Stem Cell Science
   HOME

TheInfoList



OR:

In multicellular organisms, stem cells are undifferentiated or partially differentiated
cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage. They are found in both
embryo An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male spe ...
nic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and
precursor Precursor or Precursors may refer to: *Precursor (religion), a forerunner, predecessor ** The Precursor, John the Baptist Science and technology * Precursor (bird), a hypothesized genus of fossil birds that was composed of fossilized parts of unr ...
or blast cells, which are usually committed to differentiating into one cell type. In mammals, roughly 50–150 cells make up the
inner cell mass The inner cell mass (ICM) or embryoblast (known as the pluriblast in marsupials) is a structure in the early development of an embryo. It is the mass of cells inside the blastocyst that will eventually give rise to the definitive structures of ...
during the
blastocyst The blastocyst is a structure formed in the early embryonic development of mammals. It possesses an inner cell mass (ICM) also known as the ''embryoblast'' which subsequently forms the embryo, and an outer layer of trophoblast cells called the t ...
stage of
embryonic development An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm ...
, around days 5–14. These have stem-cell capability. ''
In vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, and ...
'', they eventually differentiate into all of the body's cell types (making them pluripotent). This process starts with the differentiation into the three
germ layers A germ layer is a primary layer of cells that forms during embryonic development. The three germ layers in vertebrates are particularly pronounced; however, all eumetazoans (animals that are sister taxa to the sponges) produce two or three pri ...
– the
ectoderm The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm (the middle layer) and endoderm (the innermost layer). It emerges and originates from t ...
,
mesoderm The mesoderm is the middle layer of the three germ layers that develops during gastrulation in the very early development of the embryo of most animals. The outer layer is the ectoderm, and the inner layer is the endoderm.Langman's Medical E ...
and
endoderm Endoderm is the innermost of the three primary germ layers in the very early embryo. The other two layers are the ectoderm (outside layer) and mesoderm (middle layer). Cells migrating inward along the archenteron form the inner layer of the gast ...
– at the
gastrulation Gastrulation is the stage in the early embryonic development of most animals, during which the blastula (a single-layered hollow sphere of cells), or in mammals the blastocyst is reorganized into a multilayered structure known as the gastrula. Be ...
stage. However, when they are isolated and
cultured Culture () is an umbrella term which encompasses the social behavior, institutions, and norms found in human societies, as well as the knowledge, beliefs, arts, laws, customs, capabilities, and habits of the individuals in these groups.Tylor ...
''
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in biology an ...
'', they can be kept in the stem-cell stage and are known as embryonic stem cells (ESCs). Adult stem cells are found in a few select locations in the body, known as niches, such as those in the
bone marrow Bone marrow is a semi-solid tissue found within the spongy (also known as cancellous) portions of bones. In birds and mammals, bone marrow is the primary site of new blood cell production (or haematopoiesis). It is composed of hematopoietic ce ...
or gonads. They exist to replenish rapidly lost cell types and are multipotent or unipotent, meaning they only differentiate into a few cell types or one type of cell. In mammals, they include, among others,
hematopoietic stem cells Hematopoietic stem cells (HSCs) are the stem cells that give rise to other blood cells. This process is called haematopoiesis. In vertebrates, the very first definitive HSCs arise from the ventral endothelial wall of the embryonic aorta within t ...
, which replenish blood and immune cells,
basal cells The ''stratum basale'' (basal layer, sometimes referred to as ''stratum germinativum'') is the deepest layer of the five layers of the epidermis, the external covering of skin in mammals. The ''stratum basale'' is a single layer of columnar or ...
, which maintain the skin
epithelium Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercellul ...
, and
mesenchymal stem cells Mesenchymal stem cells (MSCs) also known as mesenchymal stromal cells or medicinal signaling cells are multipotent stromal cells that can differentiate into a variety of cell types, including osteoblasts (bone cells), chondrocytes (cartilage ce ...
, which maintain bone,
cartilage Cartilage is a resilient and smooth type of connective tissue. In tetrapods, it covers and protects the ends of long bones at the joints as articular cartilage, and is a structural component of many body parts including the rib cage, the neck an ...
, muscle and fat cells. Adult stem cells are a small minority of cells; they are vastly outnumbered by the progenitor cells and terminally differentiated cells that they differentiate into. Research into stem cells grew out of findings by Canadian biologists
Ernest McCulloch Ernest Armstrong McCulloch (27 April 1926 – 20 January 2011) was a University of Toronto cellular biologist, best known for demonstrating – with James Till – the existence of stem cells. Biography McCulloch was born in Toronto, Ontar ...
, James Till and Andrew J. Becker at the
University of Toronto The University of Toronto (UToronto or U of T) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen's Park. It was founded by royal charter in 1827 as King's College, the first institution ...
and the Ontario Cancer Institute in the 1960s. , the only established medical therapy using stem cells is hematopoietic stem cell transplantation, first performed in 1958 by French oncologist
Georges Mathé Georges Mathé (9 July 1922 – 15 October 2010) was a French oncologist and immunologist. In November 1958, he performed the first successful allogeneic bone marrow transplant ever performed on unrelated human beings. In 1963, he applied the bo ...
. Since 1998 however, it has been possible to culture and differentiate human embryonic stem cells (in
stem-cell lines A stem cell line is a group of stem cells that is cultured in vitro and can be propagated indefinitely. Stem cell lines are derived from either animal or human tissues and come from one of three sources: embryonic stem cells, adult stem cells, or ...
). The process of isolating these cells has been controversial, because it typically results in the destruction of the embryo. Sources for isolating ESCs have been restricted in some European countries and Canada, but others such as the UK and China have promoted the research.
Somatic cell nuclear transfer In genetics and developmental biology, somatic cell nuclear transfer (SCNT) is a laboratory strategy for creating a viable embryo from a body cell and an egg cell. The technique consists of taking an enucleated oocyte (egg cell) and implanting a ...
is a cloning method that can be used to create a cloned embryo for the use of its embryonic stem cells in stem cell therapy. In 2006, a Japanese team led by
Shinya Yamanaka is a Japanese stem cell researcher and a Nobel Prize laureate. He serves as the director of Center for iPS Cell (induced Pluripotent Stem Cell) Research and Application and a professor at the Institute for Frontier Medical Sciences at Kyoto ...
discovered a method to convert mature body cells back into stem cells. These were termed
induced pluripotent stem cells Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka's lab in Kyoto, Japan, who showed in ...
(iPSCs).


History

The term ''stem cell'' was coined by
Theodor Boveri Theodor Heinrich Boveri (12 October 1862 – 15 October 1915) was a German zoologist, comparative anatomist and co-founder of modern cytology. He was notable for the first hypothesis regarding cellular processes that cause cancer, and for describ ...
and Valentin Haecker in late 19th century. Pioneering works in theory of blood stem cell were conducted in the beginning of 20th century by
Artur Pappenheim Artur Pappenheim (13 December 1870 in Berlin – 31 December 1916) was a German physician and hematologist, remembered for his pioneer efforts in stem cell research. Biography Of Jewish origins, initially he studied mathematics and philosophy, b ...
,
Alexander Maximow Alexander Alexandrowitsch Maximow (russian: Александр Александрович Максимов; – December 4, 1928) was a Russian-American scientist in the fields of Histology and Embryology whose team developed the hypothesis about ...
,
Franz Ernst Christian Neumann Franz Ernst Christian Neumann (30 January 1834 – 6 March 1918) was a German pathologist who was a native of Königsberg. His common name was Ernst Christian Neumann (without Franz at the beginning). Life He was the son of physicist Franz Ernst ...
. The key properties of a stem cell were first defined by
Ernest McCulloch Ernest Armstrong McCulloch (27 April 1926 – 20 January 2011) was a University of Toronto cellular biologist, best known for demonstrating – with James Till – the existence of stem cells. Biography McCulloch was born in Toronto, Ontar ...
and James Till at the University of Toronto and the Ontario Cancer Institute in the early 1960s. They discovered the blood-forming stem cell, the hematopoietic stem cell (HSC), through their pioneering work in mice. McCulloch and Till began a series of experiments in which bone marrow cells were injected into irradiated mice. They observed lumps in the spleens of the mice that were linearly proportional to the number of bone marrow cells injected. They hypothesized that each lump (colony) was a clone arising from a single marrow cell (stem cell). In subsequent work, McCulloch and Till, joined by graduate student Andrew John Becker and senior scientist
Louis Siminovitch Louis Siminovitch (May 1, 1920 – April 6, 2021) was a Canadian molecular biologist. He was a pioneer in human genetics, researcher into the genetic basis of muscular dystrophy and cystic fibrosis, and helped establish Ontario programs explor ...
, confirmed that each lump did in fact arise from a single cell. Their results were published in ''Nature'' in 1963. In that same year, Siminovitch was a lead investigator for studies that found colony-forming cells were capable of self-renewal, which is a key defining property of stem cells that Till and McCulloch had theorized. The first therapy using stem cells was a bone marrow transplant performed by French oncologist
Georges Mathé Georges Mathé (9 July 1922 – 15 October 2010) was a French oncologist and immunologist. In November 1958, he performed the first successful allogeneic bone marrow transplant ever performed on unrelated human beings. In 1963, he applied the bo ...
in 1958 on five workers at the
Vinča Nuclear Institute The Vinča Institute of Nuclear Sciences is a nuclear physics research institution near Belgrade, Serbia. Since its founding, the institute has also conducted research in the fields in physics, chemistry and biology. The scholarly institute is p ...
in
Yugoslavia Yugoslavia (; sh-Latn-Cyrl, separator=" / ", Jugoslavija, Југославија ; sl, Jugoslavija ; mk, Југославија ;; rup, Iugoslavia; hu, Jugoszlávia; rue, label=Pannonian Rusyn, Югославия, translit=Juhoslavija ...
who had been affected by a criticality accident. The workers all survived. In 1981, embryonic stem (ES) cells were first isolated and successfully cultured using mouse blastocysts by British biologists Martin Evans and
Matthew Kaufman Matthew H. Kaufman (29 September 1942 – 11 August 2013) was a British biologist. He was Professor Emeritus at University of Edinburgh having been Professor of Anatomy there from 1985 to 2007. He taught anatomy and embryology for more than 30 ...
. This allowed the formation of murine genetic models, a system in which the genes of mice are deleted or altered in order to study their function in pathology. By 1998, embryonic stem cells were first isolated by American biologist James Thomson, which made it possible to have new transplantation methods or various cell types for testing new treatments. In 2006,
Shinya Yamanaka is a Japanese stem cell researcher and a Nobel Prize laureate. He serves as the director of Center for iPS Cell (induced Pluripotent Stem Cell) Research and Application and a professor at the Institute for Frontier Medical Sciences at Kyoto ...
’s team in Kyoto, Japan converted fibroblasts into pluripotent stem cells by modifying the expression of only four genes. The feat represents the origin of induced pluripotent stem cells, known as iPS cells. In 2011, a female maned wolf, run over by a truck, underwent stem cell treatment at the
Zoo Brasília A zoo (short for zoological garden; also called an animal park or menagerie) is a facility in which animals are kept within enclosures for public exhibition and often bred for conservation purposes. The term ''zoological garden'' refers to zool ...
, this being the first recorded case of the use of stem cells to heal injuries in a wild animal.


Properties

The classical definition of a stem cell requires that it possesses two properties: * Self-renewal: the ability to go through numerous cycles of
cell growth Cell growth refers to an increase in the total mass of a cell, including both cytoplasmic, nuclear and organelle volume. Cell growth occurs when the overall rate of cellular biosynthesis (production of biomolecules or anabolism) is greater than ...
and
cell division Cell division is the process by which a parent cell (biology), cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukar ...
, known as
cell proliferation Cell proliferation is the process by which ''a cell grows and divides to produce two daughter cells''. Cell proliferation leads to an exponential increase in cell number and is therefore a rapid mechanism of tissue growth. Cell proliferation re ...
, while maintaining the undifferentiated state. *
Potency Potency may refer to: * Potency (pharmacology), a measure of the activity of a drug in a biological system * Virility * Cell potency, a measure of the differentiation potential of stem cells * In homeopathic dilutions, potency is a measure of how ...
: the capacity to differentiate into specialized cell types. In the strictest sense, this requires stem cells to be either totipotent or pluripotent—to be able to give rise to any mature cell type, although multipotent or unipotent progenitor cells are sometimes referred to as stem cells. Apart from this, it is said that stem cell function is regulated in a feedback mechanism.


Self-renewal

Two mechanisms ensure that a stem cell population is maintained (doesn't shrink in size): 1. Asymmetric cell division: a stem cell divides into one mother cell, which is identical to the original stem cell, and another daughter cell, which is differentiated. When a stem cell self-renews, it divides and does not disrupt the undifferentiated state. This self-renewal demands control of cell cycle as well as upkeep of multipotency or pluripotency, which all depends on the stem cell. 2. Stochastic differentiation: when one stem cell grows and divides into two differentiated daughter cells, another stem cell undergoes
mitosis In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
and produces two stem cells identical to the original. Stem cells use
telomerase Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most euka ...
, a protein that restores telomeres, to protect their DNA and extend their cell division limit (the Hayflick limit).


Potency meaning

Potency Potency may refer to: * Potency (pharmacology), a measure of the activity of a drug in a biological system * Virility * Cell potency, a measure of the differentiation potential of stem cells * In homeopathic dilutions, potency is a measure of how ...
specifies the differentiation potential (the potential to differentiate into different cell types) of the stem cell. * Totipotent (also known as omnipotent) stem cells can differentiate into embryonic and extraembryonic cell types. Such cells can construct a complete, viable organism. These cells are produced from the fusion of an egg and sperm cell. Cells produced by the first few divisions of the fertilized egg are also totipotent. * Pluripotent stem cells are the descendants of totipotent cells and can differentiate into nearly all cells, i.e. cells derived from any of the three
germ layer A germ layer is a primary layer of cells that forms during embryonic development. The three germ layers in vertebrates are particularly pronounced; however, all eumetazoans (animals that are sister taxa to the sponges) produce two or three pr ...
s. * Multipotent stem cells can differentiate into a number of cell types, but only those of a closely related family of cells. * Oligopotent stem cells can differentiate into only a few cell types, such as lymphoid or myeloid stem cells. * Unipotent cells can produce only one cell type, their own, but have the property of self-renewal, which distinguishes them from non-stem cells


Identification

In practice, stem cells are identified by whether they can regenerate tissue. For example, the defining test for bone marrow or
hematopoietic stem cell Hematopoietic stem cells (HSCs) are the stem cells that give rise to other blood cells. This process is called haematopoiesis. In vertebrates, the very first definitive HSCs arise from the ventral endothelial wall of the embryonic aorta within t ...
s (HSCs) is the ability to transplant the cells and save an individual without HSCs. This demonstrates that the cells can produce new blood cells over a long term. It should also be possible to isolate stem cells from the transplanted individual, which can themselves be transplanted into another individual without HSCs, demonstrating that the stem cell was able to self-renew. Properties of stem cells can be illustrated ''
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in biology an ...
'', using methods such as clonogenic assays, in which single cells are assessed for their ability to differentiate and self-renew. Stem cells can also be isolated by their possession of a distinctive set of cell surface markers. However, ''in vitro'' culture conditions can alter the behavior of cells, making it unclear whether the cells shall behave in a similar manner ''
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, and ...
''. There is considerable debate as to whether some proposed adult cell populations are truly stem cells.


