's light and heat. When
hydrogen fusion
Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
in its core has diminished to the point at which the Sun is no longer in
hydrostatic equilibrium
In fluid mechanics, hydrostatic equilibrium (hydrostatic balance, hydrostasy) is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary ...
, its core will undergo a marked increase in density and temperature while its outer layers expand, eventually transforming the Sun into a
red giant
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around or ...
. It is calculated that the Sun will become sufficiently large to engulf the current orbits of
Mercury
Mercury commonly refers to:
* Mercury (planet), the nearest planet to the Sun
* Mercury (element), a metallic chemical element with the symbol Hg
* Mercury (mythology), a Roman god
Mercury or The Mercury may also refer to:
Companies
* Merc ...
and
Venus
Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never fa ...
, and render
Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
uninhabitable – but not for about five billion years. After this, it will shed its outer layers and become a dense type of cooling star known as a
white dwarf
A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes fro ...
, and no longer produce energy by fusion, but still glow and give off heat from its previous fusion.
The enormous effect of the Sun on Earth has been recognized since
prehistoric times
Prehistory, also known as pre-literary history, is the period of human history between the use of the first stone tools by hominins 3.3 million years ago and the beginning of recorded history with the invention of writing systems. The use of ...
deity
A deity or god is a supernatural being who is considered divine or sacred. The ''Oxford Dictionary of English'' defines deity as a god or goddess, or anything revered as divine. C. Scott Littleton defines a deity as "a being with powers greate ...
. The synodic rotation of Earth and its orbit around the Sun are the basis of some
solar calendar
A solar calendar is a calendar whose dates indicate the season or almost equivalently the apparent position of the Sun relative to the stars. The Gregorian calendar, widely accepted as a standard in the world, is an example of a solar calendar.
T ...
s. The predominant
calendar
A calendar is a system of organizing days. This is done by giving names to periods of time, typically days, weeks, months and years. A date is the designation of a single and specific day within such a system. A calendar is also a physi ...
in use today is the
Gregorian calendar
The Gregorian calendar is the calendar used in most parts of the world. It was introduced in October 1582 by Pope Gregory XIII as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years dif ...
which is based upon the standard 16th-century interpretation of the Sun's observed movement as actual movement.
Etymology
The English word ''sun'' developed from
Old English
Old English (, ), or Anglo-Saxon, is the earliest recorded form of the English language, spoken in England and southern and eastern Scotland in the early Middle Ages. It was brought to Great Britain by Anglo-Saxon settlement of Britain, Anglo ...
. Cognates appear in other
Germanic languages
The Germanic languages are a branch of the Indo-European language family spoken natively by a population of about 515 million people mainly in Europe, North America, Oceania and Southern Africa. The most widely spoken Germanic language, Engli ...
Dutch
Dutch commonly refers to:
* Something of, from, or related to the Netherlands
* Dutch people ()
* Dutch language ()
Dutch may also refer to:
Places
* Dutch, West Virginia, a community in the United States
* Pennsylvania Dutch Country
People E ...
,
Low German
:
:
:
:
:
(70,000)
(30,000)
(8,000)
, familycolor = Indo-European
, fam2 = Germanic
, fam3 = West Germanic
, fam4 = North Sea Germanic
, ancestor = Old Saxon
, ancestor2 = Middle L ...
,
Standard German
Standard High German (SHG), less precisely Standard German or High German (not to be confused with High German dialects, more precisely Upper German dialects) (german: Standardhochdeutsch, , or, in Switzerland, ), is the standardized variety ...
Old Norse
Old Norse, Old Nordic, or Old Scandinavian, is a stage of development of North Germanic languages, North Germanic dialects before their final divergence into separate Nordic languages. Old Norse was spoken by inhabitants of Scandinavia and t ...
, and
Gothic
Gothic or Gothics may refer to:
People and languages
*Goths or Gothic people, the ethnonym of a group of East Germanic tribes
**Gothic language, an extinct East Germanic language spoken by the Goths
**Crimean Gothic, the Gothic language spoken b ...
. All these words stem from
Proto-Germanic
Proto-Germanic (abbreviated PGmc; also called Common Germanic) is the reconstructed proto-language of the Germanic branch of the Indo-European languages.
Proto-Germanic eventually developed from pre-Proto-Germanic into three Germanic branc ...
Indo-European language
The Indo-European languages are a language family native to the overwhelming majority of Europe, the Iranian plateau, and the northern Indian subcontinent. Some European languages of this family, English, French, Portuguese, Russian, Dutch ...
family, though in most cases a nominative stem with an ''l'' is found, rather than the genitive stem in ''n'', as for example in
Latin
Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
,
ancient Greek
Ancient Greek includes the forms of the Greek language used in ancient Greece and the ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Dark Ages (), the Archaic peri ...
(),
Welsh
Welsh may refer to:
Related to Wales
* Welsh, referring or related to Wales
* Welsh language, a Brittonic Celtic language spoken in Wales
* Welsh people
People
* Welsh (surname)
* Sometimes used as a synonym for the ancient Britons (Celtic peop ...
and
Russian
Russian(s) refers to anything related to Russia, including:
*Russians (, ''russkiye''), an ethnic group of the East Slavic peoples, primarily living in Russia and neighboring countries
*Rossiyane (), Russian language term for all citizens and peo ...
(; pronounced ''sontse''), as well as (with *l > ''r'') Sanskrit () and
Persian
Persian may refer to:
* People and things from Iran, historically called ''Persia'' in the English language
** Persians, the majority ethnic group in Iran, not to be conflated with the Iranic peoples
** Persian language, an Iranian language of the ...
(). Indeed, the ''l''-stem survived in Proto-Germanic as well, as , which gave rise to Gothic (alongside ) and Old Norse prosaic (alongside poetic ), and through it the words for ''sun'' in the modern Scandinavian languages:
Swedish
Swedish or ' may refer to:
Anything from or related to Sweden, a country in Northern Europe. Or, specifically:
* Swedish language, a North Germanic language spoken primarily in Sweden and Finland
** Swedish alphabet, the official alphabet used by ...
and
Danish
Danish may refer to:
* Something of, from, or related to the country of Denmark
People
* A national or citizen of Denmark, also called a "Dane," see Demographics of Denmark
* Culture of Denmark
* Danish people or Danes, people with a Danish a ...
, Icelandic , etc.
The principal adjectives for the Sun in English are ''sunny'' for sunlight and, in technical contexts, ''solar'' (), from Latin – the latter found in terms such as ''solar day'', ''
solar eclipse
A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby obscuring the view of the Sun from a small part of the Earth, totally or partially. Such an alignment occurs during an eclipse season, approximately every six month ...
'' and ''Solar System'' (occasionally ''Sol system''). From the Greek comes the rare adjective ''heliac'' (). In English, the Greek and Latin words occur in poetry as personifications of the Sun,
Helios
In ancient Greek religion and Greek mythology, mythology, Helios (; grc, , , Sun; Homeric Greek: ) is the deity, god and personification of the Sun (Solar deity). His name is also Latinized as Helius, and he is often given the epithets Hyper ...
() and Sol (), while in science fiction ''Sol'' may be used as a name for the Sun to distinguish it from other stars. The term '' sol'' with a lower-case ''s'' is used by planetary astronomers for the duration of a
solar day
A synodic day (or synodic rotation period or solar day) is the period for a celestial object to rotate once in relation to the star it is orbiting, and is the basis of solar time.
The synodic day is distinguished from the sidereal day, which is ...
on another planet such as
Mars
Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury (planet), Mercury. In the English language, Mars is named for the Mars (mythology), Roman god of war. Mars is a terr ...
Sunday
Sunday is the day of the week between Saturday and Monday. In most Western countries, Sunday is a day of rest and a part of the weekend. It is often considered the first day of the week.
For most observant adherents of Christianity, Sunday ...
'' stems from Old English "sun's day", a Germanic interpretation of the Latin phrase , itself a translation of the ancient Greek () 'day of the sun'. The
astronomical symbol
Astronomical symbols are abstract pictorial symbols used to represent astronomical objects, theoretical constructs and observational events in European astronomy. The earliest forms of these symbols appear in Greek papyrus texts of late antiq ...
for the Sun is a circle with a center dot, . It is used for such units as ''M''☉ (
Solar mass
The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
), ''R''☉ (
Solar radius
Solar radius is a unit of distance used to express the size of stars in astronomy relative to the Sun. The solar radius is usually defined as the radius to the layer in the Sun's photosphere where the optical depth equals 2/3:
:1\,R_ = 6.957\tim ...
) and ''L''☉ (
Solar luminosity
The solar luminosity (), is a unit of radiant flux (power emitted in the form of photons) conventionally used by astronomers to measure the luminosity of stars, galaxies and other celestial objects in terms of the output of the Sun.
One nominal s ...
).
General characteristics
The Sun is a
G-type main-sequence star
A G-type main-sequence star (Spectral type: G-V), also often, and imprecisely called a yellow dwarf, or G star, is a main-sequence star (luminosity class V) of spectral type G. Such a star has about 0.9 to 1.1 solar masses and an effective temp ...
that constitutes about 99.86% of the mass of the Solar System. The Sun has an
absolute magnitude
Absolute magnitude () is a measure of the luminosity of a celestial object on an inverse Logarithmic scale, logarithmic Magnitude (astronomy), astronomical magnitude scale. An object's absolute magnitude is defined to be equal to the apparent mag ...
of +4.83, estimated to be brighter than about 85% of the stars in the
Milky Way
The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye ...
, most of which are
red dwarf
''Red Dwarf'' is a British science fiction comedy franchise created by Rob Grant and Doug Naylor, which primarily consists of a television sitcom that aired on BBC Two between 1988 and 1999, and on Dave since 2009, gaining a cult following. T ...
s. The Sun is a
Population I
During 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations.
In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926:
Baade noticed th ...
, or heavy-element-rich, star. The formation of the Sun may have been triggered by shockwaves from one or more nearby
supernova
A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
e. This is suggested by a high
abundance
Abundance may refer to:
In science and technology
* Abundance (economics), the opposite of scarcities
* Abundance (ecology), the relative representation of a species in a community
* Abundance (programming language), a Forth-like computer prog ...
of heavy elements in the Solar System, such as
gold
Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile met ...
and
uranium
Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
, relative to the abundances of these elements in so-called
Population II
During 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations.
In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926:
Baade noticed ...
, heavy-element-poor, stars. The heavy elements could most plausibly have been produced by
endothermic
In thermochemistry, an endothermic process () is any thermodynamic process with an increase in the enthalpy (or internal energy ) of the system.Oxtoby, D. W; Gillis, H.P., Butler, L. J. (2015).''Principle of Modern Chemistry'', Brooks Cole. p. ...
nuclear reactions during a supernova, or by transmutation through
neutron absorption
Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, ...
apparent magnitude
Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's li ...
of −26.74. This is about 13 billion times brighter than the next brightest star,
Sirius
Sirius is the list of brightest stars, brightest star in the night sky. Its name is derived from the Ancient Greek language, Greek word , or , meaning 'glowing' or 'scorching'. The star is designated α Canis Majoris, Latinisation ...
, which has an apparent magnitude of −1.46.
is defined as the mean distance of the Sun's center to Earth's center, though the distance varies (by about +/- 2.5 million km or 1.55 million miles) as Earth moves from
perihelion
An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion.
General description
There are two apsides in any ellip ...
on about 03 January to
aphelion
An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion.
General description
There are two apsides in any ellip ...
on about 04 July. The distances can vary between 147,098,074 km (perihelion) and 152,097,701 km (aphelion), and extreme values can range from 147,083,346 km to 152,112,126 km. At its average distance, light travels from the Sun's horizon to Earth's horizon in about 8 minutes and 20 seconds, while light from the closest points of the Sun and Earth takes about two seconds less. The energy of this
sunlight
Sunlight is a portion of the electromagnetic radiation given off by the Sun, in particular infrared, visible, and ultraviolet light. On Earth, sunlight is scattered and filtered through Earth's atmosphere, and is obvious as daylight when t ...
supports almost all life
Hydrothermal vent communities
A hydrothermal vent is a fissure on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspot ...
live so deep under the sea that they have no access to sunlight. Bacteria instead use sulfur compounds as an energy source, via
chemosynthesis
In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydro ...
. on Earth by
photosynthesis
Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored i ...
, and drives
Earth's climate
Climate is the long-term weather pattern in an area, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteorologic ...
and weather.
The Sun does not have a definite boundary, but its density decreases exponentially with increasing height above the
photosphere
The photosphere is a star's outer shell from which light is radiated.
The term itself is derived from Ancient Greek roots, φῶς, φωτός/''phos, photos'' meaning "light" and σφαῖρα/''sphaira'' meaning "sphere", in reference to it ...
. For the purpose of measurement, the Sun's radius is considered to be the distance from its center to the edge of the
photosphere
The photosphere is a star's outer shell from which light is radiated.
The term itself is derived from Ancient Greek roots, φῶς, φωτός/''phos, photos'' meaning "light" and σφαῖρα/''sphaira'' meaning "sphere", in reference to it ...
, the apparent visible surface of the Sun. By this measure, the Sun is a near-perfect sphere with an oblateness estimated at 9 millionths, which means that its polar diameter differs from its equatorial diameter by only . The tidal effect of the planets is weak and does not significantly affect the shape of the Sun. The Sun rotates faster at its equator than at its
poles
Poles,, ; singular masculine: ''Polak'', singular feminine: ''Polka'' or Polish people, are a West Slavic nation and ethnic group, who share a common history, culture, the Polish language and are identified with the country of Poland in Ce ...
. This
differential rotation
Differential rotation is seen when different parts of a rotating object move with different angular velocities (rates of rotation) at different latitudes and/or depths of the body and/or in time. This indicates that the object is not solid. In fl ...
Coriolis force
In physics, the Coriolis force is an inertial or fictitious force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the ...
due to the Sun's rotation. In a frame of reference defined by the stars, the rotational period is approximately 25.6 days at the equator and 33.5 days at the poles. Viewed from Earth as it orbits the Sun, the ''apparent rotational period'' of the Sun at its equator is about 28 days. Viewed from a vantage point above its north pole, the Sun rotates
counterclockwise
Two-dimensional rotation can occur in two possible directions. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands: from the top to the right, then down and then to the left, and back up to the top. The opposite ...
around its axis of spin.
Composition
The Sun is composed primarily of the chemical elements
hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
and
helium
Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
. At this time in the Sun's life, they account for 74.9% and 23.8%, respectively, of the mass of the Sun in the photosphere. All heavier elements, called ''
metals
A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
'' in astronomy, account for less than 2% of the mass, with oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%) being the most abundant.
The Sun's original chemical composition was inherited from the
interstellar medium
In astronomy, the interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstella ...
out of which it formed. Originally it would have contained about 71.1% hydrogen, 27.4% helium, and 1.5% heavier elements. The hydrogen and most of the helium in the Sun would have been produced by
Big Bang nucleosynthesis
In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis) is the production of nuclei other than those of the lightest isotope of hydrogen (hydrogen-1, 1H, having a single proton as a nucleus) du ...
supernova
A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
e.
Since the Sun formed, the main fusion process has involved fusing hydrogen into helium. Over the past 4.6 billion years, the amount of helium and its location within the Sun has gradually changed. Within the core, the proportion of helium has increased from about 24% to about 60% due to fusion, and some of the helium and heavy elements have settled from the photosphere towards the center of the Sun because of
gravity
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
. The proportions of heavier elements is unchanged. Heat is transferred outward from the Sun's core by radiation rather than by convection (see
Radiative zone
A radiation zone, or radiative region is a layer of a star's interior where energy is primarily transported toward the exterior by means of radiative diffusion and thermal conduction, rather than by convection. Energy travels through the radiati ...
below), so the fusion products are not lifted outward by heat; they remain in the core and gradually an inner core of helium has begun to form that cannot be fused because presently the Sun's core is not hot or dense enough to fuse helium. In the current photosphere, the helium fraction is reduced, and the
metallicity
In astronomy, metallicity is the abundance of elements present in an object that are heavier than hydrogen and helium. Most of the normal physical matter in the Universe is either hydrogen or helium, and astronomers use the word ''"metals"'' as a ...
is only 84% of what it was in the protostellar phase (before nuclear fusion in the core started). In the future, helium will continue to accumulate in the core, and in about 5 billion years this gradual build-up will eventually cause the Sun to exit the
main sequence
In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar Her ...
and become a
red giant
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around or ...
.
The chemical composition of the photosphere is normally considered representative of the composition of the primordial Solar System. The solar heavy-element abundances described above are typically measured both using
spectroscopy
Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
of the Sun's photosphere and by measuring abundances in
meteorites
A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or moon. When the original object en ...
that have never been heated to melting temperatures. These meteorites are thought to retain the composition of the protostellar Sun and are thus not affected by the settling of heavy elements. The two methods generally agree well.
Structure and fusion
Core
The
core
Core or cores may refer to:
Science and technology
* Core (anatomy), everything except the appendages
* Core (manufacturing), used in casting and molding
* Core (optical fiber), the signal-carrying portion of an optical fiber
* Core, the centra ...
of the Sun extends from the center to about 20–25% of the solar radius. It has a density of up to (about 150 times the density of water) and a temperature of close to 15.7 million
Kelvin
The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and phys ...
(K). By contrast, the Sun's surface temperature is approximately . Recent analysis of
SOHO
Soho is an area of the City of Westminster, part of the West End of London. Originally a fashionable district for the aristocracy, it has been one of the main entertainment districts in the capital since the 19th century.
The area was develop ...
mission data favors a faster rotation rate in the core than in the radiative zone above. Through most of the Sun's life, energy has been produced by nuclear fusion in the core region through the
proton–proton chain
The proton–proton chain, also commonly referred to as the chain, is one of two known sets of nuclear fusion reactions by which stars convert hydrogen to helium. It dominates in stars with masses less than or equal to that of the Sun, wherea ...
; this process converts hydrogen into helium. Currently, only 0.8% of the energy generated in the Sun comes from another sequence of fusion reactions called the
CNO cycle
The CNO cycle (for carbon–nitrogen–oxygen; sometimes called Bethe–Weizsäcker cycle after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker) is one of the two known sets of fusion reactions by which stars convert hydrogen to helium, ...
, though this proportion is expected to increase as the Sun becomes older and more luminous.
The core is the only region in the Sun that produces an appreciable amount of
thermal energy
The term "thermal energy" is used loosely in various contexts in physics and engineering. It can refer to several different well-defined physical concepts. These include the internal energy or enthalpy of a body of matter and radiation; heat, d ...
through fusion; 99% of the power is generated within 24% of the Sun's radius, and by 30% of the radius, fusion has stopped nearly entirely. The remainder of the Sun is heated by this energy as it is transferred outwards through many successive layers, finally to the solar photosphere where it escapes into space through radiation (photons) or advection (massive particles).
The proton–proton chain occurs around times each second in the core, converting about 3.7 protons into
alpha particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produce ...
s (helium nuclei) every second (out of a total of ~8.9 free protons in the Sun), or about . However, each proton (on average) takes around 9 billion years to fuse with one another using the PP chain. Fusing four free
proton
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s (hydrogen nuclei) into a single alpha particle (helium nucleus) releases around 0.7% of the fused mass as energy, so the Sun releases energy at the mass–energy conversion rate of 4.26 million metric tons per second (which requires 600 metric megatons of hydrogen), for 384.6 yottawatts (), or 9.192 megatons of TNT per second. The large power output of the Sun is mainly due to the huge size and density of its core (compared to Earth and objects on Earth), with only a fairly small amount of power being generated per
cubic metre
The cubic metre (in Commonwealth English and international spelling as used by the International Bureau of Weights and Measures) or cubic meter (in American English) is the unit of volume in the International System of Units (SI). Its symbol is m ...
. Theoretical models of the Sun's interior indicate a maximum power density, or energy production, of approximately 276.5
watt
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James Wa ...
s per cubic metre at the center of the core, which is about the same power density inside a
compost pile
Compost is a mixture of ingredients used as plant fertilizer and to improve soil's physical, chemical and biological properties. It is commonly prepared by decomposing plant, food waste, recycling organic materials and manure. The resulting m ...
.
The fusion rate in the core is in a self-correcting equilibrium: a slightly higher rate of fusion would cause the core to heat up more and expand slightly against the weight of the outer layers, reducing the density and hence the fusion rate and correcting the
perturbation
Perturbation or perturb may refer to:
* Perturbation theory, mathematical methods that give approximate solutions to problems that cannot be solved exactly
* Perturbation (geology), changes in the nature of alluvial deposits over time
* Perturbatio ...
; and a slightly lower rate would cause the core to cool and shrink slightly, increasing the density and increasing the fusion rate and again reverting it to its present rate.
Radiative zone
The radiative zone is the thickest layer of the sun, at 0.45 solar radii. From the core out to about 0.7
solar radii
Solar radius is a unit of distance used to express the size of stars in astronomy relative to the Sun. The solar radius is usually defined as the radius to the layer in the Sun's photosphere where the optical depth equals 2/3:
:1\,R_ = 6.957\tim ...
,
thermal radiation
Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. Thermal radiation is generated when heat from the movement of charges in the material (electrons and protons in common forms of matter) is ...
is the primary means of energy transfer. The temperature drops from approximately 7 million to 2 million Kelvin with increasing distance from the core. This
temperature gradient
A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes the most rapidly around a particular location. The temperature gradient is a dimensional quantity expressed in units of degree ...
is less than the value of the
adiabatic lapse rate
The lapse rate is the rate at which an atmospheric variable, normally temperature in Earth's atmosphere, falls with altitude. ''Lapse rate'' arises from the word ''lapse'', in the sense of a gradual fall. In dry air, the adiabatic lapse rate is ...
and hence cannot drive convection, which explains why the transfer of energy through this zone is by
radiation
In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes:
* ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
instead of thermal convection.
Ions
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
of hydrogen and helium emit photons, which travel only a brief distance before being reabsorbed by other ions. The density drops a hundredfold (from 20 g/cm3 to 0.2 g/cm3) between 0.25 solar radii and 0.7 radii, the top of the radiative zone.
Tachocline
The radiative zone and the convective zone are separated by a transition layer, the
tachocline
The tachocline is the transition region of stars of more than 0.3 solar masses, between the radiative interior and the differentially rotating outer convective zone. This causes the region to have a very large shear as the rotation rate change ...
. This is a region where the sharp regime change between the uniform rotation of the radiative zone and the differential rotation of the
convection zone
A convection zone, convective zone or convective region of a star is a layer which is unstable due to convection. Energy is primarily or partially transported by convection in such a region. In a radiation zone, energy is transported by radiation ...
results in a large
shear
Shear may refer to:
Textile production
*Animal shearing, the collection of wool from various species
**Sheep shearing
*The removal of nap during wool cloth production
Science and technology Engineering
*Shear strength (soil), the shear strength ...
between the two—a condition where successive horizontal layers slide past one another. Presently, it is hypothesized (see
Solar dynamo
The solar dynamo is a physical process that generates the Sun's magnetic field. It is explained with a variant of the dynamo theory. A naturally occurring electric generator in the Sun's interior produces electric currents and a magnetic field, f ...
) that a magnetic dynamo within this layer generates the Sun's
magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
.
Convective zone
The Sun's convection zone extends from 0.7 solar radii (500,000 km) to near the surface. In this layer, the solar plasma is not dense enough or hot enough to transfer the heat energy of the interior outward via radiation. Instead, the density of the plasma is low enough to allow convective currents to develop and move the Sun's energy outward towards its surface. Material heated at the tachocline picks up heat and expands, thereby reducing its density and allowing it to rise. As a result, an orderly motion of the mass develops into thermal cells that carry the majority of the heat outward to the Sun's photosphere above. Once the material diffusively and radiatively cools just beneath the photospheric surface, its density increases, and it sinks to the base of the convection zone, where it again picks up heat from the top of the radiative zone and the convective cycle continues. At the photosphere, the temperature has dropped to 5,700 K (350-fold) and the density to only 0.2 g/m3 (about 1/10,000 the density of air at sea level, and 1 millionth that of the inner layer of the convective zone).
The thermal columns of the convection zone form an imprint on the surface of the Sun giving it a granular appearance called the
solar granulation
Solar may refer to:
Astronomy
* Of or relating to the Sun
** Solar telescope, a special purpose telescope used to observe the Sun
** A device that utilizes solar energy (e.g. "solar panels")
** Solar calendar, a calendar whose dates indicate t ...
at the smallest scale and
supergranulation Supergranulation is a particular pattern of convection cells on the Sun's surface called supergranules. It was discovered in the 1950s by A.B.Hausing Doppler effect, Doppler velocity measurements showing horizontal flows on the photosphere (flow sp ...
at larger scales. Turbulent convection in this outer part of the solar interior sustains "small-scale" dynamo action over the near-surface volume of the Sun. The Sun's thermal columns are
Bénard cells
Benard or Bénard is a surname or given name. Notable people with the name include:
Surname
* Abraham-Joseph Bénard (1750–1822), French actor of the Comédie-Française
* Aimé Bénard (1873–1938), Canadian politician
* Alexander Benard, Am ...
and take the shape of roughly hexagonal prisms.
Photosphere
The visible surface of the Sun, the photosphere, is the layer below which the Sun becomes
opaque
Opacity or opaque may refer to:
* Impediments to (especially, visible) light:
** Opacities, absorption coefficients
** Opacity (optics), property or degree of blocking the transmission of light
* Metaphors derived from literal optics:
** In lingu ...
to visible light. Photons produced in this layer escape the Sun through the transparent solar atmosphere above it and become solar radiation, sunlight. The change in opacity is due to the decreasing amount of H− ions, which absorb visible light easily. Conversely, the visible light we see is produced as electrons react with hydrogen atoms to produce H− ions.
The photosphere is tens to hundreds of kilometers thick, and is slightly less opaque than air on Earth. Because the upper part of the photosphere is cooler than the lower part, an image of the Sun appears brighter in the center than on the edge or ''limb'' of the solar disk, in a phenomenon known as limb darkening. The spectrum of sunlight has approximately the spectrum of a
black-body
A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The name "black body" is given because it absorbs all colors of light. A black body ...
radiating at , interspersed with atomic
absorption line
A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to iden ...
s from the tenuous layers above the photosphere. The photosphere has a particle density of ~1023 m−3 (about 0.37% of the particle number per volume of
Earth's atmosphere
The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
at sea level). The photosphere is not fully ionized—the extent of ionization is about 3%, leaving almost all of the hydrogen in atomic form.
During early studies of the
optical spectrum
The visible spectrum is the portion of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called ''visible light'' or simply light. A typical human eye will respond to wavele ...
of the photosphere, some absorption lines were found that did not correspond to any
chemical element
A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
s then known on Earth. In 1868,
Norman Lockyer
Sir Joseph Norman Lockyer (17 May 1836 – 16 August 1920) was an English scientist and astronomer. Along with the French scientist Pierre Janssen, he is credited with discovering the gas helium. Lockyer also is remembered for being the f ...
hypothesized that these absorption lines were caused by a new element that he dubbed ''helium'', after the Greek Sun god
Helios
In ancient Greek religion and Greek mythology, mythology, Helios (; grc, , , Sun; Homeric Greek: ) is the deity, god and personification of the Sun (Solar deity). His name is also Latinized as Helius, and he is often given the epithets Hyper ...
. Twenty-five years later, helium was isolated on Earth.
Atmosphere
The coolest layer of the Sun is a temperature minimum region extending to about above the photosphere, and has a temperature of about . This part of the Sun is cool enough to allow the existence of simple molecules such as
carbon monoxide
Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
and water, which can be detected via their absorption spectra.
The chromosphere, transition region, and corona are much hotter than the surface of the Sun. The reason is not well understood, but evidence suggests that
Alfvén wave
In plasma physics, an Alfvén wave, named after Hannes Alfvén, is a type of plasma wave in which ions oscillate in response to a restoring force provided by an effective tension on the magnetic field lines.
Definition
An Alfvén wave is a ...
s may have enough energy to heat the corona.
Above the temperature minimum layer is a layer about thick, dominated by a spectrum of emission and absorption lines. It is called the ''chromosphere'' from the Greek root ''chroma'', meaning color, because the chromosphere is visible as a colored flash at the beginning and end of total solar eclipses. The temperature of the chromosphere increases gradually with altitude, ranging up to around near the top. In the upper part of the chromosphere helium becomes partially
ionized
Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
.
Above the chromosphere, in a thin (about ) transition region, the temperature rises rapidly from around in the upper chromosphere to coronal temperatures closer to . The temperature increase is facilitated by the full ionization of helium in the transition region, which significantly reduces radiative cooling of the plasma. The transition region does not occur at a well-defined altitude. Rather, it forms a kind of
nimbus
Nimbus, from the Latin for "dark cloud", is an outdated term for the type of cloud now classified as the nimbostratus cloud. Nimbus also may refer to:
Arts and entertainment
* Halo (religious iconography), also known as ''Nimbus'', a ring of ligh ...
around chromospheric features such as
spicules
Spicules are any of various small needle-like anatomical structures occurring in organisms
Spicule may also refer to:
*Spicule (sponge), small skeletal elements of sea sponges
*Spicule (nematode), reproductive structures found in male nematodes ( ...
and filaments, and is in constant, chaotic motion. The transition region is not easily visible from Earth's surface, but is readily observable from
space
Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
by instruments sensitive to the
extreme ultraviolet
Extreme ultraviolet radiation (EUV or XUV) or high-energy ultraviolet radiation is electromagnetic radiation in the part of the electromagnetic spectrum spanning wavelengths from 124 nm down to 10 nm, and therefore (by the Planck– ...
portion of the
spectrum
A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors i ...
.
The corona is the next layer of the Sun. The low corona, near the surface of the Sun, has a particle density around 1015 m−3 to 1016 m−3. The average temperature of the corona and solar wind is about 1,000,000–2,000,000 K; however, in the hottest regions it is 8,000,000–20,000,000 K. Although no complete theory yet exists to account for the temperature of the corona, at least some of its heat is known to be from
magnetic reconnection
Magnetic reconnection is a physical process occurring in highly conducting plasmas in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. Magnetic reconnectio ...
.
The corona is the extended atmosphere of the Sun, which has a volume much larger than the volume enclosed by the Sun's photosphere. A flow of plasma outward from the Sun into
interplanetary space
Interplanetary may refer to:
*Interplanetary space, the space between the planets of the Solar System
*Interplanetary spaceflight, travel between planets
*The interplanetary medium, the material that exists in interplanetary space
*The InterPlanet ...
is the
solar wind
The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sola ...
.
The heliosphere, the tenuous outermost atmosphere of the Sun, is filled with the solar wind plasma. This outermost layer of the Sun is defined to begin at the distance where the flow of the solar wind becomes ''superalfvénic''—that is, where the flow becomes faster than the speed of Alfvén waves, at approximately 20 solar radii (0.1 AU). Turbulence and dynamic forces in the heliosphere cannot affect the shape of the solar corona within, because the information can only travel at the speed of Alfvén waves. The solar wind travels outward continuously through the heliosphere, forming the solar magnetic field into a
spiral
In mathematics, a spiral is a curve which emanates from a point, moving farther away as it revolves around the point.
Helices
Two major definitions of "spiral" in the American Heritage Dictionary are:heliopause more than from the Sun. In December 2004, the ''
Voyager 1
''Voyager 1'' is a space probe launched by NASA on September 5, 1977, as part of the Voyager program to study the outer Solar System and interstellar space beyond the Sun's heliosphere. Launched 16 days after its twin ''Voyager 2'', ''Voya ...
'' probe passed through a shock front that is thought to be part of the heliopause. In late 2012 ''Voyager 1'' recorded a marked increase in
cosmic ray
Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
collisions and a sharp drop in lower energy particles from the solar wind, which suggested that the probe had passed through the heliopause and entered the
interstellar medium
In astronomy, the interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstella ...
, and indeed did so August 25, 2012 at approximately 122 astronomical units from the Sun. The heliosphere has a heliotail which stretches out behind it due to the Sun's movement.
On April 28, 2021, during its eighth flyby of the Sun, NASA's
Parker Solar Probe
The Parker Solar Probe (PSP; previously Solar Probe, Solar Probe Plus or Solar Probe+) is a NASA space probe launched in 2018 with the mission of making observations of the outer corona of the Sun. It will approach to within 9.86 solar radii (6 ...
encountered the specific magnetic and particle conditions at 18.8 solar radii that indicated that it penetrated the
Alfvén surface
The Alfvén surface is the boundary separating the sun's corona from the solar wind defined as where the coronal plasma's Alfvén speed and the large-scale solar wind speed are equal. It is named after Hannes Alfvén, and is also called Alfvén c ...
, the boundary separating the corona from the solar wind defined as where the coronal plasma's Alfvén speed and the large-scale solar wind speed are equal. The probe measured the solar wind plasma environment with its FIELDS and SWEAP instruments. This event was described by NASA as "touching the Sun". During the flyby, Parker Solar Probe passed into and out of the corona several times. This proved the predictions that the Alfvén critical surface isn't shaped like a smooth ball, but has spikes and valleys that wrinkle its surface.
Sunlight and neutrinos
The Sun emits light across the
visible spectrum
The visible spectrum is the portion of the electromagnetic spectrum that is visual perception, visible to the human eye. Electromagnetic radiation in this range of wavelengths is called ''visible light'' or simply light. A typical human eye wil ...
, so its color is
white
White is the lightest color and is achromatic (having no hue). It is the color of objects such as snow, chalk, and milk, and is the opposite of black. White objects fully reflect and scatter all the visible wavelengths of light. White on ...
, with a CIE color-space index near (0.3, 0.3), when viewed from space or when the Sun is high in the sky. The Solar radiance per wavelength peaks in the green portion of the spectrum when viewed from space. When the Sun is very low in the sky,
atmospheric scattering
Diffuse sky radiation is solar radiation reaching the Earth's surface after having been scattered from the direct solar beam by molecules or particulates in the atmosphere. It is also called sky radiation, the determinative process for chang ...
renders the Sun yellow, red, orange, or magenta, and in rare occasions even green or blue. Despite its typical whiteness (white sunrays, white ambient light, white illumination of the Moon, etc.), some cultures mentally picture the Sun as yellow and some even red; the reasons for this are cultural and exact ones are the subject of debate.
The Sun is a G2V star, with ''G2'' indicating its surface temperature of approximately , and ''V'' that it, like most stars, is a
main-sequence
In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar Hert ...
star.
The
solar constant
The solar constant (''GSC'') is a flux density measuring mean solar electromagnetic radiation (total solar irradiance) per unit area. It is measured on a surface perpendicular to the rays, one astronomical unit (au) from the Sun (roughly the ...
is the amount of power that the Sun deposits per unit area that is directly exposed to sunlight. The solar constant is equal to approximately (watts per square meter) at a distance of one
astronomical unit
The astronomical unit (symbol: au, or or AU) is a unit of length, roughly the distance from Earth to the Sun and approximately equal to or 8.3 light-minutes. The actual distance from Earth to the Sun varies by about 3% as Earth orbits t ...
(AU) from the Sun (that is, on or near Earth). Sunlight on the surface of Earth is attenuated by
Earth's atmosphere
The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
, so that less power arrives at the surface (closer to ) in clear conditions when the Sun is near the
zenith
The zenith (, ) is an imaginary point directly "above" a particular location, on the celestial sphere. "Above" means in the vertical direction (plumb line) opposite to the gravity direction at that location (nadir). The zenith is the "highest" ...
. Sunlight at the top of Earth's atmosphere is composed (by total energy) of about 50% infrared light, 40% visible light, and 10% ultraviolet light. The atmosphere in particular filters out over 70% of solar ultraviolet, especially at the shorter wavelengths. Solar
ultraviolet radiation
Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30 PHz) to 400 nm (750 THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
ionizes Earth's dayside upper atmosphere, creating the electrically conducting
ionosphere
The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an ...
.
Ultraviolet light
Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30 PHz) to 400 nm (750 THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
from the Sun has
antiseptic
An antiseptic (from Greek ἀντί ''anti'', "against" and σηπτικός ''sēptikos'', "putrefactive") is an antimicrobial substance or compound that is applied to living tissue/skin to reduce the possibility of infection, sepsis, or putre ...
properties and can be used to sanitize tools and water. It also causes
sunburn
Sunburn is a form of radiation burn that affects living tissue, such as skin, that results from an overexposure to ultraviolet (UV) radiation, usually from the Sun. Common symptoms in humans and animals include: red or reddish skin that is ho ...
, and has other biological effects such as the production of
vitamin D
Vitamin D is a group of fat-soluble secosteroids responsible for increasing intestinal absorption of calcium, magnesium, and phosphate, and many other biological effects. In humans, the most important compounds in this group are vitamin D3 (c ...
and
sun tanning
Sun tanning or tanning is the process whereby skin color is darkened or tanned. It is most often a result of exposure to ultraviolet (UV) radiation from sunlight or from artificial sources, such as a tanning lamp found in indoor tanning beds. ...
. It is also the main cause of
skin cancer
Skin cancers are cancers that arise from the skin. They are due to the development of abnormal cells that have the ability to invade or spread to other parts of the body. There are three main types of skin cancers: basal-cell skin cancer (BCC) ...
. Ultraviolet light is strongly attenuated by Earth's
ozone layer
The ozone layer or ozone shield is a region of Earth's stratosphere that absorbs most of the Sun's ultraviolet radiation. It contains a high concentration of ozone (O3) in relation to other parts of the atmosphere, although still small in rela ...
, so that the amount of UV varies greatly with
latitude
In geography, latitude is a coordinate that specifies the north– south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pol ...
and has been partially responsible for many biological adaptations, including variations in
human skin color
Human skin color ranges from the darkest brown to the lightest hues. Differences in skin color among individuals is caused by variation in pigmentation, which is the result of genetics (inherited from one's biological parents and or individu ...
in different regions of the Earth.High-energy
gamma ray
A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s initially released with fusion reactions in the core are almost immediately absorbed by the solar plasma of the radiative zone, usually after traveling only a few millimeters. Re-emission happens in a random direction and usually at slightly lower energy. With this sequence of emissions and absorptions, it takes a long time for radiation to reach the Sun's surface. Estimates of the photon travel time range between 10,000 and 170,000 years. In contrast, it takes only 2.3 seconds for the
neutrino
A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s, which account for about 2% of the total energy production of the Sun, to reach the surface. Because energy transport in the Sun is a process that involves photons in
thermodynamic
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of ther ...
equilibrium with matter, the time scale of energy transport in the Sun is longer, on the order of 30,000,000 years. This is the time it would take the Sun to return to a stable state if the rate of energy generation in its core were suddenly changed.
Neutrinos are also released by the fusion reactions in the core, but, unlike photons, they rarely interact with matter, so almost all are able to escape the Sun immediately. For many years measurements of the number of neutrinos produced in the Sun were Solar neutrino problem, lower than theories predicted by a factor of 3. This discrepancy was resolved in 2001 through the discovery of the effects of neutrino oscillation: the Sun emits the number of neutrinos predicted by the theory, but neutrino detectors were missing of them because the neutrinos had changed flavor (particle physics), flavor by the time they were detected.
Magnetic activity
The Sun has a stellar magnetic field that varies across its surface. Its polar field is , whereas the field is typically in features on the Sun called sunspots and in solar prominences. The magnetic field varies in time and location. The quasi-periodic 11-year solar cycle is the most prominent variation in which the number and size of sunspots waxes and wanes.
The solar magnetic field extends well beyond the Sun itself. The electrically conducting solar wind plasma carries the Sun's magnetic field into space, forming what is called the interplanetary magnetic field. In an approximation known as ideal magnetohydrodynamics, plasma particles only move along the magnetic field lines. As a result, the outward-flowing solar wind stretches the interplanetary magnetic field outward, forcing it into a roughly radial structure. For a simple dipolar solar magnetic field, with opposite hemispherical polarities on either side of the solar magnetic equator, a thin heliospheric current sheet, current sheet is formed in the solar wind.
At great distances, the rotation of the Sun twists the dipolar magnetic field and corresponding current sheet into an Archimedean spiral structure called the Parker spiral. The interplanetary magnetic field is much stronger than the dipole component of the solar magnetic field. The Sun's dipole magnetic field of 50–400 tesla (unit), μT (at the photosphere) reduces with the inverse-cube of the distance, leading to a predicted magnetic field of 0.1 nT at the distance of Earth. However, according to spacecraft observations the interplanetary field at Earth's location is around 5 nT, about a hundred times greater. The difference is due to magnetic fields generated by electrical currents in the plasma surrounding the Sun.
Sunspot
Sunspots are visible as dark patches on the Sun's
photosphere
The photosphere is a star's outer shell from which light is radiated.
The term itself is derived from Ancient Greek roots, φῶς, φωτός/''phos, photos'' meaning "light" and σφαῖρα/''sphaira'' meaning "sphere", in reference to it ...
and correspond to concentrations of magnetic field where the convective transport of heat is inhibited from the solar interior to the surface. As a result, sunspots are slightly cooler than the surrounding photosphere, so they appear dark. At a typical solar minimum, few sunspots are visible, and occasionally none can be seen at all. Those that do appear are at high solar latitudes. As the solar cycle progresses towards its solar maximum, maximum, sunspots tend to form closer to the solar equator, a phenomenon known as Spörer's law. The largest sunspots can be tens of thousands of kilometers across.
An 11-year sunspot cycle is half of a 22-year Babcock Model, Babcock–Leighton solar dynamo, dynamo cycle, which corresponds to an oscillatory exchange of energy between toroidal and poloidal solar magnetic fields. At solar-cycle maximum, the external poloidal dipolar magnetic field is near its dynamo-cycle minimum strength, but an internal Toroidal and poloidal, toroidal quadrupolar field, generated through differential rotation within the tachocline, is near its maximum strength. At this point in the dynamo cycle, buoyant upwelling within the convective zone forces emergence of the toroidal magnetic field through the photosphere, giving rise to pairs of sunspots, roughly aligned east–west and having footprints with opposite magnetic polarities. The magnetic polarity of sunspot pairs alternates every solar cycle, a phenomenon described by Hale's law.
During the solar cycle's declining phase, energy shifts from the internal toroidal magnetic field to the external poloidal field, and sunspots diminish in number and size. At solar-cycle minimum, the toroidal field is, correspondingly, at minimum strength, sunspots are relatively rare, and the poloidal field is at its maximum strength. With the rise of the next 11-year sunspot cycle, differential rotation shifts magnetic energy back from the poloidal to the toroidal field, but with a polarity that is opposite to the previous cycle. The process carries on continuously, and in an idealized, simplified scenario, each 11-year sunspot cycle corresponds to a change, then, in the overall polarity of the Sun's large-scale magnetic field.
Solar activity
The Sun's magnetic field leads to many effects that are collectively called solar variation, solar activity. Solar flares and coronal mass ejections, coronal-mass ejections tend to occur at sunspot groups. Slowly changing high-speed streams of solar wind are emitted from coronal holes at the photospheric surface. Both coronal-mass ejections and high-speed streams of solar wind carry plasma and interplanetary magnetic field outward into the Solar System. The effects of solar activity on Earth include aurora (astronomy), auroras at moderate to high latitudes and the disruption of radio communications and electric power. Solar activity is thought to have played a large role in the formation and evolution of the Solar System.
Long-term secular change in sunspot number is thought, by some scientists, to be correlated with long-term change in solar irradiance, which, in turn, might influence Earth's long-term climate. The solar cycle influences space weather conditions, including those surrounding Earth. For example, in the 17th century, the solar cycle appeared to have stopped entirely for several decades; few sunspots were observed during a period known as the Maunder minimum. This coincided in time with the era of the Little Ice Age, when Europe experienced unusually cold temperatures. Earlier extended minima have been discovered through analysis of tree rings and appear to have coincided with lower-than-average global temperatures.
In December 2019, a new type of solar magnetic explosion was observed, known as forced
magnetic reconnection
Magnetic reconnection is a physical process occurring in highly conducting plasmas in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. Magnetic reconnectio ...
. Previously, in a process called spontaneous magnetic reconnection, it was observed that the solar magnetic field lines diverge explosively and then converge again instantaneously. Forced Magnetic Reconnection was similar, but it was triggered by an explosion in the corona.
Life phases
The Sun today is roughly halfway through the most stable part of its life. It has not changed dramatically for over four billion years and will remain fairly stable for more than five billion more. However, after hydrogen fusion in its core has stopped, the Sun will undergo dramatic changes, both internally and externally. It is more massive than 71 of 75 other stars within 5 pc, or in the top ~5 percent.
Formation
The Sun formed about 4.6 billion years ago from the collapse of part of a giant
molecular cloud
A molecular cloud, sometimes called a stellar nursery (if star formation is occurring within), is a type of interstellar cloud, the density and size of which permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen ...
that consisted mostly of hydrogen and helium and that probably gave birth to many other stars. This age is estimated using computer simulation, computer models of stellar evolution and through nucleocosmochronology. The result is consistent with the radiometric dating, radiometric date of the oldest Solar System material, at 4.567 billion years ago. Studies of ancient meteorites reveal traces of stable daughter nuclei of short-lived isotopes, such as iron-60, that form only in exploding, short-lived stars. This indicates that one or more
supernova
A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
e must have occurred near the location where the Sun formed. A shock wave from a nearby supernova would have triggered the formation of the Sun by compressing the matter within the molecular cloud and causing certain regions to collapse under their own gravity. As one fragment of the cloud collapsed it also began to rotate due to conservation of angular momentum and heat up with the increasing pressure. Much of the mass became concentrated in the center, whereas the rest flattened out into a disk that would become the planets and other Solar System bodies. Gravity and pressure within the core of the cloud generated a lot of heat as it accumulated more matter from the surrounding disk, eventually triggering stellar nucleosynthesis, nuclear fusion.
Main sequence
The Sun is about halfway through its main-sequence stage, during which nuclear fusion reactions in its core fuse hydrogen into helium. Each second, more than four million tonnes of matter are converted into energy within the Sun's core, producing neutrinos and solar radiation. At this rate, the Sun has so far converted around 100 times the mass of Earth into energy, about 0.03% of the total mass of the Sun. The Sun will spend a total of approximately 10 to 11 billion years as a main-sequence star before the Red giant, red giant phase of the sun. At the 8 billion year mark, the sun will be at its hottest point according to the Gaia (spacecraft), ESA's Gaia space observatory mission in 2022.
The Sun is gradually becoming hotter in its core, hotter at the surface, larger in radius, and more luminous during its time on the main sequence: since the beginning of its main sequence life, it has expanded in radius by 15% and the surface has increased in temperature from to , resulting in a 48% increase in luminosity from 0.677 solar luminosity, solar luminosities to its present-day 1.0 solar luminosity. This occurs because the helium atoms in the core have a higher mean molecular weight than the hydrogen atoms that were fused, resulting in less thermal pressure. The core is therefore shrinking, allowing the outer layers of the Sun to move closer to the center, releasing gravitational potential energy. According to the virial theorem, half this released gravitational energy goes into heating, which leads to a gradual increase in the rate at which fusion occurs and thus an increase in the luminosity. This process speeds up as the core gradually becomes denser. At present, it is increasing in brightness by about 1% every 100 million years. It will take at least 1 billion years from now to deplete liquid water from the Earth from such increase. After that, the Earth will cease to be able to support complex, multicellular life and the last remaining multicellular organisms on the planet will suffer a final, complete mass extinction.
After core hydrogen exhaustion
The Sun does not have enough mass to explode as a
supernova
A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
. Instead, when it runs out of hydrogen in the core in approximately 5 billion years, core hydrogen fusion will stop, and there will be nothing to prevent the core from contracting. The release of gravitational potential energy will cause the luminosity of the Sun to increase, ending the main sequence phase and leading the Sun to expand over the next billion years: first into a subgiant, and then into a
red giant
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around or ...
. The heating due to gravitational contraction will also lead to hydrogen fusion in a shell just outside the core, where unfused hydrogen remains, contributing to the increased luminosity, which will eventually reach more than 1,000 times its present luminosity. When the Sun enters its red-giant branch (RGB) phase, it will engulf Mercury and (likely) Venus, reaching about . The Sun will spend around a billion years in the RGB and lose around a third of its mass.
After the red-giant branch, the Sun has approximately 120 million years of active life left, but much happens. First, the core (full of degenerate matter, degenerate helium) ignites violently in the helium flash; it is estimated that 6% of the core—itself 40% of the Sun's mass—will be converted into carbon within a matter of minutes through the triple-alpha process. The Sun then shrinks to around 10 times its current size and 50 times the luminosity, with a temperature a little lower than today. It will then have reached the red clump or horizontal branch, but a star of the Sun's metallicity does not evolve blueward along the horizontal branch. Instead, it just becomes moderately larger and more luminous over about 100 million years as it continues to react helium in the core.
When the helium is exhausted, the Sun will repeat the expansion it followed when the hydrogen in the core was exhausted. This time, however, it all happens faster, and the Sun becomes larger and more luminous, engulfing Venus if it has not already. This is the asymptotic giant branch, asymptotic-giant-branch phase, and the Sun is alternately reacting hydrogen in a shell or helium in a deeper shell. After about 20 million years on the early asymptotic giant branch, the Sun becomes increasingly unstable, with rapid mass loss and thermal pulses that increase the size and luminosity for a few hundred years every 100,000 years or so. The thermal pulses become larger each time, with the later pulses pushing the luminosity to as much as 5,000 times the current level and the radius to over .
According to a 2008 model, Earth's orbit will have initially expanded to at most due to the Sun's loss of mass as a red giant. However, Earth's orbit will later start shrinking due to tidal forces (and, eventually, drag from the lower chromosphere) so that it is engulfed by the Sun during the tip of the red-giant branch phase, 3.8 and 1 million years after Mercury and Venus have respectively suffered the same fate. Models vary depending on the rate and timing of mass loss. Models that have higher mass loss on the red-giant branch produce smaller, less luminous stars at the tip of the asymptotic giant branch, perhaps only 2,000 times the luminosity and less than 200 times the radius. For the Sun, four thermal pulses are predicted before it completely loses its outer envelope and starts to make a planetary nebula. By the end of that phase—lasting approximately 500,000 years—the Sun will only have about half of its current mass.
The post-asymptotic-giant-branch evolution is even faster. The luminosity stays approximately constant as the temperature increases, with the ejected half of the Sun's mass becoming ionized into a planetary nebula as the exposed core reaches , as if it is in a sort of blue loop. The final naked core, a
white dwarf
A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes fro ...
, will have a temperature of over , and contain an estimated 54.05% of the Sun's present-day mass. The planetary nebula will disperse in about 10,000 years, but the white dwarf will survive for trillions of years before fading to a hypothetical black dwarf.
Motion and location
Solar System
The Sun has eight known planets orbiting around it. This includes four terrestrial planets (
Mercury
Mercury commonly refers to:
* Mercury (planet), the nearest planet to the Sun
* Mercury (element), a metallic chemical element with the symbol Hg
* Mercury (mythology), a Roman god
Mercury or The Mercury may also refer to:
Companies
* Merc ...
,
Venus
Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never fa ...
,
Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, and
Mars
Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury (planet), Mercury. In the English language, Mars is named for the Mars (mythology), Roman god of war. Mars is a terr ...
), two gas giants (Jupiter and Saturn), and two ice giants (Uranus and Neptune). The Solar System also has nine bodies generally considered as dwarf planets and some more list of possible dwarf planets, candidates, an asteroid belt, numerous comets, and a large number of icy bodies which lie beyond the orbit of Neptune. Six of the planets and many smaller bodies also have their own natural satellites: in particular, the satellite systems of Jupiter, Saturn, and Uranus are in some ways like miniature versions of the Sun's system.
The Sun is moved by the gravitational pull of the planets. The center of the Sun is always within 2.2 solar radii of the barycenter. This motion of the Sun is mainly due to Jupiter, Saturn, Uranus, and Neptune. For some periods of several decades, the motion is rather regular, forming a trefoil pattern, whereas between these periods it appears more chaotic. After 179 years (nine times the synodic period of Jupiter and Saturn), the pattern more or less repeats, but rotated by about 24°. The orbits of the inner planets, including of the Earth, are similarly displaced by the same gravitational forces, so the movement of the Sun has little effect on the relative positions of the Earth and the Sun or on solar irradiance on the Earth as a function of time.
Celestial neighbourhood
Galactic context
Observational history
Early understanding
The Sun has been an object of veneration in many cultures throughout human history. Humanity's most fundamental understanding of the Sun is as the luminous disk in the sky, whose presence above the horizon causes day and whose absence causes night. In many prehistoric and ancient cultures, the Sun was thought to be a solar deity or other supernatural entity. The Sun has played an important part in many world religions, as described in a later section.
In the early first millennium BC, Babylonian astronomy, Babylonian astronomers observed that the Sun's motion along the ecliptic is not uniform, though they did not know why; it is today known that this is due to the movement of Earth in an elliptic orbit around the Sun, with Earth moving faster when it is nearer to the Sun at perihelion and moving slower when it is farther away at aphelion.
One of the first people to offer a scientific or philosophical explanation for the Sun was the Ancient Greece, Greek philosopher Anaxagoras. He reasoned that it was not the chariot of Helios, but instead a giant flaming ball of metal even larger than the land of the Peloponnese, Peloponnesus and that the Moon reflected the light of the Sun. For teaching this heresy, he was imprisoned by the authorities and capital punishment, sentenced to death, though he was later released through the intervention of Pericles. Eratosthenes estimated the distance between Earth and the Sun in the third century BC as "of stadia myriads 400 and 80000", the translation of which is ambiguous, implying either 4,080,000 Stadion (unit), stadia (755,000 km) or 804,000,000 stadia (148 to 153 million kilometers or 0.99 to 1.02 AU); the latter value is correct to within a few percent. In the first century AD, Ptolemy estimated the distance as 1,210 times Earth radius, the radius of Earth, approximately .
The theory that the Sun is the center around which the planets orbit was first proposed by the ancient Greek Aristarchus of Samos in the third century BC, and later adopted by Seleucus of Seleucia (see Heliocentrism). This view was developed in a more detailed mathematical model of a heliocentric system in the 16th century by Nicolaus Copernicus.
Development of scientific understanding
Observations of sunspots were recorded during the Han Dynasty (206 BC–AD 220) by Chinese astronomy, Chinese astronomers, who maintained records of these observations for centuries. Averroes also provided a description of sunspots in the 12th century. The invention of the telescope in the early 17th century permitted detailed observations of sunspots by Thomas Harriot, Galileo Galilei and other astronomers. Galileo posited that sunspots were on the surface of the Sun rather than small objects passing between Earth and the Sun.
Astronomy in medieval Islam, Arabic astronomical contributions include Al-Battani's discovery that the direction of the Sun's apogee (the place in the Sun's orbit against the fixed stars where it seems to be moving slowest) is changing. (In modern heliocentric terms, this is caused by a gradual motion of the aphelion of the ''Earth's'' orbit). Ibn Yunus observed more than 10,000 entries for the Sun's position for many years using a large astrolabe.
From an observation of a transit of Venus in 1032, the Persian astronomer and polymath Avicenna, Ibn Sina concluded that Venus is closer to Earth than the Sun. In 1672 Giovanni Cassini and Jean Richer determined the distance to Mars and were thereby able to calculate the distance to the Sun.
In 1666, Isaac Newton observed the Sun's light using a prism (optics), prism, and showed that it is made up of light of many colors. In 1800, William Herschel discovered
infrared
Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
radiation beyond the red part of the solar spectrum. The 19th century saw advancement in spectroscopic studies of the Sun; Joseph von Fraunhofer recorded more than 600 absorption lines in the spectrum, the strongest of which are still often referred to as Fraunhofer lines. The 20th century brought about several specialized systems for observing the sun, especially at different narrowband wavelengths, such as those using Calcium H (396.9 nm), K (393.37 nm) and H-alpha, Hydrogen-alpha (656.46 nm) filtering.
In the early years of the modern scientific era, the source of the Sun's energy was a significant puzzle. Lord Kelvin suggested that the Sun is a gradually cooling liquid body that is radiating an internal store of heat. Kelvin and Hermann von Helmholtz then proposed a Kelvin–Helmholtz mechanism, gravitational contraction mechanism to explain the energy output, but the resulting age estimate was only 20 million years, well short of the time span of at least 300 million years suggested by some geological discoveries of that time. In 1890 Joseph Norman Lockyer, Joseph Lockyer, who discovered helium in the solar spectrum, proposed a meteoritic hypothesis for the formation and evolution of the Sun.
Not until 1904 was a documented solution offered. Ernest Rutherford suggested that the Sun's output could be maintained by an internal source of heat, and suggested radioactive decay as the source. However, it would be Albert Einstein who would provide the essential clue to the source of the Sun's energy output with his mass–energy equivalence relation . In 1920, Sir Arthur Eddington proposed that the pressures and temperatures at the core of the Sun could produce a nuclear fusion reaction that merged hydrogen (protons) into helium nuclei, resulting in a production of energy from the net change in mass. The preponderance of hydrogen in the Sun was confirmed in 1925 by Cecilia Payne-Gaposchkin, Cecilia Payne using the ionization theory developed by Meghnad Saha. The theoretical concept of fusion was developed in the 1930s by the astrophysicists Subrahmanyan Chandrasekhar and Hans Bethe. Hans Bethe calculated the details of the two main energy-producing nuclear reactions that power the Sun. In 1957, Margaret Burbidge, Geoffrey Burbidge, William Alfred Fowler, William Fowler and Fred Hoyle showed that most of the elements in the universe have been nucleosynthesis, synthesized by nuclear reactions inside stars, some like the Sun.
Solar space missions
The first satellites designed for long term observation of the Sun from interplanetary space were NASA's Pioneer program, Pioneers 6, 7, 8 and 9, which were launched between 1959 and 1968. These probes orbited the Sun at a distance similar to that of Earth, and made the first detailed measurements of the solar wind and the solar magnetic field. Pioneer 9 operated for a particularly long time, transmitting data until May 1983.
In the 1970s, two Helios (spacecraft), Helios spacecraft and the Skylab Apollo Telescope Mount provided scientists with significant new data on solar wind and the solar corona. The Helios 1 and 2 probes were U.S.–German collaborations that studied the solar wind from an orbit carrying the spacecraft inside Mercury's orbit at perihelion. The Skylab space station, launched by NASA in 1973, included a solar observatory module called the Apollo Telescope Mount that was operated by astronauts resident on the station. Skylab made the first time-resolved observations of the solar transition region and of ultraviolet emissions from the solar corona. Discoveries included the first observations of coronal mass ejections, then called "coronal transients", and of coronal holes, now known to be intimately associated with the solar wind.
In the 1970s, much research focused on the abundances of iron group, iron-group elements in the Sun. Although significant research was done, until 1978 it was difficult to determine the abundances of some iron-group elements (e.g. cobalt and manganese) via spectrography because of their hyperfine structures. The first largely complete set of oscillator strengths of singly ionized iron-group elements were made available in the 1960s, and these were subsequently improved. In 1978, the abundances of singly ionized elements of the iron group were derived.
Various authors have considered the existence of a gradient in the isotope, isotopic compositions of solar and planetary noble gases, e.g. correlations between isotopic compositions of
neon
Neon is a chemical element with the symbol Ne and atomic number 10. It is a noble gas. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered (along with krypton ...
and xenon in the Sun and on the planets. Prior to 1983, it was thought that the whole Sun has the same composition as the solar atmosphere. In 1983, it was claimed that it was fractionation in the Sun itself that caused the isotopic-composition relationship between the planetary and solar-wind-implanted noble gases.
In 1980, the Solar Maximum Mission probes was launched by NASA. This spacecraft was designed to observe gamma rays, X-rays and Ultraviolet, UV radiation from solar flares during a time of high solar activity and #External links, solar luminosity. Just a few months after launch, however, an electronics failure caused the probe to go into standby mode, and it spent the next three years in this inactive state. In 1984 Space Shuttle Challenger, Space Shuttle ''Challenger'' mission STS-41C retrieved the satellite and repaired its electronics before re-releasing it into orbit. The Solar Maximum Mission subsequently acquired thousands of images of the solar corona before Atmospheric reentry, re-entering Earth's atmosphere in June 1989.
Launched in 1991, Japan's Yohkoh (''Sunbeam'') satellite observed solar flares at X-ray wavelengths. Mission data allowed scientists to identify several different types of flares and demonstrated that the corona away from regions of peak activity was much more dynamic and active than had previously been supposed. Yohkoh observed an entire solar cycle but went into standby mode when an annular eclipse in 2001 caused it to lose its lock on the Sun. It was destroyed by atmospheric re-entry in 2005.
One of the most important solar missions to date has been the Solar and Heliospheric Observatory, jointly built by the European Space Agency and NASA and launched on 2 December 1995. Originally intended to serve a two-year mission, a mission extension through 2012 was approved in October 2009. It has proven so useful that a follow-on mission, the Solar Dynamics Observatory, was launched in February 2010. Situated at the Lagrangian point between Earth and the Sun (at which the gravitational pull from both is equal), SOHO has provided a constant view of the Sun at many wavelengths since its launch. Besides its direct solar observation, SOHO has enabled the discovery of a large number of comets, mostly tiny sungrazing comets that incinerate as they pass the Sun.
All these satellites have observed the Sun from the plane of the ecliptic, and so have only observed its equatorial regions in detail. The Ulysses (spacecraft), ''Ulysses'' probe was launched in 1990 to study the Sun's polar regions. It first traveled to Jupiter, to "slingshot" into an orbit that would take it far above the plane of the ecliptic. Once ''Ulysses'' was in its scheduled orbit, it began observing the solar wind and magnetic field strength at high solar latitudes, finding that the solar wind from high latitudes was moving at about 750 km/s, which was slower than expected, and that there were large magnetic waves emerging from high latitudes that scattered galactic cosmic rays.
Elemental abundances in the photosphere are well known from astronomical spectroscopy, spectroscopic studies, but the composition of the interior of the Sun is more poorly understood. A solar wind sample return mission, ''Genesis (spacecraft), Genesis'', was designed to allow astronomers to directly measure the composition of solar material.
* STEREO, Solar Terrestrial Relations Observatory (STEREO) mission was launched in October 2006. Two identical spacecraft were launched into orbits that cause them to (respectively) pull further ahead of and fall gradually behind Earth. This enables stereoscopic imaging of the Sun and solar phenomena, such as coronal mass ejections.
*
Parker Solar Probe
The Parker Solar Probe (PSP; previously Solar Probe, Solar Probe Plus or Solar Probe+) is a NASA space probe launched in 2018 with the mission of making observations of the outer corona of the Sun. It will approach to within 9.86 solar radii (6 ...
was launched in 2018 aboard a Delta IV Heavy rocket and will reach a perihelion of in 2025, making it the closest-orbiting manmade satellite as the first spacecraft to fly low into the solar corona.
* Solar Orbiter mission (SolO) was launched in 2020 and will reach a minimum perihelion of 0.28 AU, making it the closest satellite with sun-facing cameras.
*CubeSat for Solar Particles (CuSP) was launched as a rideshare on Artemis 1 on 16 November 2022 to study Solar energetic particles, particles and Sun#Magnetic field, magnetic fields.
* Indian Space Research Organisation has scheduled the launch of a satellite named ''Aditya-L1'' for 2023. Its main instrument will be a coronagraph for studying the dynamics of the solar corona.
Unsolved problems
Coronal heating
The temperature of the photosphere is approximately 6,000 K, whereas the temperature of the corona reaches . The high temperature of the corona shows that it is heated by something other than direct heat conduction from the photosphere.
It is thought that the energy necessary to heat the corona is provided by turbulent motion in the convection zone below the photosphere, and two main mechanisms have been proposed to explain coronal heating. The first is wave heating, in which sound, gravitational or magnetohydrodynamic waves are produced by turbulence in the convection zone. These waves travel upward and dissipate in the corona, depositing their energy in the ambient matter in the form of heat. The other is magnetic heating, in which magnetic energy is continuously built up by photospheric motion and released through
magnetic reconnection
Magnetic reconnection is a physical process occurring in highly conducting plasmas in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. Magnetic reconnectio ...
in the form of large solar flares and myriad similar but smaller events—nanoflares.
Currently, it is unclear whether waves are an efficient heating mechanism. All waves except Alfvén waves have been found to dissipate or refract before reaching the corona. In addition, Alfvén waves do not easily dissipate in the corona. Current research focus has therefore shifted towards flare heating mechanisms.
Faint young Sun
Theoretical models of the Sun's development suggest that 3.8 to 2.5 billion years ago, during the Archean, Archean eon, the Sun was only about 75% as bright as it is today. Such a weak star would not have been able to sustain liquid water on Earth's surface, and thus life should not have been able to develop. However, the geological record demonstrates that Earth has remained at a fairly constant temperature throughout its history and that the young Earth was somewhat warmer than it is today. One theory among scientists is that the atmosphere of the young Earth contained much larger quantities of greenhouse gases (such as carbon dioxide, methane) than are present today, which trapped enough heat to compensate for the smaller amount of solar energy reaching it.
However, examination of Archean, Archaean sediments appears inconsistent with the hypothesis of high greenhouse concentrations. Instead, the moderate temperature range may be explained by a lower surface albedo brought about by less continental area and the lack of biologically induced cloud condensation nuclei. This would have led to increased absorption of solar energy, thereby compensating for the lower solar output.
Observation by eyes
The brightness of the Sun can cause pain from looking at it with the naked eye; however, doing so for brief periods is not hazardous for normal non-dilated eyes. Looking directly at the Sun (sungazing) causes phosphene visual artifacts and temporary partial blindness. It also delivers about 4 milliwatts of sunlight to the retina, slightly heating it and potentially causing damage in eyes that cannot respond properly to the brightness. Long-duration viewing of the direct Sun with the naked eye can begin to cause UV-induced, sunburn-like lesions on the retina after about 100 seconds, particularly under conditions where the UV light from the Sun is intense and well focused.
Viewing the Sun through light-concentrating optics such as binoculars may result in permanent damage to the retina without an appropriate filter that blocks UV and substantially dims the sunlight. When using an attenuating filter to view the Sun, the viewer is cautioned to use a filter specifically designed for that use. Some improvised filters that pass UV or infrared, IR rays, can actually harm the eye at high brightness levels. Brief glances at the midday Sun through an unfiltered telescope can cause permanent damage.
During sunrise and sunset, sunlight is attenuated because of Rayleigh scattering and Mie theory, Mie scattering from a particularly long passage through Earth's atmosphere, and the Sun is sometimes faint enough to be viewed comfortably with the naked eye or safely with optics (provided there is no risk of bright sunlight suddenly appearing through a break between clouds). Hazy conditions, atmospheric dust, and high humidity contribute to this atmospheric attenuation.
An optical phenomenon, known as a green flash, can sometimes be seen shortly after sunset or before sunrise. The flash is caused by light from the Sun just below the horizon being refraction, bent (usually through a temperature inversion) towards the observer. Light of shorter wavelengths (violet, blue, green) is bent more than that of longer wavelengths (yellow, orange, red) but the violet and blue light is Rayleigh scattering, scattered more, leaving light that is perceived as green.
Religious aspects
Solar deities play a major role in many world religions and mythologies. Sun worship, Worship of the Sun was central to civilizations such as the ancient Egyptians, the Inca of South America and the Aztecs of what is now Mexico. In religions such as Hinduism, the Sun is still considered a god, he is known as Surya, Surya Dev. Many ancient monuments were constructed with solar phenomena in mind; for example, stone megaliths accurately mark the summer or winter solstice (some of the most prominent megaliths are located in Nabta Playa, Egypt; Mnajdra, Malta and at Stonehenge, England); Newgrange, a prehistoric human-built mount in Ireland, was designed to detect the winter solstice; the pyramid of El Castillo, Chichen Itza, El Castillo at Chichén Itzá in Mexico is designed to cast shadows in the shape of serpents climbing the pyramid at the vernal and autumnal equinoxes.
The ancient Sumerians believed that the Sun was Utu, the god of justice and twin brother of Inanna, the Queen of Heaven (antiquity), Queen of Heaven, who was identified as the planet Venus. Later, Utu was identified with the East Semitic god Shamash. Utu was regarded as a helper-deity, who aided those in distress, and, in iconography, he is usually portrayed with a long beard and clutching a saw, which represented his role as the dispenser of justice.
From at least the Fourth Dynasty of Ancient Egypt, the Sun was worshipped as the Ra, god Ra, portrayed as a falcon-headed divinity surmounted by the solar disk, and surrounded by a serpent. In the New Kingdom of Egypt, New Empire period, the Sun became identified with the dung beetle, whose spherical ball of dung was identified with the Sun. In the form of the sun disc Aten, the Sun had a brief resurgence during the Amarna Period when it again became the preeminent, if not only, divinity for the Pharaoh Akhenaton.
The Egyptians portrayed the god Ra as being carried across the sky in a solar barque, accompanied by lesser gods, and to the Greeks, he was Helios, carried by a chariot drawn by fiery horses. From the reign of Elagabalus in the Decline of the Roman Empire, late Roman Empire the Sun's birthday was a holiday celebrated as Sol Invictus (literally "Unconquered Sun") soon after the winter solstice, which may have been an antecedent to Christmas. Regarding the fixed stars, the Sun appears from Earth to revolve once a year along the ecliptic through the zodiac, and so Greek astronomers categorized it as one of the seven classical planets, planets (Greek ''planetes'', "wanderer"); the naming of the Names of the days of the week, days of the weeks after the seven planets dates to the Roman Empire, Roman era.
In Proto-Indo-European religion, the Sun was personified as the goddess Sun deity, ''*Seh2ul''. Derivatives of this goddess in Indo-European languages include the
Old Norse
Old Norse, Old Nordic, or Old Scandinavian, is a stage of development of North Germanic languages, North Germanic dialects before their final divergence into separate Nordic languages. Old Norse was spoken by inhabitants of Scandinavia and t ...
''Sól (sun), Sól'', Sanskrit ''Surya'', Gaulish language, Gaulish ''Sulis'', Lithuanian language, Lithuanian ''Saulė'', and Slavic languages, Slavic ''Solntse''. In ancient Greek religion, the sun deity was the male god Helios, who in later times was syncretism, syncretized with Apollo.
In the Bible, mentions the "Sun of Righteousness" (sometimes translated as the "Sun of Justice"), which some Christianity, Christians have interpreted as a reference to the Messiah (Christ). In ancient Roman culture,
Sunday
Sunday is the day of the week between Saturday and Monday. In most Western countries, Sunday is a day of rest and a part of the weekend. It is often considered the first day of the week.
For most observant adherents of Christianity, Sunday ...
was the day of the sun god. It was adopted as the Sabbath day by Christians who did not have a Jewish background. The symbol of light was a pagan device adopted by Christians, and perhaps the most important one that did not come from Jewish traditions. In paganism, the Sun was a source of life, giving warmth and illumination to mankind. It was the center of a popular cult among Romans, who would stand at dawn to catch the first rays of sunshine as they prayed. The celebration of the winter solstice (which influenced Christmas) was part of the Roman cult of the unconquered Sun (Sol Invictus). Christian churches were built with an orientation so that the congregation faced toward the sunrise in the East.
Tonatiuh, the Aztec god of the sun, was usually depicted holding arrows and a shield and was closely associated with the practice of human sacrifice. The sun goddess Amaterasu is the most important deity in the Shinto religion, and she is believed to be the direct ancestor of all List of Emperors of Japan, Japanese emperors.
See also
*
*
*
* Circled dot (disambiguation), Circled dot other uses of the sun symbol and similar symbols
*
*
*
*
*
*
*
*
*
NASA 10-year timelapse video of the Sun
{{Authority control
Sun,
Articles containing video clips
Astronomical objects known since antiquity
G-type main-sequence stars
Light sources
Plasma physics
Space plasmas
Stars with proper names, Sun