Etymology
The word "star" ultimately derives from theObservation history
Historically, stars have been important toDesignations
The concept of a constellation was known to exist during the Babylonian period. Ancient sky watchers imagined that prominent arrangements of stars formed patterns, and they associated these with particular aspects of nature or their myths. Twelve of these formations lay along the band of the ecliptic and these became the basis of astrology. Many of the more prominent individual stars were given names, particularly with Arab language, Arabic or Latin language, Latin designations. As well as certain constellations and the Sun itself, individual stars have their own mythology, myths. To the Ancient Greek religion, Ancient Greeks, some "stars", known asUnits of measurement
Although stellar parameters can be expressed in International System of Units, SI units or Gaussian units, it is often most convenient to express mass, luminosity, and radius, radii in solar units, based on the characteristics of the Sun. In 2015, the IAU defined a set of ''nominal'' solar values (defined as SI constants, without uncertainties) which can be used for quoting stellar parameters: : The solar mass M⊙ was not explicitly defined by the IAU due to the large relative uncertainty (10−4) of the Gravitational Constant, Newtonian gravitational constant G. Since the product of the Newtonian gravitational constant and solar mass together (GM⊙) has been determined to much greater precision, the IAU defined the ''nominal'' solar mass parameter to be: : The nominal solar mass parameter can be combined with the most recent (2014) CODATA estimate of the Newtonian gravitational constant G to derive the solar mass to be approximately 1.9885 × 1030 kg. Although the exact values for the luminosity, radius, mass parameter, and mass may vary slightly in the future due to observational uncertainties, the 2015 IAU nominal constants will remain the same SI values as they remain useful measures for quoting stellar parameters. Large lengths, such as the radius of a giant star or the Semi-major and semi-minor axes, semi-major axis of a binary star system, are often expressed in terms of the astronomical unit—approximately equal to the mean distance between the Earth and the Sun (150 million km or approximately 93 million miles). In 2012, the IAU defined the astronomical constant to be an exact length in meters: 149,597,870,700 m.Formation and evolution
Stars condense from regions of interstellar medium, space of higher matter density, yet those regions are less dense than within a vacuum chamber. These regions—known as ''molecular clouds''—consist mostly of hydrogen, with about 23 to 28 percent helium and a few percent heavier elements. One example of such a star-forming region is the Orion Nebula. Most stars form in groups of dozens to hundreds of thousands of stars. O-type star, Massive stars in these groups may powerfully illuminate those clouds, ionizing the hydrogen, and creating H II regions. Such feedback effects, from star formation, may ultimately disrupt the cloud and prevent further star formation. All stars spend the majority of their existence as ''main sequence stars'', fueled primarily by the nuclear fusion of hydrogen into helium within their cores. However, stars of different masses have markedly different properties at various stages of their development. The ultimate fate of more massive stars differs from that of less massive stars, as do their luminosities and the impact they have on their environment. Accordingly, astronomers often group stars by their mass: * ''Very low mass stars'', with masses below 0.5 , are fully convective and distributeStar formation
The formation of a star begins with gravitational instability within a molecular cloud, caused by regions of higher density—often triggered by compression of clouds by radiation from massive stars, expanding bubbles in the interstellar medium, the collision of different molecular clouds, or the Interacting galaxy, collision of galaxies (as in a starburst galaxy). When a region reaches a sufficient density of matter to satisfy the criteria for Jeans instability, it begins to collapse under its own gravitational force. As the cloud collapses, individual conglomerations of dense dust and gas form "Bok globules". As a globule collapses and the density increases, the gravitational energy converts into heat and the temperature rises. When the protostellar cloud has approximately reached the stable condition of hydrostatic equilibrium, a protostar forms at the core. These pre-main-sequence stars are often surrounded by a protoplanetary disk and powered mainly by the conversion of gravitational energy. The period of gravitational contraction lasts about 10 million years for a star like the sun, up to 100 million years for a red dwarf. Early stars of less than 2 are called T Tauri stars, while those with greater mass are Herbig Ae/Be stars. These newly formed stars emit jets of gas along their axis of rotation, which may reduce the angular momentum of the collapsing star and result in small patches of nebulosity known as Herbig–Haro objects. These jets, in combination with radiation from nearby massive stars, may help to drive away the surrounding cloud from which the star was formed. Early in their development, T Tauri stars follow the Hayashi track—they contract and decrease in luminosity while remaining at roughly the same temperature. Less massive T Tauri stars follow this track to the main sequence, while more massive stars turn onto the Henyey track. Most stars are observed to be members of binary star systems, and the properties of those binaries are the result of the conditions in which they formed. A gas cloud must lose its angular momentum in order to collapse and form a star. The fragmentation of the cloud into multiple stars distributes some of that angular momentum. The primordial binaries transfer some angular momentum by gravitational interactions during close encounters with other stars in young stellar clusters. These interactions tend to split apart more widely separated (soft) binaries while causing hard binaries to become more tightly bound. This produces the separation of binaries into their two observed populations distributions.Main sequence
Stars spend about 90% of their existence fusing hydrogen into helium in high-temperature and high-pressure reactions in the core region. Such stars are said to be on the main sequence, and are called dwarf stars. Starting at zero-age main sequence, the proportion of helium in a star's core will steadily increase, the rate of nuclear fusion at the core will slowly increase, as will the star's temperature and luminosity. The Sun, for example, is estimated to have increased in luminosity by about 40% since it reached the main sequence 4.6 billion (4.6 × 109) years ago. Every star generates a stellar wind of particles that causes a continual outflow of gas into space. For most stars, the mass lost is negligible. The Sun loses 10−14 every year, or about 0.01% of its total mass over its entire lifespan. However, very massive stars can lose 10−7 to 10−5 each year, significantly affecting their evolution. Stars that begin with more than 50 can lose over half their total mass while on the main sequence. The time a star spends on the main sequence depends primarily on the amount of fuel it has and the rate at which it fuses it. The Sun is expected to live 10 billion (1010) years. Massive stars consume their fuel very rapidly and are short-lived. Low mass stars consume their fuel very slowly. Stars less massive than 0.25 , called red dwarfs, are able to fuse nearly all of their mass while stars of about 1 can only fuse about 10% of their mass. The combination of their slow fuel-consumption and relatively large usable fuel supply allows low mass stars to last about one trillion (1012) years; the most extreme of 0.08 will last for about 12 trillion years. Red dwarfs become blue dwarf (red-dwarf stage), hotter and more luminous as they accumulate helium. When they eventually run out of hydrogen, they contract into a white dwarf and decline in temperature. Since the lifespan of such stars is greater than the current age of the universe (13.8 billion years), no stars under about 0.85 are expected to have moved off the main sequence. Besides mass, the elements heavier than helium can play a significant role in the evolution of stars. Astronomers label all elements heavier than helium "metals", and call the chemical concentration of these elements in a star, its metallicity. A star's metallicity can influence the time the star takes to burn its fuel, and controls the formation of its magnetic fields, which affects the strength of its stellar wind. Older, stellar population, population II stars have substantially less metallicity than the younger, population I stars due to the composition of the molecular clouds from which they formed. Over time, such clouds become increasingly enriched in heavier elements as older stars die and shed portions of their stellar atmosphere, atmospheres.Post–main sequence
As stars of at least 0.4 exhaust the supply of hydrogen at their core, they start to fuse hydrogen in a shell surrounding the helium core. The outer layers of the star expand and cool greatly as they transition into a red giant. In some cases, they will fuse heavier chemical element, elements at the core or in shells around the core. As the stars expand, they throw part of their mass, enriched with those heavier elements, into the interstellar environment, to be recycled later as new stars. In about 5 billion years, when the Sun enters the helium burning phase, it will expand to a maximum radius of roughly , 250 times its present size, and lose 30% of its current mass. See also As the hydrogen-burning shell produces more helium, the core increases in mass and temperature. In a red giant of up to 2.25 , the mass of the helium core becomes degenerate prior to helium fusion. Finally, when the temperature increases sufficiently, core helium fusion begins explosively in what is called a helium flash, and the star rapidly shrinks in radius, increases its surface temperature, and moves to the horizontal branch of the HR diagram. For more massive stars, helium core fusion starts before the core becomes degenerate, and the star spends some time in the red clump, slowly burning helium, before the outer convective envelope collapses and the star then moves to the horizontal branch. After a star has fused the helium of its core, it begins fusing helium along a shell surrounding the hot carbon core. The star then follows an evolutionary path called the asymptotic giant branch (AGB) that parallels the other described red-giant phase, but with a higher luminosity. The more massive AGB stars may undergo a brief period of carbon fusion before the core becomes degenerate. During the AGB phase, stars undergo thermal pulses due to instabilities in the core of the star. In these thermal pulses, the luminosity of the star variable star, varies and matter is ejected from the star's atmosphere, ultimately forming a planetary nebula. As much as 50 to 70% of a star's mass can be ejected in this stellar mass loss, mass loss process. Because energy transport in an AGB star is primarily by convection, this ejected material is enriched with the fusion products dredge-up, dredged up from the core. Therefore, the planetary nebula is enriched with elements like carbon and oxygen. Ultimately, the planetary nebula disperses, enriching the general interstellar medium. Therefore, future generations of stars are made of the "star stuff" from past stars.Massive stars
During their helium-burning phase, a star of more than 9 solar masses expands to form first a blue supergiant, blue and then a red supergiant. Particularly massive stars may evolve to a Wolf-Rayet star, characterised by spectra dominated by emission lines of elements heavier than hydrogen, which have reached the surface due to strong convection and intense mass loss, or from stripping of the outer layers. When helium is exhausted at the core of a massive star, the core contracts and the temperature and pressure rises enough to fuse carbon (see Carbon-burning process). This process continues, with the successive stages being fueled by neon (see neon-burning process), oxygen (see oxygen-burning process), and silicon (see silicon-burning process). Near the end of the star's life, fusion continues along a series of onion-layer shells within a massive star. Each shell fuses a different element, with the outermost shell fusing hydrogen; the next shell fusing helium, and so forth. The final stage occurs when a massive star begins producing iron. Since iron nuclei are more binding energy, tightly bound than any heavier nuclei, any fusion beyond iron does not produce a net release of energy.Collapse
As a star's core shrinks, the intensity of radiation from that surface increases, creating such radiation pressure on the outer shell of gas that it will push those layers away, forming a planetary nebula. If what remains after the outer atmosphere has been shed is less than roughly 1.4 , it shrinks to a relatively tiny object about the size of Earth, known as aBinary stars
The evolution of binary stars may be significantly different from the evolution of single stars of the same mass. If stars in a binary system are sufficiently close, when one of the stars expands to become a red giant it may overflow its Roche lobe, the region around a star where material is gravitationally bound to that star, leading to transfer of material to the other. When the Roche lobe is overflowed, a variety of phenomena can result, including contact binaries, common envelope, common-envelope binaries, Cataclysmic variable star, cataclysmic variables, blue stragglers, and type Ia supernovae. Mass transfer leads to cases such as the Algol paradox, where the most-evolved star in a system is the least massive. The evolution of binary and higher-order star systems is intensely researched since so many stars have been found to be members of binary systems. Around half of Sun-like stars, and an even higher proportion of more massive stars, form in multiple systems and this may greatly influence such phenomena as novae and supernovae, the formation of certain types of star, and the enrichment of space with nucleosynthesis products. The influence of binary star evolution on the formation of evolved massive stars such as luminous blue variables, Wolf-Rayet stars, and the progenitors of certain classes of core collapse supernova is still disputed. Single massive stars may be unable to expel their outer layers fast enough to form the types and numbers of evolved stars that are observed, or to produce progenitors that would explode as the supernovae that are observed. Mass transfer through gravitational stripping in binary systems is seen by some astronomers as the solution to that problem.Distribution
Stars are not spread uniformly across the universe, but are normally grouped into galaxies along with interstellar gas and dust. A typical large galaxy like the Milky Way contains hundreds of billions of stars. There are more than 2 trillion (1012) galaxies, though most are less than 10% the mass of the Milky Way. Overall, there are likely to be between and stars (more stars than all the Sand, grains of sand on planetCharacteristics
Almost everything about a star is determined by its initial mass, including such characteristics as luminosity, size, evolution, lifespan, and its eventual fate.Age
Most stars are between 1 billion and 10 billion years old. Some stars may even be close to 13.8 billion years old—the observed age of the universe. The oldest star yet discovered, HD 140283, nicknamed Methuselah star, is an estimated 14.46 ± 0.8 billion years old. (Due to the uncertainty in the value, this age for the star does not conflict with the age of the universe, determined by the Planck (spacecraft), Planck satellite as 13.799 ± 0.021). The more massive the star, the shorter its lifespan, primarily because massive stars have greater pressure on their cores, causing them to burn hydrogen more rapidly. The most massive stars last an average of a few million years, while stars of minimum mass (red dwarfs) burn their fuel very slowly and can last tens to hundreds of billions of years.Chemical composition
When stars form in the present Milky Way galaxy, they are composed of about 71% hydrogen and 27% helium, as measured by mass, with a small fraction of heavier elements. Typically the portion of heavy elements is measured in terms of the iron content of the stellar atmosphere, as iron is a common element and its absorption lines are relatively easy to measure. The portion of heavier elements may be an indicator of the likelihood that the star has a planetary system. The star with the lowest iron content ever measured is the dwarf HE1327-2326, with only 1/200,000th the iron content of the Sun. By contrast, the super-metal-rich star Mu Leonis, μ Leonis has nearly double the abundance of iron as the Sun, while the planet-bearing star 14 Herculis has nearly triple the iron. Chemically peculiar stars show unusual abundances of certain elements in their spectrum; especially chromium and rare earth elements. Stars with cooler outer atmospheres, including the Sun, can form various diatomic and polyatomic molecules.Diameter
Due to their great distance from the Earth, all stars except the Sun appear to the unaided eye as shining points in the night sky that Twinkling, twinkle because of the effect of the Earth's atmosphere. The Sun is close enough to the Earth to appear as a disk instead, and to provide daylight. Other than the Sun, the star with the largest apparent size is R Doradus, with an angular diameter of only 0.057 arcseconds. The disks of most stars are much too small in Angular diameter, angular size to be observed with current ground-based optical telescopes, and so Interferometry, interferometer telescopes are required to produce images of these objects. Another technique for measuring the angular size of stars is through occultation. By precisely measuring the drop in brightness of a star as it is occulted by the Moon (or the rise in brightness when it reappears), the star's angular diameter can be computed. Stars range in size from neutron stars, which vary anywhere from 20 to in diameter, to supergiants like Betelgeuse in the Orion constellation, which has a diameter about 1,000 times that of the Sun with a much lower density.Kinematics
The motion of a star relative to the Sun can provide useful information about the origin and age of a star, as well as the structure and evolution of the surrounding galaxy. The components of motion of a star consist of the radial velocity toward or away from the Sun, and the traverse angular movement, which is called its proper motion. Radial velocity is measured by the doppler shift of the star's spectral lines and is given in units of km/second, s. The proper motion of a star, its parallax, is determined by precise astrometric measurements in units of milli-arc seconds (mas) per year. With knowledge of the star's parallax and its distance, the proper motion velocity can be calculated. Together with the radial velocity, the total velocity can be calculated. Stars with high rates of proper motion are likely to be relatively close to the Sun, making them good candidates for parallax measurements. When both rates of movement are known, the space velocity (astronomy), space velocity of the star relative to the Sun or the galaxy can be computed. Among nearby stars, it has been found that younger population I stars have generally lower velocities than older, population II stars. The latter have elliptical orbits that are inclined to the plane of the galaxy. A comparison of the kinematics of nearby stars has allowed astronomers to trace their origin to common points in giant molecular clouds, and are referred to as stellar associations.Magnetic field
The magnetic field of a star is generated within regions of the interior where convective circulation occurs. This movement of conductive plasma functions like a dynamo theory, dynamo, wherein the movement of electrical charges induce magnetic fields, as does a mechanical dynamo. Those magnetic fields have a great range that extend throughout and beyond the star. The strength of the magnetic field varies with the mass and composition of the star, and the amount of magnetic surface activity depends upon the star's rate of rotation. This surface activity produces starspots, which are regions of strong magnetic fields and lower than normal surface temperatures. Coronal loops are arching magnetic field flux lines that rise from a star's surface into the star's outer atmosphere, its corona. The coronal loops can be seen due to the plasma they conduct along their length. Stellar flares are bursts of high-energy particles that are emitted due to the same magnetic activity. Young, rapidly rotating stars tend to have high levels of surface activity because of their magnetic field. The magnetic field can act upon a star's stellar wind, functioning as a brake to gradually slow the rate of rotation with time. Thus, older stars such as the Sun have a much slower rate of rotation and a lower level of surface activity. The activity levels of slowly rotating stars tend to vary in a cyclical manner and can shut down altogether for periods of time. During the Maunder Minimum, for example, the Sun underwent a 70-year period with almost no sunspot activity.Mass
One of the most massive stars known is Eta Carinae, which, with 100–150 times as much mass as the Sun, will have a lifespan of only several million years. Studies of the most massive open clusters suggests as a rough upper limit for stars in the current era of the universe. This represents an empirical value for the theoretical limit on the mass of forming stars due to increasing radiation pressure on the accreting gas cloud. Several stars in the R136 cluster in the Large Magellanic Cloud have been measured with larger masses, but it has been determined that they could have been created through the collision and merger of massive stars in close binary systems, sidestepping the 150 limit on massive star formation. The first stars to form after the Big Bang may have been larger, up to 300 , due to the complete absence of elements heavier thanRotation
The rotation rate of stars can be determined through spectroscopy, spectroscopic measurement, or more exactly determined by tracking their starspots. Young stars can have a rotation greater than 100 km/s at the equator. The B-class star Achernar, for example, has an equatorial velocity of about 225 km/s or greater, causing its equatorial bulge, equator to bulge outward and giving it an equatorial diameter that is more than 50% greater than between the poles. This rate of rotation is just below the critical velocity of 300 km/s at which speed the star would break apart. By contrast, the Sun rotates once every 25–35 days depending on latitude, with an equatorial velocity of 1.93 km/s. A main sequence star's magnetic field and the stellar wind serve to slow its rotation by a significant amount as it evolves on the main sequence. Degenerate stars have contracted into a compact mass, resulting in a rapid rate of rotation. However they have relatively low rates of rotation compared to what would be expected by conservation of angular momentum—the tendency of a rotating body to compensate for a contraction in size by increasing its rate of spin. A large portion of the star's angular momentum is dissipated as a result of mass loss through the stellar wind. In spite of this, the rate of rotation for a pulsar can be very rapid. The pulsar at the heart of the Crab nebula, for example, rotates 30 times per second. The rotation rate of the pulsar will gradually slow due to the emission of radiation.Temperature
The surface temperature of a main sequence star is determined by the rate of energy production of its core and by its radius, and is often estimated from the star's color index. The temperature is normally given in terms of an effective temperature, which is the temperature of an idealized black body that radiates its energy at the same luminosity per surface area as the star. The effective temperature is only representative of the surface, as the temperature increases toward the core. The temperature in the core region of a star is several million kelvins. The stellar temperature will determine the rate of ionization of various elements, resulting in characteristic absorption lines in the spectrum. The surface temperature of a star, along with its visual absolute magnitude and absorption features, is used to classify a star (see classification below). Massive main sequence stars can have surface temperatures of 50,000 K. Smaller stars such as the Sun have surface temperatures of a few thousand K. Red giants have relatively low surface temperatures of about 3,600 K; but they have a high luminosity due to their large exterior surface area.Radiation
The energy produced by stars, a product of nuclear fusion, radiates to space as both electromagnetic radiation and particle radiation. The particle radiation emitted by a star is manifested as the stellar wind, which streams from the outer layers as electrically charged protons and alpha particle, alpha and beta particles. A steady stream of almost massless neutrinos emanate directly from the star's core. The production of energy at the core is the reason stars shine so brightly: every time two or more atomic nuclei fuse together to form a single atomic nucleus of a new heavier element, gamma ray photons are released from the nuclear fusion product. This energy is converted to other forms of electromagnetic energy of lower frequency, such as visible light, by the time it reaches the star's outer layers. The color of a star, as determined by the most intense frequency of the visible light, depends on the temperature of the star's outer layers, including its photosphere. Besides visible light, stars emit forms of electromagnetic radiation that are invisible to the human eye. In fact, stellar electromagnetic radiation spans the entire electromagnetic spectrum, from the longest wavelengths of radio frequency, radio waves through infrared, visible light, ultraviolet, to the shortest of X-rays, and gamma rays. From the standpoint of total energy emitted by a star, not all components of stellar electromagnetic radiation are significant, but all frequencies provide insight into the star's physics. Using the stellar spectrum, astronomers can determine the surface temperature, surface gravity, metallicity and rotational velocity of a star. If the distance of the star is found, such as by measuring the parallax, then the luminosity of the star can be derived. The mass, radius, surface gravity, and rotation period can then be estimated based on stellar models. (Mass can be calculated for stars in Binary star, binary systems by measuring their orbital velocities and distances. Gravitational microlensing has been used to measure the mass of a single star.) With these parameters, astronomers can estimate the age of the star.Luminosity
The luminosity of a star is the amount of light and other forms of radiant energy it radiates per unit of time. It has units of power (physics), power. The luminosity of a star is determined by its radius and surface temperature. Many stars do not radiate uniformly across their entire surface. The rapidly rotating star Vega, for example, has a higher energy flux (power per unit area) at its poles than along its equator. Patches of the star's surface with a lower temperature and luminosity than average are known as sunspot, starspots. Small, ''dwarf'' stars such as the Sun generally have essentially featureless disks with only small starspots. ''Giant'' stars have much larger, more obvious starspots, and they exhibit strong stellar limb darkening. That is, the brightness decreases towards the edge of the stellar disk. Red dwarf flare stars such as UV Ceti may possess prominent starspot features.Magnitude
The apparent brightness of a star is expressed in terms of its apparent magnitude. It is a function of the star's luminosity, its distance from Earth, the Extinction (astronomy), extinction effect of interstellar dust and gas, and the altering of the star's light as it passes through Earth's atmosphere. Intrinsic or absolute magnitude is directly related to a star's luminosity, and is the apparent magnitude a star would be if the distance between the Earth and the star were 10 parsecs (32.6 light-years). Both the apparent and absolute magnitude scales are logarithmic units: one whole number difference in magnitude is equal to a brightness variation of about 2.5 times (the nth root, 5th root of 100 or approximately 2.512). This means that a first magnitude star (+1.00) is about 2.5 times brighter than a second magnitude star, second magnitude (+2.00) star, and about 100 times brighter than a sixth magnitude star (+6.00). The faintest stars visible to the naked eye under good seeing conditions are about magnitude +6. On both apparent and absolute magnitude scales, the smaller the magnitude number, the brighter the star; the larger the magnitude number, the fainter the star. The brightest stars, on either scale, have negative magnitude numbers. The variation in brightness (Δ''L'') between two stars is calculated by subtracting the magnitude number of the brighter star (''m''b) from the magnitude number of the fainter star (''m''f), then using the difference as an exponent for the base number 2.512; that is to say: : : Relative to both luminosity and distance from Earth, a star's absolute magnitude (''M'') and apparent magnitude (''m'') are not equivalent; for example, the bright star Sirius has an apparent magnitude of −1.44, but it has an absolute magnitude of +1.41. The Sun has an apparent magnitude of −26.7, but its absolute magnitude is only +4.83. Sirius, the brightest star in the night sky as seen from Earth, is approximately 23 times more luminous than the Sun, while Canopus, the second brightest star in the night sky with an absolute magnitude of −5.53, is approximately 14,000 times more luminous than the Sun. Despite Canopus being vastly more luminous than Sirius, the latter star appears the brighter of the two. This is because Sirius is merely 8.6 light-years from the Earth, while Canopus is much farther away at a distance of 310 light-years. The List of most luminous stars, most luminous known stars have absolute magnitudes of roughly −12, corresponding to 6 million times the luminosity of the Sun. Theoretically, the least luminous stars are at the lower limit of mass at which stars are capable of supporting nuclear fusion of hydrogen in the core; stars just above this limit have been located in the NGC 6397 cluster. The faintest red dwarfs in the cluster are absolute magnitude 15, while a 17th absolute magnitude white dwarf has been discovered.Classification
The current stellar classification system originated in the early 20th century, when stars were classified from ''A'' to ''Q'' based on the strength of the hydrogen line. It was thought that the hydrogen line strength was a simple linear function of temperature. Instead, it was more complicated: it strengthened with increasing temperature, peaked near 9000 K, and then declined at greater temperatures. The classifications were since reordered by temperature, on which the modern scheme is based. Stars are given a single-letter classification according to their spectra, ranging from type ''O'', which are very hot, to ''M'', which are so cool that molecules may form in their atmospheres. The main classifications in order of decreasing surface temperature are: ''O, B, A, F, G, K'', and ''M''. A variety of rare spectral types are given special classifications. The most common of these are types ''L'' and ''T'', which classify the coldest low-mass stars and brown dwarfs. Each letter has 10 sub-divisions, numbered from 0 to 9, in order of decreasing temperature. However, this system breaks down at extreme high temperatures as classes ''O0'' and ''O1'' may not exist. In addition, stars may be classified by the luminosity effects found in their spectral lines, which correspond to their spatial size and is determined by their surface gravity. These range from ''0'' (hypergiants) through ''III'' (giant star, giants) to ''V'' (main sequence dwarfs); some authors add ''VII'' (white dwarfs). Main sequence stars fall along a narrow, diagonal band when graphed according to their absolute magnitude and spectral type. The Sun is a main sequence ''G2V'' yellow dwarf of intermediate temperature and ordinary size. There is additional nomenclature in the form of lower-case letters added to the end of the spectral type to indicate peculiar features of the spectrum. For example, an "''e''" can indicate the presence of emission lines; "''m''" represents unusually strong levels of metals, and "''var''" can mean variations in the spectral type. White dwarf stars have their own class that begins with the letter ''D''. This is further sub-divided into the classes ''DA'', ''DB'', ''DC'', ''DO'', ''DZ'', and ''DQ'', depending on the types of prominent lines found in the spectrum. This is followed by a numerical value that indicates the temperature.Variable stars
Variable stars have periodic or random changes in luminosity because of intrinsic or extrinsic properties. Of the intrinsically variable stars, the primary types can be subdivided into three principal groups. During their stellar evolution, some stars pass through phases where they can become pulsating variables. Pulsating variable stars vary in radius and luminosity over time, expanding and contracting with periods ranging from minutes to years, depending on the size of the star. This category includes Cepheid variable, Cepheid and Cepheid-like stars, and long-period variables such as Mira variable, Mira. Eruptive variables are stars that experience sudden increases in luminosity because of flares or mass ejection events. This group includes protostars, Wolf-Rayet stars, and flare stars, as well as giant and supergiant stars. Cataclysmic or explosive variable stars are those that undergo a dramatic change in their properties. This group includes novae and supernovae. A binary star system that includes a nearby white dwarf can produce certain types of these spectacular stellar explosions, including the nova and a Type 1a supernova. The explosion is created when the white dwarf accretes hydrogen from the companion star, building up mass until the hydrogen undergoes fusion. Some novae are recurrent, having periodic outbursts of moderate amplitude. Stars can vary in luminosity because of extrinsic factors, such as eclipsing binaries, as well as rotating stars that produce extreme starspots. A notable example of an eclipsing binary is Algol, which regularly varies in magnitude from 2.1 to 3.4 over a period of 2.87 days.Structure
The interior of a stable star is in a state of hydrostatic equilibrium: the forces on any small volume almost exactly counterbalance each other. The balanced forces are inward gravitational force and an outward force due to the pressure gradient within the star. The pressure gradient is established by the temperature gradient of the plasma; the outer part of the star is cooler than the core. The temperature at the core of a main sequence or giant star is at least on the order of 107 K. The resulting temperature and pressure at the hydrogen-burning core of a main sequence star are sufficient for nuclear fusion to occur and for sufficient energy to be produced to prevent further collapse of the star. As atomic nuclei are fused in the core, they emit energy in the form of gamma rays. These photons interact with the surrounding plasma, adding to the thermal energy at the core. Stars on the main sequence convert hydrogen into helium, creating a slowly but steadily increasing proportion of helium in the core. Eventually the helium content becomes predominant, and energy production ceases at the core. Instead, for stars of more than 0.4 , fusion occurs in a slowly expanding shell around the degenerate matter, degenerate helium core. In addition to hydrostatic equilibrium, the interior of a stable star will maintain an energy balance of thermal equilibrium. There is a radial temperature gradient throughout the interior that results in a flux of energy flowing toward the exterior. The outgoing flux of energy leaving any layer within the star will exactly match the incoming flux from below. The radiation zone is the region of the stellar interior where the flux of energy outward is dependent on radiative heat transfer, since convective heat transfer is inefficient in that zone. In this region the plasma will not be perturbed, and any mass motions will die out. Where this is not the case, then the plasma becomes unstable and convection will occur, forming a convection zone. This can occur, for example, in regions where very high energy fluxes occur, such as near the core or in areas with high opacity (optics), opacity (making radiatative heat transfer inefficient) as in the outer envelope. The occurrence of convection in the outer envelope of a main sequence star depends on the star's mass. Stars with several times the mass of the Sun have a convection zone deep within the interior and a radiative zone in the outer layers. Smaller stars such as the Sun are just the opposite, with the convective zone located in the outer layers. Red dwarf stars with less than 0.4 are convective throughout, which prevents the accumulation of a helium core. For most stars the convective zones will vary over time as the star ages and the constitution of the interior is modified. The photosphere is that portion of a star that is visible to an observer. This is the layer at which the plasma of the star becomes transparent to photons of light. From here, the energy generated at the core becomes free to propagate into space. It is within the photosphere that sun spots, regions of lower than average temperature, appear. Above the level of the photosphere is the stellar atmosphere. In a main sequence star such as the Sun, the lowest level of the atmosphere, just above the photosphere, is the thin chromosphere region, where Solar spicule, spicules appear and solar flare, stellar flares begin. Above this is the transition region, where the temperature rapidly increases within a distance of only . Beyond this is the stellar corona, corona, a volume of super-heated plasma that can extend outward to several million kilometres. The existence of a corona appears to be dependent on a convective zone in the outer layers of the star. Despite its high temperature, the corona emits very little light, due to its low gas density. The corona region of the Sun is normally only visible during a solar eclipse. From the corona, a stellar wind of plasma particles expands outward from the star, until it interacts with the interstellar medium. For the Sun, the influence of its solar wind extends throughout a bubble-shaped region called the heliosphere.Nuclear fusion reaction pathways
When nuclei fuse, the mass of the fused product is less than the mass of the original parts. This lost mass is converted to electromagnetic energy, according to the mass–energy equivalence relationship . A variety of nuclear fusion reactions take place in the cores of stars, that depend upon their mass and composition. The hydrogen fusion process is temperature-sensitive, so a moderate increase in the core temperature will result in a significant increase in the fusion rate. As a result, the core temperature of main sequence stars only varies from 4 million kelvin for a small M-class star to 40 million kelvin for a massive O-class star. In the Sun, with a 16-million-kelvin core, hydrogen fuses to form helium in the proton–proton chain reaction: :4Hydrogen-1, 1H → 2deuterium, 2H + 2positron, e+ + 2neutrino, νe(2 x 0.4 Melectronvolt, eV) :2positron, e+ + 2positron, e− → 2photon, γ (2 x 1.0 MeV) :21H + 22H → 2Helium-3, 3He + 2photon, γ (2 x 5.5 MeV) :23He → Helium-4, 4He + 21H (12.9 MeV) There are a couple other paths, in which He and He combine to form Be, which eventually (with the addition of another proton) yields two He, a gain of one. All these reactions result in the overall reaction: :41H → 4He + 2γ + 2νe (26.7 MeV) where γ is a gamma ray photon, νe is a neutrino, and H and He are isotopes of hydrogen and helium, respectively. The energy released by this reaction is in millions of electron volts. Each individual reaction produces only a tiny amount of energy, but because enormous numbers of these reactions occur constantly, they produce all the energy necessary to sustain the star's radiation output. In comparison, the combustion of two hydrogen gas molecules with one oxygen gas molecule releases only 5.7 eV. In more massive stars, helium is produced in a cycle of reactions catalyst, catalyzed by carbon called the CNO cycle, carbon-nitrogen-oxygen cycle. In evolved stars with cores at 100 million kelvin and masses between 0.5 and 10 , helium can be transformed into carbon in the triple-alpha process that uses the intermediate element beryllium: :4He + 4He + 92 keV → isotopes of beryllium, 8*Be :4He + 8*Be + 67 keV → 12*C :12*C → carbon-12, 12C + γ + 7.4 MeV For an overall reaction of: :34He → 12C + γ + 7.2 MeV In massive stars, heavier elements can be burned in a contracting core through the neon-burning process and oxygen-burning process. The final stage in the stellar nucleosynthesis process is the silicon-burning process that results in the production of the stable isotope iron-56. Any further fusion would be an endothermic process that consumes energy, and so further energy can only be produced through gravitational collapse.See also
* Fusor (astronomy) * Outline of astronomy * Sidereal time * Star clocks * Star count * Stars and planetary systems in fictionReferences
External links
* * * * * {{Authority control Stars, * Stellar astronomy Concepts in astronomy Light sources