Embryonic

Embryonic stem cells (ESCs) are the cells of the
inner cell mass The inner cell mass (ICM) or embryoblast (known as the pluriblast in marsupials) is a structure in the early development of an embryo. It is the mass of cells inside the blastocyst that will eventually give rise to the definitive structures of ...
of a
blastocyst The blastocyst is a structure formed in the early embryonic development of mammals. It possesses an inner cell mass (ICM) also known as the ''embryoblast'' which subsequently forms the embryo, and an outer layer of trophoblast cells called the t ...
, formed prior to implantation in the uterus. In human embryonic development the
blastocyst The blastocyst is a structure formed in the early embryonic development of mammals. It possesses an inner cell mass (ICM) also known as the ''embryoblast'' which subsequently forms the embryo, and an outer layer of trophoblast cells called the t ...
stage is reached 4–5 days after
fertilization Fertilisation or fertilization (see spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a new individual organism or offspring and initiate its development. Proce ...
, at which time it consists of 50–150 cells. ESCs are pluripotent and give rise during development to all derivatives of the three
germ layer A germ layer is a primary layer of cells that forms during embryonic development. The three germ layers in vertebrates are particularly pronounced; however, all eumetazoans (animals that are sister taxa to the sponges) produce two or three pr ...
s:
ectoderm The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm (the middle layer) and endoderm (the innermost layer). It emerges and originates from t ...
,
endoderm Endoderm is the innermost of the three primary germ layers in the very early embryo. The other two layers are the ectoderm (outside layer) and mesoderm (middle layer). Cells migrating inward along the archenteron form the inner layer of the gast ...
and
mesoderm The mesoderm is the middle layer of the three germ layers that develops during gastrulation in the very early development of the embryo of most animals. The outer layer is the ectoderm, and the inner layer is the endoderm.Langman's Medical E ...
. In other words, they can develop into each of the more than 200 cell types of the adult
body Body may refer to: In science * Physical body, an object in physics that represents a large amount, has mass or takes up space * Body (biology), the physical material of an organism * Body plan, the physical features shared by a group of anima ...
when given sufficient and necessary stimulation for a specific cell type. They do not contribute to the extraembryonic membranes or to the
placenta The placenta is a temporary embryonic and later fetal organ that begins developing from the blastocyst shortly after implantation. It plays critical roles in facilitating nutrient, gas and waste exchange between the physically separate mater ...
. During embryonic development the cells of the inner cell mass continuously divide and become more specialized. For example, a portion of the ectoderm in the dorsal part of the embryo specializes as '
neurectoderm Neuroectoderm (or neural ectoderm or neural tube epithelium) consists of cells derived from ectoderm. Formation of the neuroectoderm is first step in the development of the nervous system. The neuroectoderm receives bone morphogenetic protein-in ...
', which will become the future
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all par ...
. Later in development,
neurulation Neurulation refers to the folding process in vertebrate embryos, which includes the transformation of the neural plate into the neural tube. The embryo at this stage is termed the neurula. The process begins when the notochord induces the formati ...
causes the neurectoderm to form the neural tube. At the neural tube stage, the anterior portion undergoes
encephalization Encephalization quotient (EQ), encephalization level (EL), or just encephalization is a relative brain size measure that is defined as the ratio between observed to predicted brain mass for an animal of a given size, based on nonlinear regressi ...
to generate or 'pattern' the basic form of the brain. At this stage of development, the principal cell type of the CNS is considered a neural stem cell. The neural stem cells self-renew and at some point transition into radial glial progenitor cells (RGPs). Early-formed RGPs self-renew by symmetrical division to form a reservoir group of progenitor cells. These cells transition to a neurogenic state and start to divide asymmetrically to produce a large diversity of many different neuron types, each with unique gene expression, morphological, and functional characteristics. The process of generating neurons from radial glial cells is called
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs) ...
. The radial glial cell, has a distinctive bipolar morphology with highly elongated processes spanning the thickness of the neural tube wall. It shares some
glial Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form mye ...
characteristics, most notably the expression of glial fibrillary acidic protein (GFAP). The radial glial cell is the primary neural stem cell of the developing
vertebrate Vertebrates () comprise all animal taxa within the subphylum Vertebrata () ( chordates with backbones), including all mammals, birds, reptiles, amphibians, and fish. Vertebrates represent the overwhelming majority of the phylum Chordata, ...
CNS, and its cell body resides in the
ventricular zone In vertebrates, the ventricular zone (VZ) is a transient embryonic layer of tissue containing neural stem cells, principally radial glial cells, of the central nervous system (CNS). The VZ is so named because it lines the ventricular system, whic ...
, adjacent to the developing
ventricular system The ventricular system is a set of four interconnected cavities known as cerebral ventricles in the brain. Within each ventricle is a region of choroid plexus which produces the circulating cerebrospinal fluid (CSF). The ventricular system is con ...
. Neural stem cells are committed to the neuronal lineages (
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. N ...
s, astrocytes, and oligodendrocytes), and thus their potency is restricted. Nearly all research to date has made use of mouse embryonic stem cells (mES) or human embryonic stem cells (hES) derived from the early inner cell mass. Both have the essential stem cell characteristics, yet they require very different environments in order to maintain an undifferentiated state. Mouse ES cells are grown on a layer of
gelatin Gelatin or gelatine (from la, gelatus meaning "stiff" or "frozen") is a translucent, colorless, flavorless food ingredient, commonly derived from collagen taken from animal body parts. It is brittle when dry and rubbery when moist. It may also ...
as an
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix, is a three-dimensional network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide stru ...
(for support) and require the presence of leukemia inhibitory factor (LIF) in serum media. A drug cocktail containing inhibitors to GSK3B and the
MAPK/ERK pathway The MAPK/ERK pathway (also known as the Ras-Raf-MEK-ERK pathway) is a chain of proteins in the cell that communicates a signal from a receptor on the surface of the cell to the DNA in the nucleus of the cell. The signal starts when a signaling ...
, called 2i, has also been shown to maintain pluripotency in stem cell culture. Human ESCs are grown on a feeder layer of mouse embryonic fibroblasts and require the presence of basic fibroblast growth factor (bFGF or FGF-2). Without optimal culture conditions or genetic manipulation, embryonic stem cells will rapidly differentiate. A human embryonic stem cell is also defined by the expression of several transcription factors and cell surface proteins. The transcription factors
Oct-4 Oct-4 (octamer-binding transcription factor 4), also known as POU5F1 (POU domain, class 5, transcription factor 1), is a protein that in humans is encoded by the ''POU5F1'' gene. Oct-4 is a homeodomain transcription factor of the POU family. I ...
, Nanog, and Sox2 form the core regulatory network that ensures the suppression of genes that lead to differentiation and the maintenance of pluripotency. The cell surface antigens most commonly used to identify hES cells are the glycolipids
stage specific embryonic antigen 3 Stage-specific embryonic antigen 3 (SSEA-3) is a glycosphingolipid, specifically, an oligosaccharide composed of five carbohydrate units connected to a sphingolipid. Sphingolipids were originally discovered in 1884 by Johann Ludwig Wilhelm Thudichum ...
and 4, and the keratan sulfate antigens Tra-1-60 and Tra-1-81. The molecular definition of a stem cell includes many more proteins and continues to be a topic of research. By using human embryonic stem cells to produce specialized cells like nerve cells or heart cells in the lab, scientists can gain access to adult human cells without taking tissue from patients. They can then study these specialized adult cells in detail to try to discern complications of diseases, or to study cell reactions to proposed new drugs. Because of their combined abilities of unlimited expansion and pluripotency, embryonic stem cells remain a theoretically potential source for regenerative medicine and tissue replacement after injury or disease., however, there are currently no approved treatments using ES cells. The first human trial was approved by the US Food and Drug Administration in January 2009. However, the human trial was not initiated until October 13, 2010 in Atlanta for spinal cord injury research. On November 14, 2011 the company conducting the trial (
Geron Corporation Geron Corporation is a biotechnology company located in Foster City, California, Foster City, California, which specializes in developing and commercializing therapeutic products for cancer that inhibit telomerase. Company information Geron, ba ...
) announced that it will discontinue further development of its stem cell programs. Differentiating ES cells into usable cells while avoiding transplant rejection are just a few of the hurdles that embryonic stem cell researchers still face. Embryonic stem cells, being pluripotent, require specific signals for correct differentiation – if injected directly into another body, ES cells will differentiate into many different types of cells, causing a
teratoma A teratoma is a tumor made up of several different types of tissue, such as hair, muscle, teeth, or bone. Teratomata typically form in the ovary, testicle, or coccyx. Symptoms Symptoms may be minimal if the tumor is small. A testicular terato ...
. Ethical considerations regarding the use of unborn human tissue are another reason for the lack of approved treatments using embryonic stem cells. Many nations currently have moratoria or limitations on either human ES cell research or the production of new human ES cell lines. File:Mouse embryonic stem cells.jpg,
Mouse A mouse ( : mice) is a small rodent. Characteristically, mice are known to have a pointed snout, small rounded ears, a body-length scaly tail, and a high breeding rate. The best known mouse species is the common house mouse (''Mus musculus' ...
embryonic stem cells with fluorescent marker File:Human embryonic stem cell colony phase.jpg, Human embryonic stem cell colony on mouse embryonic fibroblast feeder layer


Mesenchymal stem cells

Mesenchymal stem cells (MSC) or mesenchymal stromal cells, also known as medicinal signaling cells are known to be multipotent, which can be found in adult tissues, for example, in the muscle, liver, bone marrow and adipose tissue. Mesenchymal stem cells usually function as structural support in various organs as mentioned above, and control the movement of substances. MSC can differentiate into numerous cell categories as an illustration of adipocytes, osteocytes, and chondrocytes, derived by the mesodermal layer. Where the mesoderm layer provides an increase to the body’s skeletal elements, such as relating to the cartilage or bone. The term “meso” means middle, infusion originated from the Greek, signifying that mesenchymal cells are able to range and travel in early embryonic growth among the ectodermal and endodermal layers. This mechanism helps with space-filling thus, key for repairing wounds in adult organisms that have to do with mesenchymal cells in the dermis (skin), bone, or muscle. Mesenchymal stem cells are known to be essential for regenerative medicine. They are broadly studied in
clinical trials Clinical trials are prospective biomedical or behavioral research studies on human participants designed to answer specific questions about biomedical or behavioral interventions, including new treatments (such as novel vaccines, drugs, dietar ...
. Since they are easily isolated and obtain high yield, high plasticity, which makes able to facilitate inflammation and encourage cell growth, cell differentiation, and restoring tissue derived from immunomodulation and immunosuppression. MSC comes from the bone marrow, which requires an aggressive procedure when it comes to isolating the quantity and quality of the isolated cell, and it varies by how old the donor. When comparing the rates of MSC in the bone marrow aspirates and bone marrow stroma, the aspirates tend to have lower rates of MSC than the stroma. MSC are known to be heterogeneous, and they express a high level of pluripotent markers when compared to other types of stem cells, such as embryonic stem cells. MSCs injection leads to wound healing primarily through stimulation of angiogenesis.


Cell cycle control

Embryonic stem cells (ESCs) have the ability to divide indefinitely while keeping their pluripotency, which is made possible through specialized mechanisms of
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and subs ...
control. Compared to proliferating
somatic cell A somatic cell (from Ancient Greek σῶμα ''sôma'', meaning "body"), or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Such cells compo ...
s, ESCs have unique cell cycle characteristics—such as rapid cell division caused by shortened
G1 phase The G1 phase, gap 1 phase, or growth 1 phase, is the first of four phases of the cell cycle that takes place in eukaryotic cell division. In this part of interphase, the cell synthesizes mRNA and proteins in preparation for subsequent steps leadi ...
, absent
G0 phase The G0 phase describes a cellular state outside of the replicative cell cycle. Classically, cells were thought to enter G0 primarily due to environmental factors, like nutrient deprivation, that limited the resources necessary for proliferation ...
, and modifications in cell cycle checkpoints—which leaves the cells mostly in
S phase S phase (Synthesis Phase) is the phase of the cell cycle in which DNA is replicated, occurring between G1 phase and G2 phase. Since accurate duplication of the genome is critical to successful cell division, the processes that occur during ...
at any given time. ESCs’ rapid division is demonstrated by their short doubling time, which ranges from 8 to 10 hours, whereas somatic cells have doubling time of approximately 20 hours or longer. As cells differentiate, these properties change: G1 and G2 phases lengthen, leading to longer cell division cycles. This suggests that a specific cell cycle structure may contribute to the establishment of pluripotency. Particularly because G1 phase is the phase in which cells have increased sensitivity to differentiation, shortened G1 is one of the key characteristics of ESCs and plays an important role in maintaining undifferentiated
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological proper ...
. Although the exact molecular mechanism remains only partially understood, several studies have shown insight on how ESCs progress through G1—and  potentially other phases—so rapidly. The cell cycle is regulated by complex network of
cyclin Cyclin is a family of proteins that controls the progression of a cell through the cell cycle by activating cyclin-dependent kinase (CDK) enzymes or group of enzymes required for synthesis of cell cycle. Etymology Cyclins were originally disco ...
s,
cyclin-dependent kinase Cyclin-dependent kinases (CDKs) are the families of protein kinases first discovered for their role in regulating the cell cycle. They are also involved in regulating transcription, mRNA processing, and the differentiation of nerve cells. They a ...
s (Cdk),
cyclin-dependent kinase inhibitor A cyclin-dependent kinase inhibitor protein is a protein which inhibits the enzyme cyclin-dependent kinase (CDK). Several function as tumor suppressor proteins. Cell cycle progression is delayed or stopped by cyclin-dependent kinase inhibitors, ...
s (Cdkn), pocket proteins of the retinoblastoma (Rb) family, and other accessory factors. Foundational insight into the distinctive regulation of ESC cell cycle was gained by studies on mouse ESCs (mESCs). mESCs showed a cell cycle with highly abbreviated G1 phase, which enabled cells to rapidly alternate between M phase and S phase. In a somatic cell cycle, oscillatory activity of Cyclin-Cdk complexes is observed in sequential action, which controls crucial regulators of the cell cycle to induce unidirectional transitions between phases:
Cyclin D Cyclin D is a member of the cyclin protein family that is involved in regulating cell cycle progression. The synthesis of cyclin D is initiated during G1 and drives the G1/S phase transition. Cyclin D protein is anywhere from 155 (in zebra mus ...
and Cdk4/6 are active in the G1 phase, while
Cyclin E Cyclin E is a member of the cyclin family. Cyclin E binds to G1 phase Cdk2, which is required for the transition from G1 to S phase of the cell cycle that determines initiation of DNA duplication. The Cyclin E/CDK2 complex phosphorylates p27 ...
and Cdk2 are active during the late G1 phase and S phase; and
Cyclin A Cyclin A is a member of the cyclin family, a group of proteins that function in regulating progression through the cell cycle. The stages that a cell passes through that culminate in its division and replication are collectively known as the cel ...
and Cdk2 are active in the S phase and G2, while Cyclin B and Cdk1 are active in G2 and M phase. However, in mESCs, this typically ordered and oscillatory activity of Cyclin-Cdk complexes is absent. Rather, the Cyclin E/Cdk2 complex is constitutively active throughout the cycle, keeping
retinoblastoma protein The retinoblastoma protein (protein name abbreviated pRb; gene name abbreviated ''Rb'', ''RB'' or ''RB1'') is a proto-oncogenic tumor suppressor protein that is dysfunctional in several major cancers. One function of pRb is to prevent excessive ...
(pRb)
hyperphosphorylated Hyperphosphorylation occurs when a biochemical with multiple phosphorylation sites is fully saturated. Hyperphosphorylation is one of the signaling mechanisms used by the cell to regulate mitosis. When these mechanisms fail, developmental problem ...
and thus inactive. This allows for direct transition from M phase to the late G1 phase, leading to absence of D-type cyclins and therefore a shortened G1 phase. Cdk2 activity is crucial for both cell cycle regulation and cell-fate decisions in mESCs; downregulation of Cdk2 activity prolongs G1 phase progression, establishes a somatic cell-like cell cycle, and induces expression of differentiation markers. In human ESCs (hESCs), the duration of G1 is dramatically shortened. This has been attributed to high mRNA levels of G1-related Cyclin D2 and Cdk4 genes and low levels of cell cycle regulatory proteins that inhibit cell cycle progression at G1, such as p21CipP1, p27Kip1, and p57Kip2. Furthermore, regulators of Cdk4 and Cdk6 activity, such as members of the Ink family of inhibitors (p15, p16, p18, and p19), are expressed at low levels or not at all. Thus, similar to mESCs, hESCs show high Cdk activity, with Cdk2 exhibiting the highest kinase activity. Also similar to mESCs, hESCs demonstrate the importance of Cdk2 in G1 phase regulation by showing that G1 to S transition is delayed when Cdk2 activity is inhibited and G1 is arrest when Cdk2 is knocked down. However unlike mESCs, hESCs have a functional G1 phase. hESCs show that the activities of Cyclin E/Cdk2 and Cyclin A/Cdk2 complexes are cell cycle-dependent and the Rb checkpoint in G1 is functional. ESCs are also characterized by G1 checkpoint non-functionality, even though the G1 checkpoint is crucial for maintaining genomic stability. In response to
DNA damage DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA da ...
, ESCs do not stop in G1 to repair DNA damages but instead, depend on S and G2/M checkpoints or undergo apoptosis. The absence of G1 checkpoint in ESCs allows for the removal of cells with damaged DNA, hence avoiding potential mutations from inaccurate DNA repair. Consistent with this idea, ESCs are hypersensitive to DNA damage to minimize mutations passed onto the next generation.


Fetal

The primitive stem cells located in the organs of fetuses are referred to as fetal stem cells. There are two types of fetal stem cells: # Fetal proper stem cells come from the tissue of the fetus proper and are generally obtained after an
abortion Abortion is the termination of a pregnancy by removal or expulsion of an embryo or fetus. An abortion that occurs without intervention is known as a miscarriage or "spontaneous abortion"; these occur in approximately 30% to 40% of pregn ...
. These stem cells are not immortal but have a high level of division and are multipotent. # Extraembryonic fetal stem cells come from extraembryonic membranes, and are generally not distinguished from adult stem cells. These stem cells are acquired after birth, they are not immortal but have a high level of cell division, and are pluripotent.


Adult

Adult stem cells, also called
somatic Somatic may refer to: * Somatic (biology), referring to the cells of the body in contrast to the germ line cells ** Somatic cell, a non-gametic cell in a multicellular organism * Somatic nervous system, the portion of the vertebrate nervous sys ...
(from Greek σωματικóς, "of the body") stem cells, are stem cells which maintain and repair the tissue in which they are found. They can be found in children, as well as adults. There are three known accessible sources of autologous adult stem cells in humans: #
Bone marrow Bone marrow is a semi-solid tissue found within the spongy (also known as cancellous) portions of bones. In birds and mammals, bone marrow is the primary site of new blood cell production (or haematopoiesis). It is composed of hematopoietic ce ...
, which requires extraction by ''harvesting'', usually from pelvic bones via surgery. # Adipose tissue (fat cells), which requires extraction by liposuction. # Blood, which requires extraction through apheresis, wherein blood is drawn from the donor (similar to a blood donation), and passed through a machine that extracts the stem cells and returns other portions of the blood to the donor. Stem cells can also be taken from
umbilical cord blood Cord blood (umbilical cord blood) is blood that remains in the placenta and in the attached umbilical cord after childbirth. Cord blood is collected because it contains stem cells, which can be used to treat hematopoietic and genetic disorders su ...
just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one's own body, just as one may bank their own blood for elective surgical procedures. Pluripotent adult stem cells are rare and generally small in number, but they can be found in umbilical cord blood and other tissues. Bone marrow is a rich source of adult stem cells, which have been used in treating several conditions including liver cirrhosis, chronic limb ischemia and endstage heart failure. The quantity of bone marrow stem cells declines with age and is greater in males than females during reproductive years. Much adult stem cell research to date has aimed to characterize their potency and self-renewal capabilities. DNA damage accumulates with age in both stem cells and the cells that comprise the stem cell environment. This accumulation is considered to be responsible, at least in part, for increasing stem cell dysfunction with aging (see DNA damage theory of aging). Most adult stem cells are lineage-restricted ( multipotent) and are generally referred to by their tissue origin ( mesenchymal stem cell, adipose-derived stem cell,
endothelial stem cell Endothelial stem cells (ESCs) are one of three types of stem cells found in bone marrow. They are multipotent, which describes the ability to give rise to many cell types, whereas a pluripotent stem cell can give rise to all types. ESCs have t ...
,
dental pulp stem cell Dental pulp stem cells (DPSCs) are stem cell In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the ...
, etc.).
Muse cell A Muse cell (Multi-lineage differentiating stress enduring cell) is an endogenous non-cancerous pluripotent stem cell. They reside in the connective tissue of nearly every organ including the umbilical cord, bone marrow and peripheral blood. They a ...
s (multi-lineage differentiating stress enduring cells) are a recently discovered pluripotent stem cell type found in multiple adult tissues, including adipose, dermal fibroblasts, and bone marrow. While rare, muse cells are identifiable by their expression of SSEA-3, a marker for undifferentiated stem cells, and general mesenchymal stem cells markers such as CD90,
CD105 Endoglin (ENG) is a type I membrane glycoprotein located on cell surfaces and is part of the TGF beta receptor complex. It is also commonly referred to as CD105, END, FLJ41744, HHT1, ORW and ORW1. It has a crucial role in angiogenesis, therefor ...
. When subjected to single cell suspension culture, the cells will generate clusters that are similar to embryoid bodies in morphology as well as gene expression, including canonical pluripotency markers Oct4, Sox2, and Nanog. Adult stem cell treatments have been successfully used for many years to treat leukemia and related bone/blood cancers through bone marrow transplants. Adult stem cells are also used in veterinary medicine to treat tendon and ligament injuries in horses. The use of adult stem cells in research and therapy is not as controversial as the use of embryonic stem cells, because the production of adult stem cells does not require the destruction of an
embryo An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male spe ...
. Additionally, in instances where adult stem cells are obtained from the intended recipient (an autograft), the risk of rejection is essentially non-existent. Consequently, more US government funding is being provided for adult stem cell research. With the increasing demand of human adult stem cells for both research and clinical purposes (typically 1–5 million cells per kg of body weight are required per treatment) it becomes of utmost importance to bridge the gap between the need to expand the cells in vitro and the capability of harnessing the factors underlying replicative senescence. Adult stem cells are known to have a limited lifespan in vitro and to enter replicative senescence almost undetectably upon starting in vitro culturing.


Amniotic

Also called perinatal stem cells, these multipotent stem cells are found in
amniotic fluid The amniotic fluid is the protective liquid contained by the amniotic sac of a gravid amniote. This fluid serves as a cushion for the growing fetus, but also serves to facilitate the exchange of nutrients, water, and biochemical products betwee ...
and umbilical cord blood. These stem cells are very active, expand extensively without feeders and are not tumorigenic. Amniotic stem cells are multipotent and can differentiate in cells of adipogenic, osteogenic, myogenic, endothelial, hepatic and also neuronal lines. Amniotic stem cells are a topic of active research. Use of stem cells from
amniotic fluid The amniotic fluid is the protective liquid contained by the amniotic sac of a gravid amniote. This fluid serves as a cushion for the growing fetus, but also serves to facilitate the exchange of nutrients, water, and biochemical products betwee ...
overcomes the ethical objections to using human embryos as a source of cells.
Roman Catholic Roman or Romans most often refers to: *Rome, the capital city of Italy *Ancient Rome, Roman civilization from 8th century BC to 5th century AD *Roman people, the people of ancient Rome *'' Epistle to the Romans'', shortened to ''Romans'', a lette ...
teaching forbids the use of embryonic stem cells in experimentation; accordingly, the Vatican newspaper " Osservatore Romano" called amniotic stem cells "the future of medicine". It is possible to collect amniotic stem cells for donors or for autologous use: the first US amniotic stem cells bank was opened in 2009 in Medford, MA, by
Biocell Center Biocell Center is an international company specializing in the cryopreservation and private banking of amniotic fluid stem cells. The company is headquartered in Italy with several international locations and is involved with numerous partnerships ...
Corporation and collaborates with various hospitals and universities all over the world.


Induced pluripotent

Adult stem cells have limitations with their potency; unlike embryonic stem cells (ESCs), they are not able to differentiate into cells from all three
germ layers A germ layer is a primary layer of cells that forms during embryonic development. The three germ layers in vertebrates are particularly pronounced; however, all eumetazoans (animals that are sister taxa to the sponges) produce two or three pri ...
. As such, they are deemed multipotent. However, reprogramming allows for the creation of pluripotent cells, induced pluripotent stem cells (iPSCs), from adult cells. These are not adult stem cells, but somatic cells (e.g. epithelial cells) reprogrammed to give rise to cells with pluripotent capabilities. Using genetic reprogramming with protein transcription factors, pluripotent stem cells with ESC-like capabilities have been derived. The first demonstration of induced pluripotent stem cells was conducted by
Shinya Yamanaka is a Japanese stem cell researcher and a Nobel Prize laureate. He serves as the director of Center for iPS Cell (induced Pluripotent Stem Cell) Research and Application and a professor at the Institute for Frontier Medical Sciences at Kyoto ...
and his colleagues at
Kyoto University , mottoeng = Freedom of academic culture , established = , type = National university, Public (National) , endowment = ¥ 316 billion (2.4 1000000000 (number), billion USD) , faculty = 3,480 (Teaching Staff) , administrative_staff ...
. They used the transcription factors Oct3/4, Sox2, c-Myc, and Klf4 to reprogram mouse fibroblast cells into pluripotent cells. Subsequent work used these factors to induce pluripotency in human fibroblast cells.
Junying Yu Junying Yu (born 1975) is a Chinese stem cell biologist. She is a researcher at the University of Wisconsin–Madison. Biography Yu was born in 1975 in Zhejiang, China. In 1997, Yu graduated from the Department of Biology of Peking University. ...
, James Thomson, and their colleagues at the
University of Wisconsin–Madison A university () is an educational institution, institution of higher education, higher (or Tertiary education, tertiary) education and research which awards academic degrees in several Discipline (academia), academic disciplines. Universities ty ...
used a different set of factors, Oct4, Sox2, Nanog and Lin28, and carried out their experiments using cells from human foreskin. However, they were able to replicate
Yamanaka Yamanaka (written: ; lit: "middle of mountain") is a Japanese surname. Notable people with the surname include: * Akira Joe Yamanaka, singer for the Flower Travellin' Band * Akiko Yamanaka (born 1945), Japanese politician of the Liberal Democratic ...
's finding that inducing pluripotency in human cells was possible. Induced pluripotent stem cells differ from embryonic stem cells. They share many similar properties, such as pluripotency and differentiation potential, the expression of pluripotency genes,
epigenetic In biology, epigenetics is the study of stable phenotypic changes (known as ''marks'') that do not involve alterations in the DNA sequence. The Greek prefix '' epi-'' ( "over, outside of, around") in ''epigenetics'' implies features that are "o ...
patterns,
embryoid body Embryoid bodies (EBs) are three-dimensional aggregates of pluripotent stem cells. EBs are differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Background The pluripotent cell type ...
and
teratoma A teratoma is a tumor made up of several different types of tissue, such as hair, muscle, teeth, or bone. Teratomata typically form in the ovary, testicle, or coccyx. Symptoms Symptoms may be minimal if the tumor is small. A testicular terato ...
formation, and viable chimera formation, but there are many differences within these properties. The chromatin of iPSCs appears to be more "closed" or methylated than that of ESCs. Similarly, the gene expression pattern between ESCs and iPSCs, or even iPSCs sourced from different origins. There are thus questions about the "completeness" of reprogramming and the somatic memory of induced pluripotent stem cells. Despite this, inducing somatic cells to be pluripotent appears to be viable. As a result of the success of these experiments, Ian Wilmut, who helped create the first cloned animal Dolly the Sheep, has announced that he will abandon
somatic cell nuclear transfer In genetics and developmental biology, somatic cell nuclear transfer (SCNT) is a laboratory strategy for creating a viable embryo from a body cell and an egg cell. The technique consists of taking an enucleated oocyte (egg cell) and implanting a ...
as an avenue of research. IPSCs has helped the field of medicine significantly by finding numerous ways to cure diseases. Since human IPSCc has given the advantage to make ''in vitro'' models to study toxins and pathogenesis. Furthermore, induced pluripotent stem cells provide several therapeutic advantages. Like ESCs, they are pluripotent. They thus have great differentiation potential; theoretically, they could produce any cell within the human body (if reprogramming to pluripotency was "complete"). Moreover, unlike ESCs, they potentially could allow doctors to create a pluripotent stem cell line for each individual patient. Frozen blood samples can be used as a valuable source of induced pluripotent stem cells. Patient specific stem cells allow for the screening for side effects before drug treatment, as well as the reduced risk of transplantation rejection. Despite their current limited use therapeutically, iPSCs hold great potential for future use in medical treatment and research.


Cell cycle control

The key factors controlling the cell cycle also regulate pluripotency. Thus, manipulation of relevant genes can maintain pluripotency and reprogram somatic cells to an induced pluripotent state. However, reprogramming of somatic cells is often low in efficiency and considered
stochastic Stochastic (, ) refers to the property of being well described by a random probability distribution. Although stochasticity and randomness are distinct in that the former refers to a modeling approach and the latter refers to phenomena themselv ...
. With the idea that a more rapid cell cycle is a key component of pluripotency, reprogramming efficiency can be improved. Methods for improving pluripotency through manipulation of cell cycle regulators include: overexpression of Cyclin D/Cdk4, phosphorylation of Sox2 at S39 and S253, overexpression of Cyclin A and Cyclin E, knockdown of Rb, and knockdown of members of the
Cip/Kip The CIP/KIP (CDK interacting protein/Kinase inhibitory protein) family is one of two families (CIP/KIP and INK4) of mammalian cyclin dependent kinase ( CDK) inhibitors ( CKIs) involved in regulating the cell cycle. The CIP/KIP family is made up of ...
family or the Ink family. Furthermore, reprogramming efficiency is correlated with the number of cell divisions happened during the stochastic phase, which is suggested by the growing inefficiency of reprogramming of older or slow diving cells.


Lineage

Lineage is an important procedure to analyze developing embryos. Since cell lineages shows the relationship between cells at each division. This helps in analyzing stem cell lineages along the way which helps recognize stem cell effectiveness, lifespan, and other factors. With the technique of cell lineage mutant genes can be analyzed in stem cell clones that can help in genetic pathways. These pathways can regulate how the stem cell perform. To ensure self-renewal, stem cells undergo two types of cell division (see ''Stem cell division and differentiation'' diagram). Symmetric division gives rise to two identical daughter cells both endowed with stem cell properties. Asymmetric division, on the other hand, produces only one stem cell and a progenitor cell with limited self-renewal potential. Progenitors can go through several rounds of cell division before terminally differentiating into a mature cell. It is possible that the molecular distinction between symmetric and asymmetric divisions lies in differential segregation of cell membrane proteins (such as receptors) between the daughter cells. An alternative theory is that stem cells remain undifferentiated due to environmental cues in their particular
niche Niche may refer to: Science *Developmental niche, a concept for understanding the cultural context of child development *Ecological niche, a term describing the relational position of an organism's species *Niche differentiation, in ecology, the ...
. Stem cells differentiate when they leave that niche or no longer receive those signals. Studies in ''Drosophila'' germarium have identified the signals
decapentaplegic Decapentaplegic (Dpp) is a key morphogen involved in the development of the fruit fly ''Drosophila melanogaster'' and is the first validated secreted morphogen. It is known to be necessary for the correct patterning and development of the early '' ...
and adherens junctions that prevent germarium stem cells from differentiating.


Therapies

Stem cell therapy is the use of stem cells to treat or prevent a disease or condition. Bone marrow transplant is a form of stem cell therapy that has been used for many years because it has proven to be effective in clinical trials.Bone Marrow Transplantation and Peripheral Blood Stem Cell Transplantation
In National Cancer Institute Fact Sheet web site. Bethesda, MD: National Institutes of Health, U.S. Department of Health and Human Services, 2010. Cited August 24, 2010
Stem cell implantation may help in strengthening the left-ventricle of the heart, as well as retaining the heart tissue to patients who have suffered from heart attacks in the past.


Advantages

Stem cell treatments may lower symptoms of the disease or condition that is being treated. The lowering of symptoms may allow patients to reduce the drug intake of the disease or condition. Stem cell treatment may also provide knowledge for society to further stem cell understanding and future treatments. The physicians' creed would be to do no injury, and stem cells make that simpler than ever before. Surgical processes by their character are harmful. Tissue has to be dropped as a way to reach a successful outcome. One may prevent the dangers of surgical interventions using stem cells. Additionally, there's a possibility of disease, and whether the procedure fails, further surgery may be required. Risks associated with anesthesia can also be eliminated with stem cells. On top of that, stem cells have been harvested from the patient's body and redeployed in which they're wanted. Since they come from the patient’s own body, this is referred to as an autologous treatment. Autologous remedies are thought to be the safest because there's likely zero probability of donor substance rejection.


Disadvantages

Stem cell treatments may require immunosuppression because of a requirement for radiation before the transplant to remove the person's previous cells, or because the patient's immune system may target the stem cells. One approach to avoid the second possibility is to use stem cells from the same patient who is being treated. Pluripotency in certain stem cells could also make it difficult to obtain a specific cell type. It is also difficult to obtain the exact cell type needed, because not all cells in a population differentiate uniformly. Undifferentiated cells can create tissues other than desired types. Some stem cells form tumors after transplantation;Bernadine Healy, M.D.
"Why Embryonic Stem Cells are obsolete"
''US News and world report''. Retrieved on Aug 17, 2015.
pluripotency is linked to tumor formation especially in embryonic stem cells, fetal proper stem cells, induced pluripotent stem cells. Fetal proper stem cells form tumors despite multipotency. Ethical concerns are also raised about the practice of using or researching embryonic stem cells. Harvesting cells from the blastocyst result in the death of the blastocyst. The concern is whether or not the blastocyst should be considered as a human life. The debate on this issue is mainly a philosophical one, not a scientific one.


Stem cell tourism

Stem cell tourism is the industry in which patients (and sometimes their families) travel to another jurisdiction, to obtain stem cell procedures which are not approved but which are advertised on the Internet as proven cures. The United States, in recent years, has had an explosion of "stem cell clinics". Stem cell procedures are highly profitable for clinics. The advertising sounds authoritative but the efficacy and safety of the procedures is unproven. Patients sometimes experience complications, such as spinal tumors and death. The high expense can also lead to financial ruin. According to researchers, there is a need to educate the public, patients, and doctors about this issue. According to the
International Society for Stem Cell Research The International Society for Stem Cell Research (ISSCR) is an independent 501(c)(3) nonprofit organization based in Skokie, Illinois, United States. The organization's mission is to promote excellence in stem cell science and applications to hum ...
, the largest academic organization that advocates for stem cell research, stem cell therapies are under development and cannot yet be said to be proven. Doctors should inform patients that clinical trials continue to investigate whether these therapies are safe and effective but that unethical clinics present them as proven.


Research

Some of the fundamental
patent A patent is a type of intellectual property that gives its owner the legal right to exclude others from making, using, or selling an invention for a limited period of time in exchange for publishing an enabling disclosure of the invention."A p ...
s covering human embryonic stem cells are owned by the
Wisconsin Alumni Research Foundation The Wisconsin Alumni Research Foundation is the independent nonprofit technology transfer organization serving the University of Wisconsin–Madison and Morgridge Institute for Research. It provides significant research support, granting tens ...
(WARF) – they are patents 5,843,780, 6,200,806, and 7,029,913 invented by
James A. Thomson James JA. Thomson is an American businessman who was the RAND Corporation's president and chief executive officer from August 1989 through October 2011 and a member of the RAND staff since 1981. Education Thomson holds a B.S. in physics from the ...
. WARF does not enforce these patents against academic scientists, but does enforce them against companies.Regalado, Antonio, David P. Hamilton (July 2006)
"How a University's Patents May Limit Stem-Cell Researcher."
''The Wall Street Journal''. Retrieved on July 24, 2006.
In 2006, a request for the
US Patent and Trademark Office The United States Patent and Trademark Office (USPTO) is an List of federal agencies in the United States, agency in the United States Department of Commerce, U.S. Department of Commerce that serves as the national patent office and trademark ...
(USPTO) to re-examine the three patents was filed by the
Public Patent Foundation In public relations and communication science, publics are groups of individual people, and the public (a.k.a. the general public) is the totality of such groupings. This is a different concept to the sociological concept of the ''Öffentlichkei ...
on behalf of its client, the non-profit patent-watchdog group
Consumer Watchdog Consumer Watchdog (formerly the Foundation for Taxpayer and Consumer Rights) is a non-profit, progressive organization which advocates for taxpayer and consumer interests, with a focus on insurance, health care, political reform, privacy and ener ...
(formerly the Foundation for Taxpayer and Consumer Rights). In the re-examination process, which involves several rounds of discussion between the USPTO and the parties, the USPTO initially agreed with Consumer Watchdog and rejected all the claims in all three patents, however in response, WARF amended the claims of all three patents to make them more narrow, and in 2008 the USPTO found the amended claims in all three patents to be patentable. The decision on one of the patents (7,029,913) was appealable, while the decisions on the other two were not. Consumer Watchdog appealed the granting of the '913 patent to the USPTO's Board of Patent Appeals and Interferences (BPAI) which granted the appeal, and in 2010 the BPAI decided that the amended claims of the '913 patent were not patentable. However, WARF was able to re-open prosecution of the case and did so, amending the claims of the '913 patent again to make them more narrow, and in January 2013 the amended claims were allowed. In July 2013, Consumer Watchdog announced that it would appeal the decision to allow the claims of the '913 patent to the US Court of Appeals for the Federal Circuit (CAFC), the federal appeals court that hears patent cases. At a hearing in December 2013, the CAFC raised the question of whether Consumer Watchdog had legal standing to appeal; the case could not proceed until that issue was resolved.


Investigations

Diseases and conditions where stem cell treatment is being investigated include: *
Diabetes Diabetes, also known as diabetes mellitus, is a group of metabolic disorders characterized by a high blood sugar level ( hyperglycemia) over a prolonged period of time. Symptoms often include frequent urination, increased thirst and increased ap ...
* Androgenic Alopecia and hair loss *
Rheumatoid arthritis Rheumatoid arthritis (RA) is a long-term autoimmune disorder that primarily affects joints. It typically results in warm, swollen, and painful joints. Pain and stiffness often worsen following rest. Most commonly, the wrist and hands are involv ...
*
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms becom ...
*
Alzheimer's disease Alzheimer's disease (AD) is a neurodegeneration, neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in short-term me ...
*
Osteoarthritis Osteoarthritis (OA) is a type of degenerative joint disease that results from breakdown of joint cartilage and underlying bone which affects 1 in 7 adults in the United States. It is believed to be the fourth leading cause of disability in the w ...
Stem Cell Basics: What are the potential uses of human stem cells and the obstacles that must be overcome before these potential uses will be realized?
In Stem Cell Information World Wide Web site. Bethesda, MD: National Institutes of Health, U.S. Department of Health and Human Services, 2009. cited Sunday, April 26, 2009
*
Stroke A stroke is a medical condition in which poor blood flow to the brain causes cell death. There are two main types of stroke: ischemic, due to lack of blood flow, and hemorrhagic, due to bleeding. Both cause parts of the brain to stop functionin ...
and traumatic brain injury repair *
Learning disability Learning disability, learning disorder, or learning difficulty (British English) is a condition in the brain that causes difficulties comprehending or processing information and can be caused by several different factors. Given the "difficult ...
due to
congenital disorder A birth defect, also known as a congenital disorder, is an abnormal condition that is present at birth regardless of its cause. Birth defects may result in disabilities that may be physical, intellectual, or developmental. The disabilities can ...
*
Spinal cord injury A spinal cord injury (SCI) is damage to the spinal cord that causes temporary or permanent changes in its function. Symptoms may include loss of muscle function, sensation, or autonomic function in the parts of the body served by the spinal cor ...
repair *
Heart infarction A myocardial infarction (MI), commonly known as a heart attack, occurs when Hemodynamics, blood flow decreases or stops to the coronary artery of the heart, causing ischemia, damage to the cardiac muscle, heart muscle. The most common symptom i ...
* Anti-
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
treatments *
Baldness Hair loss, also known as alopecia or baldness, refers to a loss of hair from part of the head or body. Typically at least the head is involved. The severity of hair loss can vary from a small area to the entire body. Inflammation or scarrin ...
reversal * Replace missing
teeth A tooth ( : teeth) is a hard, calcified structure found in the jaws (or mouths) of many vertebrates and used to break down food. Some animals, particularly carnivores and omnivores, also use teeth to help with capturing or wounding prey, tear ...
* Repair hearing * Restore vision and repair damage to the
cornea The cornea is the transparent front part of the eye that covers the iris, pupil, and anterior chamber. Along with the anterior chamber and lens, the cornea refracts light, accounting for approximately two-thirds of the eye's total optical power ...
*
Amyotrophic lateral sclerosis Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) or Lou Gehrig's disease, is a neurodegenerative disease that results in the progressive loss of motor neurons that control voluntary muscles. ALS is the most comm ...
*
Crohn's disease Crohn's disease is a type of inflammatory bowel disease (IBD) that may affect any segment of the gastrointestinal tract. Symptoms often include abdominal pain, diarrhea (which may be bloody if inflammation is severe), fever, abdominal distension ...
* Wound healing *
Male infertility Male infertility refers to a sexually mature male's inability to impregnate a fertile female. In humans it accounts for 40–50% of infertility. It affects approximately 7% of all men. Male infertility is commonly due to deficiencies in the semen, ...
due to absence of spermatogonial stem cells. In recent studies, scientist have found a way to solve this problem by reprogramming a cell and turning it into a spermatozoon. Other studies have proven the restoration of spermatogenesis by introducing human iPSC cells in mice testicles. This could mean the end of
azoospermia Azoospermia is the medical condition of a man whose semen contains no sperm. It is associated with male infertility, but many forms are amenable to medical treatment. In humans, azoospermia affects about 1% of the male population and may be seen ...
. *
Female infertility Female infertility refers to infertility in women. It affects an estimated 48 million women, with the highest prevalence of infertility affecting women in South Asia, Sub-Saharan Africa, North Africa/Middle East, and Central/Eastern Europe and Cen ...
: oocytes made from embryonic stem cells. Scientists have found the ovarian stem cells, a rare type of cells (0.014%) found in the ovary. They could be used as a treatment not only for infertility, but also for premature ovarian insufficiency. * Critical Limb Ischemia Research is underway to develop various sources for stem cells, and to apply stem cell treatments for
neurodegenerative diseases A neurodegenerative disease is caused by the progressive loss of structure or function of neurons, in the process known as neurodegeneration. Such neuronal damage may ultimately involve cell death. Neurodegenerative diseases include amyotrophic ...
and conditions,
diabetes Diabetes, also known as diabetes mellitus, is a group of metabolic disorders characterized by a high blood sugar level ( hyperglycemia) over a prolonged period of time. Symptoms often include frequent urination, increased thirst and increased ap ...
,
heart disease Cardiovascular disease (CVD) is a class of diseases that involve the heart or blood vessels. CVD includes coronary artery diseases (CAD) such as angina and myocardial infarction (commonly known as a heart attack). Other CVDs include stroke, hea ...
, and other conditions. Research is also underway in generating
organoid An organoid is a miniaturized and simplified version of an Organ (anatomy), organ produced in vitro in three dimensions that shows realistic micro-anatomy. They are derived from one or a few Cell (biology), cells from a Tissue (biology), tissue, ...
s using stem cells, which would allow for further understanding of human development, organogenesis, and modeling of human diseases. In more recent years, with the ability of scientists to isolate and culture embryonic stem cells, and with scientists' growing ability to create stem cells using
somatic cell nuclear transfer In genetics and developmental biology, somatic cell nuclear transfer (SCNT) is a laboratory strategy for creating a viable embryo from a body cell and an egg cell. The technique consists of taking an enucleated oocyte (egg cell) and implanting a ...
and techniques to create
induced pluripotent stem cells Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka's lab in Kyoto, Japan, who showed in ...
, controversy has crept in, both related to abortion politics and to
human cloning Human cloning is the creation of a genetically identical copy (or clone) of a human. The term is generally used to refer to artificial human cloning, which is the reproduction of human cells and tissue. It does not refer to the natural concepti ...
. Hepatotoxicity and drug-induced liver injury account for a substantial number of failures of new drugs in development and market withdrawal, highlighting the need for screening assays such as stem cell-derived hepatocyte-like cells, that are capable of detecting toxicity early in the drug development process.


Notable studies

In August 2021, researchers in the
Princess Margaret Cancer Centre The Princess Margaret Cancer Centre (previously, ''Princess Margaret Hospital'') is a scientific research centre and a teaching hospital in Toronto, Ontario, Canada, affiliated with the University of Toronto Faculty of Medicine as part of the Univ ...
at the University Health Network published their discovery of a dormancy mechanism in key stem cells which could help develop cancer treatments in the future.


See also

*
Cell bank A cell bank is a facility that stores cells of specific genome for the purpose of future use in a product or medicinal needs. They often contain expansive amounts of base cell material that can be utilized for various projects. Cell banks can be us ...
* Human genome * Meristem * Mesenchymal stem cell *
Ovarian stem cell Ovarian stem cells are oocytes formed in ovarian follicle before birth in female mammals. They do not form post-natally, and are depleted throughout reproductive life. In humans it is estimated that 500,000–1,000,000 primordial follicles are pre ...
*
Partial cloning In the field of cell biology, the method of partial cloning (PCL) converts a fully differentiated ''old'' somatic cell into a partially reprogrammed ''young'' cell that retains all the specialised functions of the differentiated ''old'' cell but ...
*
Plant stem cell Plant stem cells Plant stem cells are innately undifferentiated cells located in the meristems of plants. Plant stem cells serve as the origin of plant vitality, as they maintain themselves while providing a steady supply of precursor cells to ...
* Stem cell controversy *
Stem cell marker Stem cell markers are genes and their protein products used by scientists to isolate and identify stem cells. Stem cells can also be identified by functional assays. Below is a list of genes/protein products that can be used to identify various typ ...


References


Further reading

*


External links


National Institutes of Health: Stem Cell Information

Nature.com: Stem Cells
{{DEFAULTSORT:Stem Cell Induced stem cells Biotechnology Cell biology Cloning Developmental biology