Nucleocosmochronology
Nucleocosmochronology or nuclear cosmochronology is a technique used to determine timescales for astrophysical objects and events. It compares the observed ratios of abundances of heavy radioactive and stable nuclides to the primordial ratios predicted by nucleosynthesis theory in order to calculate the age of formation of astronomical objects. Nucleocosmochronology has been employed to determine the age of the Sun ( billion years) and of the Galactic thin disk ( billion years), among others. It has also been used to estimate the age of the Milky Way itself, as exemplified by a recent study of Cayrel's Star in the Galactic halo, which due to its low metallicity, is believed to have formed early in the history of the Galaxy. Limiting factors in its precision are the quality of observations of faint stars and the uncertainty of the primordial abundances of r-process elements. See also * Astrochemistry * Geochronology * Gyrochronology Gyrochronology is a method for estimating the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Astrochemistry
Astrochemistry is the study of the abundance and reactions of molecules in the Universe, and their interaction with radiation. The discipline is an overlap of astronomy and chemistry. The word "astrochemistry" may be applied to both the Solar System and the interstellar medium. The study of the abundance of elements and isotope ratios in Solar System objects, such as meteorites, is also called cosmochemistry, while the study of interstellar atoms and molecules and their interaction with radiation is sometimes called molecular astrophysics. The formation, atomic and chemical composition, evolution and fate of molecular gas clouds is of special interest, because it is from these clouds that solar systems form. History As an offshoot of the disciplines of astronomy and chemistry, the history of astrochemistry is founded upon the shared history of the two fields. The development of advanced observational and experimental spectroscopy has allowed for the detection of an ever-increas ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gyrochronology
Gyrochronology is a method for estimating the age of a low-mass (cool) Main sequence, main sequence star (spectral class F8 V or later) from its stellar rotation, rotation period. The term is derived from the Greek language, Greek words ''gyros, chronos'' and ''logos'', roughly translated as ''rotation, age'', and ''study'' respectively. It was coined in 2003 by Sydney Barnes to describe the associated procedure for deriving stellar ages, and developed extensively in empirical form in 2007. Gyrochronology builds on a work of Andrew Skumanich, who found that the average value of (''v sin i'') for several open clusters was inversely proportional to the square root of the cluster's age. In the expression (''v sin i''), (''v'') is the velocity on the star's equator and (''i'') is the Axial tilt, inclination angle of the star's axis of rotation, which is generally an unmeasurable quantity. The gyrochronology method depends on the relationship between the rotation period and the mass of lo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Astrophysics
Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions in space–''what'' they are, rather than ''where'' they are." Among the subjects studied are the Sun, other stars, galaxies, extrasolar planets, the interstellar medium and the cosmic microwave background. Emissions from these objects are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. Because astrophysics is a very broad subject, ''astrophysicists'' apply concepts and methods from many disciplines of physics, including classical mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abundance Of The Chemical Elements
The abundance of the chemical elements is a measure of the Type–token distinction#Occurrences, occurrence of the chemical elements relative to all other elements in a given environment. Abundance is measured in one of three ways: by the mass fraction (chemistry), mass-fraction (the same as weight fraction); by the mole fraction, mole-fraction (fraction of atoms by numerical count, or sometimes fraction of molecules in gases); or by the volume fraction, volume-fraction. Volume-fraction is a common abundance measure in mixed gases such as planetary atmospheres, and is similar in value to molecular mole-fraction for gas mixtures at relatively low densities and pressures, and ideal gas mixtures. Most abundance values in this article are given as mass-fractions. For example, the abundance of oxygen in pure water can be measured in two ways: the ''mass fraction'' is about 89%, because that is the fraction of water's mass which is oxygen. However, the ''mole-fraction'' is about 33% becau ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radionuclide
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferred to one of its electrons to release it as a conversion electron; or used to create and emit a new particle (alpha particle or beta particle) from the nucleus. During those processes, the radionuclide is said to undergo radioactive decay. These emissions are considered ionizing radiation because they are energetic enough to liberate an electron from another atom. The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single nuclide the decay rate, and thus the half-life (''t''1/2) for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stable Nuclide
Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes. The 80 elements with one or more stable isotopes comprise a total of 251 nuclides that have not been known to decay using current equipment (see list at the end of this article). Of these 80 elements, 26 have only one stable isotope; they are thus termed monoisotopic. The rest have more than one stable isotope. Tin has ten stable isotopes, the largest number of stable isotopes known for an element. Definition of stability, and naturally occurring nuclides Most naturally occurring nuclides are stable (about 251; see list at the end of this article), and about 34 more (total of 286) are known to be radioactive with sufficiently long half-lives (also known) to occur primordially. If the half-life of a nuclide is comparable to, or greater ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nucleosynthesis
Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in a process called Big Bang nucleosynthesis. After about 20 minutes, the universe had expanded and cooled to a point at which these high-energy collisions among nucleons ended, so only the fastest and simplest reactions occurred, leaving our universe containing hydrogen and helium. The rest is traces of other elements such as lithium and the hydrogen isotope deuterium. Nucleosynthesis in stars and their explosions later produced the variety of elements and isotopes that we have today, in a process called cosmic chemical evolution. The amounts of total mass in elements heavier than hydrogen and helium (called 'metals' by astrophysicists) remains small (few percent), so that the universe still has approximately the same composition. Stars ste ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thin Disk
The thin disk is a structural component of spiral and S0-type galaxies, composed of stars, gas and dust. It is the main non-centre (e.g. galactic bulge) density, of such matter. That of the Milky Way is thought to have a scale height of around in the vertical axis perpendicular to the disk, and a scale length of around in the horizontal axis, in the direction of the radius. For comparison, the Sun is out from the center. The thin disk contributes about 85% of the stars in the Galactic plane and 95% of the total disk stars. It can be set apart from the thick disk of a galaxy since the latter is composed of older population stars created at an earlier stage of the galaxy formation and thus has fewer heavy elements. Stars in the thin disk, on the other hand, are created as a result of gas accretion at the later stages of a galaxy formation and are on average more metal-rich. The thin disk contains stars with a wide range of ages and may be divided into a series of sub-populations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Milky Way
The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term ''Milky Way'' is a translation of the Latin ', from the Greek ('), meaning "milky circle". From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within. Galileo Galilei first resolved the band of light into individual stars with his telescope in 1610. Until the early 1920s, most astronomers thought that the Milky Way contained all the stars in the Universe. Following the 1920 Great Debate between the astronomers Harlow Shapley and Heber Curtis, observations by Edwin Hubble showed that the Milky Way is just one of many galaxies. The Milky Way is a barred spiral galaxy with an estimated D25 isophotal diameter of , but only about 1,000 light years thick at the spiral arms (more at the bulg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cayrel's Star
BPS CS31082-0001, named Cayrel's Star , is an old Population II star located in a distance of 2.1 kpc in the galactic halo. It belongs to the class of ultra-metal-poor stars (metallicity Fe/Hydrogen.html"_;"title="Iron.html"_;"title="/nowiki>Iron">Fe/Hydrogen">H.html" ;"title="Iron">Fe/Hydrogen.html" ;"title="Iron.html" ;"title="/nowiki>Iron">Fe/Hydrogen">H">Iron">Fe/Hydrogen.html" ;"title="Iron.html" ;"title="/nowiki>Iron">Fe/Hydrogen">H/nowiki> = -2.9), specifically the very rare subclass of neutron-capture enhanced stars. It was discovered by Tim C. Beers and collaborators with the Curtis Schmidt telescope at the Cerro Tololo Inter-American Observatory in Chile and analyzed by Roger Cayrel and collaborators. They used the Very Large Telescope ( Very Large Telescope, VLT) at the European Southern Observatory in Paranal, Chile for high-resolution optical spectroscopy to determine elemental abundances. The thorium-232 to uranium-238 ratio was used to determine ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Galactic Halo
A galactic halo is an extended, roughly spherical component of a galaxy which extends beyond the main, visible component. Several distinct components of galaxies comprise the halo: * the stellar halo * the galactic corona (hot gas, i.e. a plasma) * the dark matter halo The distinction between the halo and the main body of the galaxy is clearest in spiral galaxies, where the spherical shape of the halo contrasts with the flat disc. In an elliptical galaxy, there is no sharp transition between the other components of the galaxy and the halo. A halo can be studied by observing its effect on the passage of light from distant bright objects like quasars that are in line of sight beyond the galaxy in question. Components of the galactic halo Stellar halo The stellar halo is a nearly spherical population of field stars and globular clusters. It surrounds most disk galaxies as well as some elliptical galaxies of type cD. A low amount (about one percent) of a galaxy's stellar mas ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metallicity
In astronomy, metallicity is the abundance of elements present in an object that are heavier than hydrogen and helium. Most of the normal physical matter in the Universe is either hydrogen or helium, and astronomers use the word ''"metals"'' as a convenient short term for ''"all elements except hydrogen and helium"''. This word-use is distinct from the conventional chemical or physical definition of a metal as an electrically conducting solid. Stars and nebulae with relatively high abundances of heavier elements are called "metal-rich" in astrophysical terms, even though many of those elements are nonmetals in chemistry. The presence of heavier elements hails from stellar nucleosynthesis, where the majority of elements heavier than hydrogen and helium in the Universe (''metals'', hereafter) are formed in the cores of stars as they evolve. Over time, stellar winds and supernovae deposit the metals into the surrounding environment, enriching the interstellar medium and providing ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |