Coronal Mass Ejections
A coronal mass ejection (CME) is a significant ejection of plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding of these relationships has not been established. If a CME enters interplanetary space, it is sometimes referred to as an interplanetary coronal mass ejection (ICME). ICMEs are capable of reaching and colliding with Earth's magnetosphere, where they can cause geomagnetic storms, aurorae, and in rare cases damage to electrical power grids. The largest recorded geomagnetic perturbation, resulting presumably from a CME, was the solar storm of 1859. Also known as the ''Carrington Event'', it disabled parts of the newly created United States telegraph network, starting fires and electrically shocking some telegraph operators. Near solar maxima, the Sun produces about three CMEs every day, whereas near solar minima, there is about one CME ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
05 Coronal Mass Ejection (2819895025)
5 (five) is a number, numeral (linguistics), numeral and numerical digit, digit. It is the natural number, and cardinal number, following 4 and preceding 6, and is a prime number. Humans, and many other animals, have 5 Digit (anatomy), digits on their Limb (anatomy), limbs. Mathematics 5 is a Fermat prime, a Mersenne prime exponent, as well as a Fibonacci number. 5 is the first congruent number, as well as the length of the hypotenuse of the smallest integer-sided right triangle, making part of the smallest Pythagorean triple (3, 4, 5). 5 is the first safe prime and the first good prime. 11 forms the first pair of sexy primes with 5. 5 is the second Fermat number, Fermat prime, of a total of five known Fermat primes. 5 is also the first of three known Wilson primes (5, 13, 563). Geometry A shape with five sides is called a pentagon. The pentagon is the first regular polygon that does not Tessellation, tile the Plane (geometry), plane with copies of itself. It is the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up quark, up and down quark, down quarks. Electrons are extremely lightweight particles that orbit the positively charged atomic nucleus, nucleus of atoms. Their negative charge is balanced by the positive charge of protons in the nucleus, giving atoms their overall electric charge#Charge neutrality, neutral charge. Ordinary matter is composed of atoms, each consisting of a positively charged nucleus surrounded by a number of orbiting electrons equal to the number of protons. The configuration and energy levels of these orbiting electrons determine the chemical properties of an atom. Electrons are bound to the nucleus to different degrees. The outermost or valence electron, valence electrons are the least tightly bound and are responsible for th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Solar Prominence
In solar physics, a prominence, sometimes referred to as a filament, is a large Plasma (physics), plasma and magnetic field structure extending outward from the Sun's surface, often in a loop shape. Prominences are anchored to the Sun's surface in the much brighter photosphere, and extend outwards into the solar corona. While the corona consists of extremely hot plasma, prominences contain much cooler plasma, similar in composition to that of the chromosphere. Like the corona, solar prominences are only visible to the naked eye during a Solar eclipse, total solar eclipse. Prominences form over timescales of about a day and may persist in the corona for several weeks or months, looping hundreds of thousands of kilometers into space. Some prominences may give rise to coronal mass ejections. Exact mechanism of prominence generation is an ongoing target of scientific research. A typical prominence extends over many thousands of kilometers; the largest on record was estimated at ove ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coronal Loop
In solar physics, a coronal loop is a well-defined arch-like structure in the Sun's Stellar atmosphere, atmosphere made up of relatively dense Plasma (physics), plasma confined and isolated from the surrounding medium by magnetic flux tubes. Coronal loops begin and end at two footpoints on the photosphere and project into the Solar transition region, transition region and lower Solar corona, corona. They typically form and dissipate over periods of seconds to days and may span anywhere from in length. Coronal loops are often associated with the strong magnetic fields located within active regions and sunspots. The number of coronal loops varies with the 11 year solar cycle. Origin and physical features Due to a natural process called the solar dynamo driven by heat produced in the Sun's core, convective motion of the electrically conductive plasma (physics), plasma which makes up the Sun creates electric currents, which in turn create powerful magnetic fields in the Sun's inte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Force-free Magnetic Field
In plasma physics, a force-free magnetic field is a magnetic field in which the Lorentz force is equal to zero and the magnetic pressure greatly exceeds the plasma pressure such that non-magnetic forces can be neglected. For a force-free field, the electric current density is either zero or parallel to the magnetic field. Definition When a magnetic field is approximated as force-free, all non-magnetic forces are neglected and the Lorentz force vanishes. For non-magnetic forces to be neglected, it is assumed that the ratio of the plasma pressure to the magnetic pressure—the plasma ''β''—is much less than one, i.e., \beta \ll 1. With this assumption, magnetic pressure dominates over plasma pressure such that the latter can be ignored. It is also assumed that the magnetic pressure dominates over other non-magnetic forces, such as gravity, so that these forces can similarly be ignored. In SI units, the Lorentz force condition for a static magnetic field \mathbf can be expre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Magnetic Energy
The potential magnetic energy of a magnet or magnetic moment \mathbf in a magnetic field \mathbf is defined as the mechanical work of the magnetic force on the re-alignment of the vector of the magnetic dipole moment and is equal to: E_\text = -\mathbf \cdot \mathbfThe mechanical work takes the form of a torque \boldsymbol:\mathbf=\mathbf\times\mathbf=-\mathbf\times\mathbfE_\text which will act to "realign" the magnetic dipole with the magnetic field. In an electronic circuit the energy stored in an inductor (of inductance L) when a current I flows through it is given by:E_\text = \frac LI^2. This expression forms the basis for superconducting magnetic energy storage. It can be derived from a time average of the product of current and voltage across an inductor. Energy is also stored in a magnetic field itself. The energy per unit volume u in a region of free space with vacuum permeability \mu _0 containing magnetic field \mathbf is: u = \frac \fracMore generally, if we assume ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Magnetic Dipole
In electromagnetism, a magnetic dipole is the limit of either a closed loop of electric current or a pair of poles as the size of the source is reduced to zero while keeping the magnetic moment constant. It is a magnetic analogue of the Electric dipole moment, electric dipole, but the analogy is not perfect. In particular, a true magnetic monopole, the magnetic analogue of an electric charge, has never been observed in nature. However, magnetic monopole quasiparticles have been observed as emergent properties of certain condensed matter systems. Moreover, one form of magnetic dipole moment is associated with a fundamental quantum property—the Spin (physics), spin of elementary particles. Because magnetic monopoles do not exist, the magnetic field at a large distance from any static magnetic source looks like the field of a dipole with the same dipole moment. For higher-order sources (e.g. Quadrupole magnet, quadrupoles) with no dipole moment, their field decays towards zero wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Active Region
In solar physics and observation, an active region is a temporary feature in the Sun's atmosphere characterized by a strong and complex magnetic field. They are often associated with sunspots and are commonly the source of violent eruptions such as coronal mass ejections and solar flares. The number and location of active regions on the solar disk at any given time is dependent on the solar cycle. Region numbers Newly observed active regions on the solar disk are assigned 4-digit region numbers by the Space Weather Prediction Center (SWPC) on the day following the initial observation. The region number assigned to a particular active region is one added to the previously assigned number. For example, the first observation of active region 8090, or AR8090, was followed by AR8091. According to the SWPC, a number is assigned to a region if it meets at least one of the following criteria: # It contains a sunspot group of class C or larger based on the Modified Zurich Class sunsp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Photosphere
The photosphere is a star's outer shell from which light is radiated. It extends into a star's surface until the plasma becomes opaque, equivalent to an optical depth of approximately , or equivalently, a depth from which 50% of light will escape without being scattered. A photosphere is the region of a luminous object, usually a star, that is transparent to photons of certain wavelengths. Stars, except neutron stars, have no solid or liquid surface. Therefore, the photosphere is typically used to describe the Sun's or another star's visual surface. Etymology The term ''photosphere'' is derived from Ancient Greek roots, φῶς, φωτός/''phos'', ''photos'' meaning "light" and σφαῖρα/''sphaira'' meaning "sphere", in reference to it being a spherical surface that is perceived to emit light. Temperature The surface of a star is defined to have a temperature given by the effective temperature in the Stefan–Boltzmann law. Various stars have photospheres of vari ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Solar Dynamo
The solar dynamo is a physical process that generates the Sun's magnetic field. It is explained with a variant of the dynamo theory. A naturally occurring electric generator in the Sun's interior produces electric currents and a magnetic field, following the laws of Ampère, Faraday and Ohm, as well as the laws of fluid dynamics, which together form the laws of magnetohydrodynamics. The detailed mechanism of the solar dynamo is not known and is the subject of current research. Mechanism A dynamo converts kinetic energy into electric-magnetic energy. An electrically conducting fluid with shear or more complicated motion, such as turbulence, can temporarily amplify a magnetic field through Lenz's law: fluid motion relative to a magnetic field induces electric currents in the fluid that distort the initial field. If the fluid motion is sufficiently complicated, it can sustain its own magnetic field, with advective fluid amplification essentially balancing diffusive or ohmic decay ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sunspot Diagram
Sunspots are temporary spots on the Sun's surface that are darker than the surrounding area. They are one of the most recognizable Solar phenomena and despite the fact that they are mostly visible in the solar photosphere they usually affect the entire solar atmosphere. They are regions of reduced surface temperature caused by concentrations of magnetic flux that inhibit convection. Sunspots appear within active regions, usually in pairs of opposite magnetic polarity. Their number varies according to the approximately 11-year solar cycle. Individual sunspots or groups of sunspots may last anywhere from a few days to a few months, but eventually decay. Sunspots expand and contract as they move across the surface of the Sun, with diameters ranging from to . Larger sunspots can be visible from Earth without the aid of a telescope. They may travel at relative speeds, or proper motions, of a few hundred meters per second when they first emerge. Indicating intense magnetic act ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |