Soil, also commonly referred to as earth or dirt, is a
mixture
In chemistry, a mixture is a material made up of two or more different chemical substances which are not chemically bonded. A mixture is the physical combination of two or more substances in which the identities are retained and are mixed in the ...
of
organic matter
Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have c ...
,
minerals
In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2 ...
,
gas
Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma).
A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
es,
liquid
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
s, and
organism
In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells (cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and ...
s that together support
life
Life is a quality that distinguishes matter that has biological processes, such as signaling and self-sustaining processes, from that which does not, and is defined by the capacity for growth, reaction to stimuli, metabolism, energ ...
. Some scientific definitions distinguish ''dirt'' from ''soil'' by restricting the former term specifically to displaced soil.
Soil consists of a solid phase of minerals and organic matter (the soil matrix), as well as a porous phase that holds gases (the soil atmosphere) and
water
Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...
(the soil solution). Accordingly, soil is a three- state system of solids, liquids, and gases. Soil is a product of several factors: the influence of
climate
Climate is the long-term weather pattern in an area, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteorologic ...
,
relief
Relief is a sculptural method in which the sculpted pieces are bonded to a solid background of the same material. The term ''relief'' is from the Latin verb ''relevo'', to raise. To create a sculpture in relief is to give the impression that the ...
(elevation, orientation, and slope of terrain), organisms, and the soil's parent materials (original minerals) interacting over time. It continually undergoes development by way of numerous physical, chemical and biological processes, which include
weathering
Weathering is the deterioration of rocks, soils and minerals as well as wood and artificial materials through contact with water, atmospheric gases, and biological organisms. Weathering occurs ''in situ'' (on site, with little or no movement), ...
with associated
erosion
Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock, or dissolved material from one location on the Earth's crust, and then transports it to another location where it is deposited. Erosion is distin ...
ecosystem
An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syste ...
.
Most soils have a dry
bulk density Bulk density, also called apparent density or volumetric density, is a property of powders, granules, and other "divided" solids, especially used in reference to mineral components (soil, gravel), chemical substances, (pharmaceutical) ingredients ...
(density of soil taking into account voids when dry) between 1.1 and 1.6 g/cm3, though the soil particle density is much higher, in the range of 2.6 to 2.7 g/cm3. Little of the soil of planet Earth is older than the
Pleistocene
The Pleistocene ( , often referred to as the ''Ice age'') is the geological Epoch (geology), epoch that lasted from about 2,580,000 to 11,700 years ago, spanning the Earth's most recent period of repeated glaciations. Before a change was fina ...
and none is older than the
Cenozoic
The Cenozoic ( ; ) is Earth's current geological era, representing the last 66million years of Earth's history. It is characterised by the dominance of mammals, birds and flowering plants, a cooling and drying climate, and the current configura ...
, although fossilized soils are preserved from as far back as the
Archean
The Archean Eon ( , also spelled Archaean or Archæan) is the second of four geologic eons of Earth's history, representing the time from . The Archean was preceded by the Hadean Eon and followed by the Proterozoic.
The Earth
Earth ...
.
The pedosphere interfaces with the
lithosphere
A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust (geology), crust and the portion of the upper mantle (geology), mantle that behaves elastically on time sca ...
, the
hydrosphere
The hydrosphere () is the combined mass of water found on, under, and above the surface of a planet, minor planet, or natural satellite. Although Earth's hydrosphere has been around for about 4 billion years, it continues to change in shape. This ...
, the
atmosphere
An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
, and the biosphere. Collectively, Earth's body of soil, called the pedosphere, has four important functions:
* as a medium for plant growth
* as a means of water storage, supply and purification
* as a modifier of
Earth's atmosphere
The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
* as a habitat for organisms
All of these functions, in their turn, modify the soil and its properties.
Soil science
Soil science is the study of soil as a natural resource on the surface of the Earth including soil formation, classification and mapping; physical, chemical, biological, and fertility properties of soils; and these properties in relation to th ...
has two basic branches of study: edaphology and pedology. ''Edaphology'' studies the influence of soils on living things. ''Pedology'' focuses on the formation, description (morphology), and classification of soils in their natural environment. In engineering terms, soil is included in the broader concept of regolith, which also includes other loose material that lies above the bedrock, as can be found on the
Moon
The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
's
ecosystem
An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syste ...
. The world's ecosystems are impacted in far-reaching ways by the processes carried out in the soil, with effects ranging from
ozone depletion
Ozone depletion consists of two related events observed since the late 1970s: a steady lowering of about four percent in the total amount of ozone in Earth's atmosphere, and a much larger springtime decrease in stratospheric ozone (the ozone l ...
and
global warming
In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to E ...
water pollution
Water pollution (or aquatic pollution) is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water ...
. With respect to Earth's
carbon cycle
The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and Earth's atmosphere, atmosphere of the Earth. Carbon is the main component of biological compounds as well as ...
, soil acts as an important
carbon reservoir
The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth. Carbon is the main component of biological compounds as well as a major component ...
, and it is potentially one of the most reactive to human disturbance and climate change. As the planet warms, it has been predicted that soils will add carbon dioxide to the atmosphere due to increased
biological
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary in ...
activity at higher temperatures, a positive feedback (amplification). This prediction has, however, been questioned on consideration of more recent knowledge on soil carbon turnover.
Soil acts as an engineering medium, a habitat for
soil organisms
Soil biology is the study of microbial and faunal activity and ecology in soil.
Soil life, soil biota, soil fauna, or edaphon is a collective term that encompasses all organisms that spend a significant portion of their life cycle within a soil ...
, a recycling system for
nutrients
A nutrient is a substance used by an organism to survive, grow, and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi, and protists. Nutrients can be incorporated into cells for metabolic purposes or excret ...
and
organic waste
Biodegradable waste includes any organic matter in waste which can be broken down into carbon dioxide, water, methane or simple organic molecules by micro-organisms and other living things by composting, aerobic digestion, anaerobic digestion ...
s, a regulator of
water quality
Water quality refers to the chemical, physical, and biological characteristics of water based on the standards of its usage. It is most frequently used by reference to a set of standards against which compliance, generally achieved through tr ...
, a modifier of
atmospheric composition
Atmospheric chemistry is a branch of atmospheric science in which the chemistry of the Earth's atmosphere and that of other planets is studied. It is a multidisciplinary approach of research and draws on environmental chemistry, physics, meteorol ...
, and a medium for plant growth, making it a critically important provider of
ecosystem services
Ecosystem services are the many and varied benefits to humans provided by the natural environment and healthy ecosystems. Such ecosystems include, for example, agroecosystems, forest ecosystem, grassland ecosystems, and aquatic ecosystems. Th ...
. Since soil has a tremendous range of available niches and
habitat
In ecology, the term habitat summarises the array of resources, physical and biotic factors that are present in an area, such as to support the survival and reproduction of a particular species. A species habitat can be seen as the physical ...
s, it contains a prominent part of the Earth's
genetic diversity
Genetic diversity is the total number of genetic characteristics in the genetic makeup of a species, it ranges widely from the number of species to differences within species and can be attributed to the span of survival for a species. It is dis ...
. A gram of soil can contain billions of organisms, belonging to thousands of species, mostly microbial and largely still unexplored. Soil has a
mean
There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value (magnitude and sign) of a given data set.
For a data set, the ''arithme ...
prokaryotic density of roughly 108 organisms per gram, whereas the ocean has no more than 107 prokaryotic organisms per milliliter (gram) of seawater.
Organic carbon
Total organic carbon (TOC) is the amount of carbon found in an organic compound and is often used as a non-specific indicator of water quality or cleanliness of pharmaceutical manufacturing equipment. TOC may also refer to the amount of organic c ...
held in soil is eventually returned to the atmosphere through the process of respiration carried out by heterotrophic organisms, but a substantial part is retained in the soil in the form of soil organic matter;
tillage
Tillage is the agricultural preparation of soil by mechanical agitation of various types, such as digging, stirring, and overturning. Examples of human-powered tilling methods using hand tools include shoveling, picking, mattock work, hoein ...
usually increases the rate of
soil respiration
Soil respiration refers to the production of carbon dioxide when soil organisms respire. This includes respiration of plant roots, the rhizosphere, microbes and fauna.
Soil respiration is a key ecosystem process that releases carbon from the ...
, leading to the depletion of soil organic matter. Since plant roots need oxygen, aeration is an important characteristic of soil. This ventilation can be accomplished via networks of interconnected soil pores, which also absorb and hold rainwater making it readily available for uptake by plants. Since plants require a nearly continuous supply of water, but most regions receive sporadic rainfall, the water-holding capacity of soils is vital for plant survival.
Soils can effectively remove impurities, kill disease agents, and degrade
contaminants
Contamination is the presence of a constituent, impurity, or some other undesirable element that spoils, corrupts, infects, makes unfit, or makes inferior a material, physical body, natural environment, workplace, etc.
Types of contamination
Wi ...
, this latter property being called
natural attenuation
In physics, attenuation (in some contexts, extinction) is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at variable a ...
. Typically, soils maintain a net absorption of
oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
and
methane
Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Eart ...
and undergo a net release of
carbon dioxide
Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
and
nitrous oxide
Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or nos, is a chemical compound, an oxide of nitrogen with the formula . At room temperature, it is a colourless non-flammable gas, and has a ...
. Soils offer plants physical support, air, water, temperature moderation, nutrients, and protection from toxins. Soils provide readily available nutrients to plants and animals by converting dead organic matter into various nutrient forms.
Composition
A typical soil is about 50% solids (45% mineral and 5% organic matter), and 50% voids (or pores) of which half is occupied by water and half by gas. The percent soil mineral and organic content can be treated as a constant (in the short term), while the percent soil water and gas content is considered highly variable whereby a rise in one is simultaneously balanced by a reduction in the other. The pore space allows for the infiltration and movement of air and water, both of which are critical for life existing in soil.Compaction, a common problem with soils, reduces this space, preventing air and water from reaching plant roots and soil organisms.
Given sufficient time, an undifferentiated soil will evolve a soil profile which consists of two or more layers, referred to as soil horizons. These differ in one or more properties such as in their texture,
structure
A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
,
density
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
, porosity, consistency, temperature, color, and reactivity. The horizons differ greatly in thickness and generally lack sharp boundaries; their development is dependent on the type of parent material, the processes that modify those parent materials, and the soil-forming factors that influence those processes. The biological influences on soil properties are strongest near the surface, though the geochemical influences on soil properties increase with depth. Mature soil profiles typically include three basic master horizons: A, B, and C. The solum normally includes the A and B horizons. The living component of the soil is largely confined to the solum, and is generally more prominent in the A horizon. It has been suggested that the ''pedon'', a column of soil extending vertically from the surface to the underlying parent material and large enough to show the characteristics of all its horizons, could be subdivided in the ''humipedon'' (the living part, where most soil organisms are dwelling, corresponding to the ''humus form''), the ''copedon'' (in intermediary position, where most
weathering
Weathering is the deterioration of rocks, soils and minerals as well as wood and artificial materials through contact with water, atmospheric gases, and biological organisms. Weathering occurs ''in situ'' (on site, with little or no movement), ...
of minerals takes place) and the ''lithopedon'' (in contact with the subsoil).
The soil texture is determined by the relative proportions of the individual particles of
sand
Sand is a granular material composed of finely divided mineral particles. Sand has various compositions but is defined by its grain size. Sand grains are smaller than gravel and coarser than silt. Sand can also refer to a textural class of s ...
,
silt
Silt is granular material of a size between sand and clay and composed mostly of broken grains of quartz. Silt may occur as a soil (often mixed with sand or clay) or as sediment mixed in suspension with water. Silt usually has a floury feel when ...
, and
clay
Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolin, Al2 Si2 O5( OH)4).
Clays develop plasticity when wet, due to a molecular film of water surrounding the clay par ...
that make up the soil. The interaction of the individual mineral particles with organic matter, water, gases via biotic and abiotic processes causes those particles to
flocculate
Flocculation, in the field of chemistry, is a process by which colloidal particles come out of suspension to sediment under the form of floc or flake, either spontaneously or due to the addition of a clarifying agent. The action differs from pre ...
ped
Peds are aggregates of soil particles formed as a result of pedogenic processes; this natural organization of particles forms discrete units separated by pores or voids. The term is generally used for macroscopic (visible; i.e. greater than 1 mm i ...
s. Where these aggregates can be identified, a soil can be said to be developed, and can be described further in terms of color, porosity, consistency, reaction ( acidity), etc.
Water is a critical agent in soil development due to its involvement in the dissolution, precipitation, erosion, transport, and deposition of the materials of which a soil is composed. The mixture of water and dissolved or suspended materials that occupy the soil
pore space
Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
is called the soil solution. Since soil water is never pure water, but contains hundreds of dissolved organic and mineral substances, it may be more accurately called the soil solution. Water is central to the
dissolution
Dissolution may refer to:
Arts and entertainment Books
* ''Dissolution'' (''Forgotten Realms'' novel), a 2002 fantasy novel by Richard Lee Byers
* ''Dissolution'' (Sansom novel), a 2003 historical novel by C. J. Sansom Music
* Dissolution, in mu ...
,
precipitation
In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravitational pull from clouds. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. ...
and
leaching
Leaching is the loss or extraction of certain materials from a carrier into a liquid (usually, but not always a solvent). and may refer to:
*Leaching (agriculture), the loss of water-soluble plant nutrients from the soil; or applying a small amoun ...
of minerals from the soil profile. Finally, water affects the type of vegetation that grows in a soil, which in turn affects the development of the soil, a complex feedback which is exemplified in the dynamics of banded vegetation patterns in semi-arid regions.
Soils supply plants with
nutrient
A nutrient is a substance used by an organism to survive, grow, and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi, and protists. Nutrients can be incorporated into cells for metabolic purposes or excret ...
s, most of which are held in place by particles of
clay
Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolin, Al2 Si2 O5( OH)4).
Clays develop plasticity when wet, due to a molecular film of water surrounding the clay par ...
and organic matter (
colloid
A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend ...
s) The nutrients may be adsorbed on clay mineral surfaces, bound within clay minerals ( absorbed), or bound within organic compounds as part of the living
organisms
In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells (cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and fungi; ...
or dead soil organic matter. These bound nutrients interact with soil water to
buffer
Buffer may refer to:
Science
* Buffer gas, an inert or nonflammable gas
* Buffer solution, a solution used to prevent changes in pH
* Buffering agent, the weak acid or base in a buffer solution
* Lysis buffer, in cell biology
* Metal ion buffer
* ...
the soil solution composition (attenuate changes in the soil solution) as soils wet up or dry out, as plants take up nutrients, as salts are leached, or as acids or alkalis are added.
Plant nutrient availability is affected by
soil pH
Soil pH is a measure of the acidity or basicity (alkalinity) of a soil. Soil pH is a key characteristic that can be used to make informative analysis both qualitative and quantitatively regarding soil characteristics. pH is defined as the neg ...
, which is a measure of the
hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
ion activity in the soil solution. Soil pH is a function of many soil forming factors, and is generally lower (more acid) where weathering is more advanced.
Most plant nutrients, with the exception of
nitrogen
Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
, originate from the minerals that make up the soil parent material. Some nitrogen originates from rain as dilute
nitric acid
Nitric acid is the inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but older samples tend to be yellow cast due to decomposition into oxides of nitrogen. Most commercially available nitri ...
and
ammonia
Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous was ...
, but most of the nitrogen is available in soils as a result of
nitrogen fixation
Nitrogen fixation is a chemical process by which molecular nitrogen (), with a strong triple covalent bond, in the air is converted into ammonia () or related nitrogenous compounds, typically in soil or aquatic systems but also in industry. Atmo ...
by
bacteria
Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
. Once in the soil-plant system, most nutrients are recycled through living organisms, plant and microbial residues (soil organic matter), mineral-bound forms, and the soil solution. Both living soil organisms (microbes, animals and plant roots) and soil organic matter are of critical importance to this recycling, and thereby to
soil formation
Soil formation, also known as pedogenesis, is the process of soil genesis as regulated by the effects of place, environment, and history. Biogeochemical processes act to both create and destroy order (anisotropy) within soils. These alterations l ...
and
soil fertility
Soil fertility refers to the ability of soil to sustain agricultural plant growth, i.e. to provide plant habitat and result in sustained and consistent yields of high quality.
. Microbial
soil enzyme Soil enzymes are a group of enzymes found in soil. They are excreted by soil microbes such as fungi, bacteria and archaea, and play a key role in decomposing soil organic matter into humus, in the process releasing nutrients essential for the growt ...
s may release nutrients from minerals or organic matter for use by plants and other microorganisms, sequester (incorporate) them into living cells, or cause their loss from the soil by
volatilisation
Volatilization is the process whereby a dissolved sample is vaporised. In atomic spectroscopy this is usually a two-step process. The analyte is turned into small droplets in a nebuliser which are entrained in a gas flow which is in turn volatilis ...
(loss to the atmosphere as gases) or leaching.
Formation
Soil is said to be formed when organic matter has accumulated and colloids are washed downward, leaving deposits of clay,
humus
In classical soil science, humus is the dark organic matter in soil that is formed by the decomposition of plant and animal matter. It is a kind of soil organic matter. It is rich in nutrients and retains moisture in the soil. Humus is the Lati ...
,
iron oxide
Iron oxides are chemical compounds composed of iron and oxygen. Several iron oxides are recognized. All are black magnetic solids. Often they are non-stoichiometric. Oxyhydroxides are a related class of compounds, perhaps the best known of whic ...
,
carbonate
A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate g ...
, and
gypsum
Gypsum is a soft sulfate mineral composed of calcium sulfate dihydrate, with the chemical formula . It is widely mined and is used as a fertilizer and as the main constituent in many forms of plaster, blackboard or sidewalk chalk, and drywall. ...
, producing a distinct layer called the B horizon. This is a somewhat arbitrary definition as mixtures of sand, silt, clay and humus will support biological and agricultural activity before that time. These constituents are moved from one level to another by water and animal activity. As a result, layers (horizons) form in the soil profile. The alteration and movement of materials within a soil causes the formation of distinctive
soil horizons
A soil horizon is a layer parallel to the soil surface whose physical, chemical and biological characteristics differ from the layers above and beneath. Horizons are defined in many cases by obvious physical features, mainly colour and texture. ...
. However, more recent definitions of soil embrace soils without any organic matter, such as those regoliths that formed on Mars and analogous conditions in planet Earth deserts.
An example of the development of a soil would begin with the weathering of lava flow bedrock, which would produce the purely mineral-based parent material from which the soil texture forms. Soil development would proceed most rapidly from bare rock of recent flows in a warm climate, under heavy and frequent rainfall. Under such conditions, plants (in a first stage
nitrogen-fixing
Nitrogen fixation is a chemical process by which molecular nitrogen (), with a strong triple covalent bond, in the air is converted into ammonia () or related nitrogenous compounds, typically in soil or aquatic systems but also in industry. Atmos ...
lichen
A lichen ( , ) is a composite organism that arises from algae or cyanobacteria living among filaments of multiple fungi species in a mutualistic relationship.cyanobacteria
Cyanobacteria (), also known as Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name ''cyanobacteria'' refers to their color (), which similarly forms the basis of cyanobacteria's common name, blu ...
then
epilithic
Lithophytes are plants that grow in or on rocks. They can be classified as either epilithic (or epipetric) or endolithic; epilithic lithophytes grow on the surfaces of rocks, while endolithic lithophytes grow in the crevices of rocks (and are also ...
higher plants
Vascular plants (), also called tracheophytes () or collectively Tracheophyta (), form a large group of land plants ( accepted known species) that have lignified tissues (the xylem) for conducting water and minerals throughout the plant. They al ...
) become established very quickly on
basalt
Basalt (; ) is an aphanite, aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the planetary surface, surface of a terrestrial ...
ic lava, even though there is very little organic material. Basaltic minerals commonly weather relatively quickly, according to the Goldich dissolution series. The plants are supported by the porous rock as it is filled with nutrient-bearing water that carries minerals dissolved from the rocks. Crevasses and pockets, local topography of the rocks, would hold fine materials and harbour plant roots. The developing plant roots are associated with mineral-weathering mycorrhizal fungi that assist in breaking up the porous lava, and by these means organic matter and a finer mineral soil accumulate with time. Such initial stages of soil development have been described on volcanoes, inselbergs, and glacial moraines.
How soil formation proceeds is influenced by at least five classic factors that are intertwined in the evolution of a soil: parent material, climate, topography (relief), organisms, and time. When reordered to climate, relief, organisms, parent material, and time, they form the acronym CROPT.
Physical properties
The physical properties of soils, in order of decreasing importance for ecosystem services such as
crop production
Agriculture or farming is the practice of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people to ...
structure
A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
,
bulk density Bulk density, also called apparent density or volumetric density, is a property of powders, granules, and other "divided" solids, especially used in reference to mineral components (soil, gravel), chemical substances, (pharmaceutical) ingredients ...
,
porosity
Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
, consistency,
temperature
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer.
Thermometers are calibrated in various temperature scales that historically have relied o ...
,
colour
Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associ ...
and resistivity. Soil texture is determined by the relative proportion of the three kinds of soil mineral particles, called soil separates:
sand
Sand is a granular material composed of finely divided mineral particles. Sand has various compositions but is defined by its grain size. Sand grains are smaller than gravel and coarser than silt. Sand can also refer to a textural class of s ...
,
silt
Silt is granular material of a size between sand and clay and composed mostly of broken grains of quartz. Silt may occur as a soil (often mixed with sand or clay) or as sediment mixed in suspension with water. Silt usually has a floury feel when ...
, and
clay
Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolin, Al2 Si2 O5( OH)4).
Clays develop plasticity when wet, due to a molecular film of water surrounding the clay par ...
. At the next larger scale, soil structures called
ped
Peds are aggregates of soil particles formed as a result of pedogenic processes; this natural organization of particles forms discrete units separated by pores or voids. The term is generally used for macroscopic (visible; i.e. greater than 1 mm i ...
s or more commonly ''soil aggregates'' are created from the soil separates when
iron oxide
Iron oxides are chemical compounds composed of iron and oxygen. Several iron oxides are recognized. All are black magnetic solids. Often they are non-stoichiometric. Oxyhydroxides are a related class of compounds, perhaps the best known of whic ...
s,
carbonate
A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate g ...
s, clay,
silica
Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
and
humus
In classical soil science, humus is the dark organic matter in soil that is formed by the decomposition of plant and animal matter. It is a kind of soil organic matter. It is rich in nutrients and retains moisture in the soil. Humus is the Lati ...
, coat particles and cause them to adhere into larger, relatively
stable
A stable is a building in which livestock, especially horses, are kept. It most commonly means a building that is divided into separate stalls for individual animals and livestock. There are many different types of stables in use today; the ...
secondary structures. Soil
bulk density Bulk density, also called apparent density or volumetric density, is a property of powders, granules, and other "divided" solids, especially used in reference to mineral components (soil, gravel), chemical substances, (pharmaceutical) ingredients ...
, when determined at standardized moisture conditions, is an estimate of
soil compaction
In geotechnical engineering, soil compaction is the process in which stress applied to a soil causes densification as air is displaced from the pores between the soil grains. When stress is applied that causes densification due to water (or other ...
. Soil porosity consists of the void part of the soil volume and is occupied by gases or water. Soil consistency is the ability of soil materials to stick together. Soil temperature and colour are self-defining. Resistivity refers to the resistance to conduction of electric currents and affects the rate of corrosion of metal and concrete structures which are buried in soil. These properties vary through the depth of a soil profile, i.e. through
soil horizon
A soil horizon is a layer parallel to the soil surface whose physical, chemical and biological characteristics differ from the layers above and beneath. Horizons are defined in many cases by obvious physical features, mainly colour and texture. ...
s. Most of these properties determine the aeration of the soil and the ability of water to infiltrate and to be
held
Held may refer to:
Places
* Held Glacier
People Arts and media
* Adolph Held (1885–1969), U.S. newspaper editor, banker, labor activist
*Al Held (1928–2005), U.S. abstract expressionist painter.
*Alexander Held (born 1958), German television ...
weight
In science and engineering, the weight of an object is the force acting on the object due to gravity.
Some standard textbooks define weight as a Euclidean vector, vector quantity, the gravitational force acting on the object. Others define weigh ...
. Soil moisture levels, in order of decreasing water content, are saturation,
field capacity Field capacity is the amount of soil moisture or water content held in the soil after excess water has drained away and the rate of downward movement has decreased. This usually takes place 2–3 days after rain or irrigation in pervious soils of u ...
,
wilting point
Permanent wilting point (PWP) or wilting point (WP) is defined as the minimum amount of water in the soil that the plant requires not to wilt. If the soil water content decreases to this or any lower point a plant wilts and can no longer recover ...
, air dry, and oven dry. Field capacity describes a drained wet soil at the point water content reaches equilibrium with gravity. Irrigating soil above field capacity risks percolation losses. Wilting point describes the dry limit for growing plants.
Available water capacity Available water capacity is the amount of water that can be stored in a soil profile and be available for growing crops. It is also known as available water content (AWC), profile available water (PAW) or total available water (TAW).
The concept, p ...
is the amount of water held in a soil profile available to plants. As water content drops, plants have to work against increasing forces of
adhesion
Adhesion is the tendency of dissimilar particles or surfaces to cling to one another ( cohesion refers to the tendency of similar or identical particles/surfaces to cling to one another).
The forces that cause adhesion and cohesion can be ...
and
sorptivity
In 1957 John Philip introduced the term sorptivity and defined it as ''a measure of the capacity of the medium to absorb or desorb liquid by capillarity
Capillary action (sometimes called capillarity, capillary motion, capillary rise, capi ...
moisture stress Moisture stress is a form of abiotic stress that occurs when the moisture of plant tissues is reduced to suboptimal levels. Water stress occurs in response to atmospheric and soil water availability when the transpiration rate exceeds the rate of w ...
by replenishing depleted water before stress is induced.
Capillary action is responsible for moving
groundwater
Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidate ...
sub-irrigated planter
Sub-irrigated planter (SIP) is a generic name for a special type of planting box used in container gardening and commercial landscaping. A SIP is any method of watering plants where the water is introduced from the bottom, allowing the water to s ...
s) rely on
capillarity
Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of, or even in opposition to, any external forces li ...
to supply water to plant roots. Capillary action can result in an evaporative concentration of salts, causing land degradation through
salination
Soil salinity is the salt content in the soil; the process of increasing the salt content is known as salinization. Salts occur naturally within soils and water. Salination can be caused by natural processes such as mineral weathering or by the ...
.
Soil moisture measurement
Water content or moisture content is the quantity of water contained in a material, such as soil (called soil moisture), rock, ceramics, crops, or wood. Water content is used in a wide range of scientific and technical areas, and is expressed as ...
— measuring the water content of the soil, as can be expressed in terms of volume or weight — can be based on ''in situ'' probes (e.g.,
capacitance probe Capacitance sensors (or Dielectric sensors) use capacitance to measure the dielectric permittivity of a surrounding medium.
The configuration is like the neutron probe where an access tube made of PVC is installed in the soil; probes can also be mo ...
s,
neutron probe
A neutron probe is a device used to measure the quantity of water present in soil.
A typical neutron probe contains a pellet of americium-241 and beryllium. The alpha particles emitted by the decay of the americium collide with the light beryllium ...
s), or
remote sensing
Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring information about Earth ...
methods.
Soil gas
The atmosphere of soil, or
soil gas Soil gases (soil atmosphere) are the gases found in the air space between soil components. The spaces between the solid soil particles, if they do not contain water, are filled with air. The primary soil gases are nitrogen, carbon dioxide and oxygen ...
, is very different from the atmosphere above. The consumption of oxygen by microbes and plant roots, and their release of carbon dioxide, decreases oxygen and increases carbon dioxide concentration. Atmospheric CO2 concentration is 0.04%, but in the soil pore space it may range from 10 to 100 times that level, thus potentially contributing to the inhibition of root respiration. Calcareous soils regulate CO2 concentration by
carbonate
A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate g ...
buffering, contrary to acid soils in which all CO2 respired accumulates in the soil pore system. At extreme levels, CO2 is toxic. This suggests a possible
negative feedback
Negative feedback (or balancing feedback) occurs when some function (Mathematics), function of the output of a system, process, or mechanism is feedback, fed back in a manner that tends to reduce the fluctuations in the output, whether caused by ...
control of soil CO2 concentration through its inhibitory effects on root and microbial respiration (also called
soil respiration
Soil respiration refers to the production of carbon dioxide when soil organisms respire. This includes respiration of plant roots, the rhizosphere, microbes and fauna.
Soil respiration is a key ecosystem process that releases carbon from the ...
). In addition, the soil voids are saturated with water vapour, at least until the point of maximal
hygroscopic
Hygroscopy is the phenomenon of attracting and holding water molecules via either absorption or adsorption from the surrounding environment, which is usually at normal or room temperature. If water molecules become suspended among the substance ...
ity, beyond which a
vapour-pressure deficit
Vapour-pressure deficit, or VPD, is the difference (deficit) between the amount of moisture in the air and how much moisture the air can hold when it is saturated. Once air becomes saturated, water will condense out to form clouds, dew or films o ...
occurs in the soil pore space. Adequate porosity is necessary, not just to allow the penetration of water, but also to allow gases to diffuse in and out. Movement of gases is by
diffusion
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
from high concentrations to lower, the
diffusion coefficient
Diffusivity, mass diffusivity or diffusion coefficient is a proportionality constant between the molar flux due to molecular diffusion and the gradient in the concentration of the species (or the driving force for diffusion). Diffusivity is enco ...
decreasing with
soil compaction
In geotechnical engineering, soil compaction is the process in which stress applied to a soil causes densification as air is displaced from the pores between the soil grains. When stress is applied that causes densification due to water (or other ...
. Oxygen from above atmosphere diffuses in the soil where it is consumed and levels of carbon dioxide in excess of above atmosphere diffuse out with other gases (including greenhouse gases) as well as water.Soil texture and
structure
A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
strongly affect soil porosity and gas diffusion. It is the total pore space (
porosity
Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
) of soil, not the pore size, and the degree of pore interconnection (or conversely pore sealing), together with water content, air
turbulence
In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between ...
and temperature, that determine the rate of diffusion of gases into and out of soil.Platy soil structure and soil compaction (low porosity) impede gas flow, and a deficiency of oxygen may encourage anaerobic bacteria to reduce (strip oxygen) from nitrate NO3 to the gases N2, N2O, and NO, which are then lost to the atmosphere, thereby depleting the soil of nitrogen, a detrimental process called
denitrification
Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitr ...
. Aerated soil is also a net sink of methane (CH4) but a net producer of methane (a strong heat-absorbing
greenhouse gas
A greenhouse gas (GHG or GhG) is a gas that Absorption (electromagnetic radiation), absorbs and Emission (electromagnetic radiation), emits radiant energy within the thermal infrared range, causing the greenhouse effect. The primary greenhouse ...
) when soils are depleted of oxygen and subject to elevated temperatures.
Soil atmosphere is also the seat of emissions of
volatiles
Volatiles are the group of chemical elements and chemical compounds that can be readily vaporized. In contrast with volatiles, elements and compounds that are not readily vaporized are known as refractory substances.
On planet Earth, the term ' ...
other than carbon and nitrogen oxides from various soil organisms, e.g. roots, bacteria, fungi, animals. These volatiles are used as chemical cues, making soil atmosphere the seat of interaction networks playing a decisive role in the stability, dynamics and evolution of soil ecosystems.
Biogenic
A biogenic substance is a product made by or of life forms. While the term originally was specific to metabolite compounds that had toxic effects on other organisms, it has developed to encompass any constituents, secretions, and metabolites of p ...
soil volatile organic compounds are exchanged with the aboveground atmosphere, in which they are just 1–2 orders of magnitude lower than those from aboveground vegetation.
Humans can get some idea of the soil atmosphere through the well-known 'after-the-rain' scent, when infiltering rainwater flushes out the whole soil atmosphere after a drought period, or when soil is excavated, a bulk property attributed in a
reductionist
Reductionism is any of several related philosophical ideas regarding the associations between phenomena which can be described in terms of other simpler or more fundamental phenomena. It is also described as an intellectual and philosophical pos ...
manner to particular biochemical compounds such as
petrichor
Petrichor () is the earthy olfaction, scent produced when rain falls on dry soil. The word is constructed , the ichor, ethereal fluid that is the blood of the gods in Greek mythology.
Origins
Long before this phenomenon received its name in 19 ...
or
geosmin
Geosmin ( ) is an irregular sesquiterpenoid, produced from the universal sesquiterpene precursor farnesyl pyrophosphate (also known as farnesyl diphosphate), in a two-step -dependent reaction. Geosmin, along with the irregular monoterpene 2-met ...
.
Solid phase (soil matrix)
Soil particles can be classified by their chemical composition (
mineralogy
Mineralogy is a subject of geology specializing in the scientific study of the chemistry, crystal structure, and physical (including optical) properties of minerals and mineralized artifacts. Specific studies within mineralogy include the proces ...
) as well as their size. The particle size distribution of a soil, its texture, determines many of the properties of that soil, in particular
hydraulic conductivity
Hydraulic conductivity, symbolically represented as (unit: m/s), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fractures network. It depends on th ...
and
water potential
Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and mat ...
, but the mineralogy of those particles can strongly modify those properties. The mineralogy of the finest soil particles, clay, is especially important.
Chemistry
The chemistry of a soil determines its ability to supply available plant nutrients and affects its physical properties and the health of its living population. In addition, a soil's chemistry also determines its
corrosivity
Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engin ...
, stability, and ability to absorbpollutants and to filter water. It is the surface chemistry of mineral and organic colloids that determines soil's chemical properties. A colloid is a small, insoluble particle ranging in size from 1
nanometer
330px, Different lengths as in respect to the molecular scale.
The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American and British English spelling differences#-re ...
to 1
micrometer Micrometer can mean:
* Micrometer (device), used for accurate measurements by means of a calibrated screw
* American spelling of micrometre
The micrometre ( international spelling as used by the International Bureau of Weights and Measures; ...
, thus small enough to remain suspended by Brownian motion in a fluid medium without settling. Most soils contain organic colloidal particles called humus as well as the inorganic colloidal particles of
clays
Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolin, Al2 Si2 O5( OH)4).
Clays develop plasticity when wet, due to a molecular film of water surrounding the clay par ...
. The very high specific surface area of colloids and their net electrical charges give soil its ability to hold and release ions. Negatively charged sites on colloids attract and release cations in what is referred to as
cation exchange
Ion exchange is a reversible interchange of one kind of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid with the reaction being used especially for softening or making water demineralised, ...
milliequivalents
An equivalent (symbol: officially equiv; unofficially but often Eq) is the amount of a substance that reacts with (or is ''equivalent'' to) an arbitrary amount (typically one mole) of another substance in a given chemical reaction. It is an arc ...
of
positively charged
Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
ions per 100 grams of soil (or centimoles of positive charge per kilogram of soil; cmolc/kg). Similarly, positively charged sites on colloids can attract and release
anions
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
in the soil, giving the soil anion exchange capacity.
Cation and anion exchange
The cation exchange, that takes place between colloids and soil water, buffers (moderates) soil pH, alters soil structure, and purifies percolating water by adsorbing cations of all types, both useful and harmful.
The negative or positive charges on colloid particles make them able to hold cations or anions, respectively, to their surfaces. The charges result from four sources.
# Isomorphous substitution occurs in clay during its formation, when lower-valence cations substitute for higher-valence cations in the crystal structure. Substitutions in the outermost layers are more effective than for the innermost layers, as the
electric charge
Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
strength drops off as the square of the distance. The net result is oxygen atoms with net negative charge and the ability to attract cations.
# Edge-of-clay oxygen atoms are not in balance ionically as the tetrahedral and octahedral structures are incomplete.
#
Hydroxyl
In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy ...
s may substitute for oxygens of the silica layers, a process called
hydroxylation
In chemistry, hydroxylation can refer to:
*(i) most commonly, hydroxylation describes a chemical process that introduces a hydroxyl group () into an organic compound.
*(ii) the ''degree of hydroxylation'' refers to the number of OH groups in a ...
. When the hydrogens of the clay hydroxyls are ionised into solution, they leave the oxygen with a negative charge (anionic clays).
# Hydrogens of humus hydroxyl groups may also be ionised into solution, leaving, similarly to clay, an oxygen with a negative charge.
Cations held to the negatively charged colloids resist being washed downward by water and are out of reach of plant roots, thereby preserving the fertility of soils in areas of moderate rainfall and low temperatures.
There is a hierarchy in the process of cation exchange on colloids, as cations differ in the strength of adsorption by the colloid and hence their ability to replace one another ( ion exchange). If present in equal amounts in the soil water solution:
Al3+ replaces H+ replaces Ca2+ replaces Mg2+ replaces K+ same as replaces Na+
If one cation is added in large amounts, it may replace the others by the sheer force of its numbers. This is called law of mass action. This is largely what occurs with the addition of cationic fertilisers (
potash
Potash () includes various mined and manufactured salts that contain potassium in water-soluble form.
,
lime
Lime commonly refers to:
* Lime (fruit), a green citrus fruit
* Lime (material), inorganic materials containing calcium, usually calcium oxide or calcium hydroxide
* Lime (color), a color between yellow and green
Lime may also refer to:
Botany ...
).
As the soil solution becomes more acidic (low pH, meaning an abundance of H+), the other cations more weakly bound to colloids are pushed into solution as hydrogen ions occupy exchange sites (
protonation
In chemistry, protonation (or hydronation) is the adding of a proton (or hydron, or hydrogen cation), (H+) to an atom, molecule, or ion, forming a conjugate acid. (The complementary process, when a proton is removed from a Brønsted–Lowry acid, ...
). A low pH may cause the hydrogen of hydroxyl groups to be pulled into solution, leaving charged sites on the colloid available to be occupied by other cations. This ionisation of
hydroxy group
In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy ...
s on the surface of soil colloids creates what is described as pH-dependent surface charges. Unlike permanent charges developed by isomorphous substitution, pH-dependent charges are variable and increase with increasing pH. Freed cations can be made available to plants but are also prone to be leached from the soil, possibly making the soil less fertile. Plants are able to excrete H+ into the soil through the synthesis of
organic acid
An organic acid is an organic compound with acidic properties. The most common organic acids are the carboxylic acids, whose acidity is associated with their carboxyl group –COOH. Sulfonic acids, containing the group –SO2OH, are rel ...
s and by that means, change the pH of the soil near the root and push cations off the colloids, thus making those available to the plant.
Cation exchange capacity (CEC)
Cation exchange capacity is the soil's ability to remove cations from the soil water solution and sequester those to be exchanged later as the plant roots release hydrogen ions to the solution. CEC is the amount of exchangeable hydrogen cation (H+) that will combine with 100 grams dry weight of soil and whose measure is one milliequivalents per 100 grams of soil (1 meq/100 g). Hydrogen ions have a single charge and one-thousandth of a gram of hydrogen ions per 100 grams dry soil gives a measure of one milliequivalent of hydrogen ion. Calcium, with an atomic weight 40 times that of hydrogen and with a valence of two, converts to = 20 milliequivalents of hydrogen ion per 100 grams of dry soil or 20 meq/100 g. The modern measure of CEC is expressed as centimoles of positive charge per kilogram (cmol/kg) of oven-dry soil.
Most of the soil's CEC occurs on clay and humus colloids, and the lack of those in hot, humid, wet climates (such as
tropical rainforest
Tropical rainforests are rainforests that occur in areas of tropical rainforest climate in which there is no dry season – all months have an average precipitation of at least 60 mm – and may also be referred to as ''lowland equatori ...
s), due to leaching and decomposition, respectively, explains the apparent sterility of tropical soils. Live plant roots also have some CEC, linked to their specific surface area.
Anion exchange capacity (AEC)
Anion exchange capacity is the soil's ability to remove anions (such as
nitrate
Nitrate is a polyatomic ion
A polyatomic ion, also known as a molecular ion, is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that has a net charge that is not zer ...
,
phosphate
In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid .
The phosphate or orthophosphate ion is derived from phospho ...
) from the soil water solution and sequester those for later exchange as the plant roots release carbonate anions to the soil water solution. Those colloids which have low CEC tend to have some AEC. Amorphous and sesquioxide clays have the highest AEC, followed by the iron oxides. Levels of AEC are much lower than for CEC, because of the generally higher rate of positively (versus negatively) charged surfaces on soil colloids, to the exception of variable-charge soils. Phosphates tend to be held at anion exchange sites.
Iron and aluminum hydroxide clays are able to exchange their hydroxide anions (OH−) for other anions. The order reflecting the strength of anion adhesion is as follows:
: replaces replaces replaces Cl−
The amount of exchangeable anions is of a magnitude of tenths to a few milliequivalents per 100 g dry soil. As pH rises, there are relatively more hydroxyls, which will displace anions from the colloids and force them into solution and out of storage; hence AEC decreases with increasing pH (alkalinity).
Reactivity (pH)
Soil reactivity is expressed in terms of pH and is a measure of the
acid
In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequ ...
ity or alkalinity of the soil. More precisely, it is a measure of
hydronium
In chemistry, hydronium (hydroxonium in traditional British English) is the common name for the aqueous cation , the type of oxonium ion produced by protonation of water. It is often viewed as the positive ion present when an Arrhenius acid is d ...
concentration in an aqueous solution and ranges in values from 0 to 14 (acidic to basic) but practically speaking for soils, pH ranges from 3.5 to 9.5, as pH values beyond those extremes are toxic to life forms.
At 25 °C an aqueous solution that has a pH of 3.5 has 10−3.5
moles Moles can refer to:
*Moles de Xert, a mountain range in the Baix Maestrat comarca, Valencian Community, Spain
*The Moles (Australian band)
*The Moles, alter ego of Scottish band Simon Dupree and the Big Sound
People
*Abraham Moles, French engineer ...
H3O+ (hydronium ions) per litre of solution (and also 10−10.5 moles per litre OH−). A pH of 7, defined as neutral, has 10−7 moles of hydronium ions per litre of solution and also 10−7 moles of OH− per litre; since the two concentrations are equal, they are said to neutralise each other. A pH of 9.5 has 10−9.5 moles hydronium ions per litre of solution (and also 10−2.5 moles per litre OH−). A pH of 3.5 has one million times more hydronium ions per litre than a solution with pH of 9.5 ( or 106) and is more acidic.
The effect of pH on a soil is to remove from the soil or to make available certain ions. Soils with high acidity tend to have toxic amounts of
aluminium
Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
and
manganese
Manganese is a chemical element with the symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of industrial alloy use ...
. As a result of a trade-off between toxicity and requirement most nutrients are better available to plants at moderate pH, although most minerals are more soluble in acid soils. Soil organisms are hindered by high acidity, and most agricultural crops do best with mineral soils of pH 6.5 and organic soils of pH 5.5. Given that at low pH toxic metals (e.g. cadmium, zinc, lead) are positively charged as cations and organic pollutants are in non-ionic form, thus both made more available to organisms, it has been suggested that plants, animals and microbes commonly living in acid soils are
pre-adapted
Exaptation and the related term co-option describe a shift in the function of a trait during evolution. For example, a trait can evolve because it served one particular function, but subsequently it may come to serve another. Exaptations are common ...
to every kind of pollution, whether of natural or human origin.
In high rainfall areas, soils tend to acidify as the basic cations are forced off the soil colloids by the mass action of hydronium ions from usual or unusual rain acidity against those attached to the colloids. High rainfall rates can then wash the nutrients out, leaving the soil inhabited only by those organisms which are particularly efficient to uptake nutrients in very acid conditions, like in tropical rainforests. Once the colloids are saturated with H3O+, the addition of any more hydronium ions or aluminum hydroxyl cations drives the pH even lower (more acidic) as the soil has been left with no buffering capacity. In areas of extreme rainfall and high temperatures, the clay and humus may be washed out, further reducing the buffering capacity of the soil. In low rainfall areas, unleached calcium pushes pH to 8.5 and with the addition of exchangeable sodium, soils may reach pH 10. Beyond a pH of 9, plant growth is reduced. High pH results in low micro-nutrient mobility, but water-soluble
chelates
Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central metal atom. These ligands are ...
of those nutrients can correct the deficit. Sodium can be reduced by the addition of gypsum (calcium sulphate) as calcium adheres to clay more tightly than does sodium causing sodium to be pushed into the soil water solution where it can be washed out by an abundance of water.
Base saturation percentage
There are acid-forming cations (e.g. hydronium, aluminium, iron) and there are base-forming cations (e.g. calcium, magnesium, sodium). The fraction of the negatively-charged soil colloid exchange sites (CEC) that are occupied by base-forming cations is called
base saturation
Cation-exchange capacity (CEC) is a measure of how many cations can be retained on soil particle surfaces. Negative charges on the surfaces of soil particles bind positively-charged atoms or molecules (cations), but allow these to exchange with o ...
. If a soil has a CEC of 20 meq and 5 meq are aluminium and hydronium cations (acid-forming), the remainder of positions on the colloids () are assumed occupied by base-forming cations, so that the base saturation is (the compliment 25% is assumed acid-forming cations). Base saturation is almost in direct proportion to pH (it increases with increasing pH). It is of use in calculating the amount of lime needed to neutralise an acid soil (lime requirement). The amount of lime needed to neutralize a soil must take account of the amount of acid forming ions on the colloids (exchangeable acidity), not just those in the soil water solution (free acidity). The addition of enough lime to neutralize the soil water solution will be insufficient to change the pH, as the acid forming cations stored on the soil colloids will tend to restore the original pH condition as they are pushed off those colloids by the calcium of the added lime.
Buffering
The resistance of soil to change in pH, as a result of the addition of acid or basic material, is a measure of the buffering capacity of a soil and (for a particular soil type) increases as the CEC increases. Hence, pure sand has almost no buffering ability, though soils high in colloids (whether mineral or organic) have high
buffering capacity
A buffer solution (more precisely, pH buffer or hydrogen ion buffer) is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. Its pH changes very little when a small amount of strong acid or base is a ...
. Buffering occurs by cation exchange and neutralisation. However, colloids are not the only regulators of soil pH. The role of carbonates should be underlined, too. More generally, according to pH levels, several buffer systems take precedence over each other, from calcium carbonate
buffer range
A buffer solution (more precisely, pH buffer or hydrogen ion buffer) is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. Its pH changes very little when a small amount of strong acid or base is ...
to iron buffer range.
The addition of a small amount of highly basic aqueous ammonia to a soil will cause the
ammonium
The ammonium cation is a positively-charged polyatomic ion with the chemical formula or . It is formed by the protonation of ammonia (). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary a ...
to displace hydronium ions from the colloids, and the end product is water and colloidally fixed ammonium, but little permanent change overall in soil pH.
The addition of a small amount of
lime
Lime commonly refers to:
* Lime (fruit), a green citrus fruit
* Lime (material), inorganic materials containing calcium, usually calcium oxide or calcium hydroxide
* Lime (color), a color between yellow and green
Lime may also refer to:
Botany ...
, Ca(OH)2, will displace hydronium ions from the soil colloids, causing the fixation of calcium to colloids and the evolution of CO2 and water, with little permanent change in soil pH.
The above are examples of the buffering of soil pH. The general principal is that an increase in a particular cation in the soil water solution will cause that cation to be fixed to colloids (buffered) and a decrease in solution of that cation will cause it to be withdrawn from the colloid and moved into solution (buffered). The degree of buffering is often related to the CEC of the soil; the greater the CEC, the greater the buffering capacity of the soil.
Redox
Soil chemical reactions involve some combination of proton and electron transfer. Oxidation occurs if there is a loss of electrons in the transfer process while reduction occurs if there is a gain of electrons. Reduction potential is measured in volts or millivolts. Soil microbial communities develop along
electron transport chain
An electron transport chain (ETC) is a series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
soil-based microbial fuel cell Microbial fuel cell (MFC) is a type of bioelectrochemical fuel cell system that
generates electric current by diverting electrons produced from the microbial oxidation of reduced compounds (also known as fuel or electron donor) on the anode to oxid ...
s.
Nutrients
Seventeen elements or nutrients are essential for plant growth and reproduction. They are
carbon
Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent
In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
(C), hydrogen (H), oxygen (O), nitrogen (N),
phosphorus
Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ear ...
(P),
potassium
Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosphe ...
(K),
sulfur
Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
(S),
calcium
Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to ...
(Ca),
magnesium
Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
(Mg),
iron
Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
(Fe),
boron
Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the ''boron group'' it has th ...
(B), manganese (Mn),
copper
Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
(Cu),
zinc
Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
(Zn),
molybdenum
Molybdenum is a chemical element with the symbol Mo and atomic number 42 which is located in period 5 and group 6. The name is from Neo-Latin ''molybdaenum'', which is based on Ancient Greek ', meaning lead, since its ores were confused with lea ...
(Mo),
nickel
Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow to ...
(Ni) and
chlorine
Chlorine is a chemical element with the Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate betwee ...
(Cl). Nutrients required for plants to complete their life cycle are considered
essential nutrients
A nutrient is a substance used by an organism to survive, grow, and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi, and protists. Nutrients can be incorporated into cells for metabolic purposes or excret ...
. Nutrients that enhance the growth of plants but are not necessary to complete the plant's life cycle are considered non-essential. With the exception of carbon, hydrogen and oxygen, which are supplied by carbon dioxide and water, and nitrogen, provided through nitrogen fixation, the nutrients derive originally from the mineral component of the soil. The
Law of the Minimum
Liebig's law of the minimum, often simply called Liebig's law or the law of the minimum, is a principle developed in agricultural science by Carl Sprengel (1840) and later popularized by Justus von Liebig. It states that growth is dictated not b ...
expresses that when the available form of a nutrient is not in enough proportion in the soil solution, then other nutrients cannot be taken up at an optimum rate by a plant. A particular nutrient ratio of the soil solution is thus mandatory for optimizing plant growth, a value which might differ from nutrient ratios calculated from plant composition.
Plant uptake of nutrients can only proceed when they are present in a plant-available form. In most situations, nutrients are absorbed in an ionic form from (or together with) soil water. Although minerals are the origin of most nutrients, and the bulk of most nutrient elements in the soil is held in crystalline form within primary and secondary minerals, they weather too slowly to support rapid plant growth. For example, the application of finely ground minerals,
feldspar
Feldspars are a group of rock-forming aluminium tectosilicate minerals, also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the ''plagioclase'' (sodium-calcium) feldsp ...
and
apatite
Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of OH−, F− and Cl− ions, respectively, in the crystal. The formula of the admixture of the three most common e ...
, to soil seldom provides the necessary amounts of potassium and phosphorus at a rate sufficient for good plant growth, as most of the nutrients remain bound in the crystals of those minerals.
The nutrients adsorbed onto the surfaces of clay colloids and soil organic matter provide a more accessible reservoir of many plant nutrients (e.g. K, Ca, Mg, P, Zn). As plants absorb the nutrients from the soil water, the soluble pool is replenished from the surface-bound pool. The decomposition of soil organic matter by microorganisms is another mechanism whereby the soluble pool of nutrients is replenished – this is important for the supply of plant-available N, S, P, and B from soil.
Gram for gram, the capacity of humus to hold nutrients and water is far greater than that of clay minerals, most of the soil cation exchange capacity arising from charged carboxylic groups on organic matter. However, despite the great capacity of humus to retain water once water-soaked, its high hydrophobicity decreases its wettability. All in all, small amounts of humus may remarkably increase the soil's capacity to promote plant growth.
Soil organic matter
The organic material in soil is made up of organic compounds and includes plant, animal and microbial material, both living and dead. A typical soil has a biomass composition of 70% microorganisms, 22% macrofauna, and 8% roots. The living component of an acre of soil may include 900 lb of earthworms, 2400 lb of fungi, 1500 lb of bacteria, 133 lb of protozoa and 890 lb of arthropods and algae.
A few percent of the soil organic matter, with small
residence time
The residence time of a fluid parcel is the total time that the parcel has spent inside a control volume (e.g.: a chemical reactor, a lake, a human body). The residence time of a set of parcels is quantified in terms of the frequency distribution ...
, consists of the microbial
biomass
Biomass is plant-based material used as a fuel for heat or electricity production. It can be in the form of wood, wood residues, energy crops, agricultural residues, and waste from industry, farms, and households. Some people use the terms bi ...
and metabolites of bacteria, molds, and actinomycetes that work to break down the dead organic matter. Were it not for the action of these micro-organisms, the entire carbon dioxide part of the atmosphere would be sequestered as organic matter in the soil. However, in the same time soil microbes contribute to
carbon sequestration
Carbon sequestration is the process of storing carbon in a carbon pool. Carbon dioxide () is naturally captured from the atmosphere through biological, chemical, and physical processes. These changes can be accelerated through changes in land ...
in the topsoil through the formation of stable humus. In the aim to sequester more carbon in the soil for alleviating the
greenhouse effect
The greenhouse effect is a process that occurs when energy from a planet's host star goes through the planet's atmosphere and heats the planet's surface, but greenhouse gases in the atmosphere prevent some of the heat from returning directly ...
it would be more efficient in the long-term to stimulate
humification
In classical soil science, humus is the dark organic matter in soil that is formed by the decomposition of plant and animal matter. It is a kind of soil organic matter. It is rich in nutrients and retains moisture in the soil. Humus is the Latin ...
than to decrease litter
decomposition
Decomposition or rot is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is e ...
.
The main part of soil organic matter is a complex assemblage of small organic molecules, collectively called humus or humic substances. The use of these terms, which do not rely on a clear chemical classification, has been considered as obsolete. Other studies showed that the classical notion of molecule is not convenient for humus, which escaped most attempts done over two centuries to resolve it in unit components, but still is chemically distinct from polysaccharides, lignins and proteins.
Most living things in soils, including plants, animals, bacteria, and fungi, are dependent on organic matter for nutrients and/or energy. Soils have organic compounds in varying degrees of decomposition which rate is dependent on temperature, soil moisture, and aeration. Bacteria and fungi feed on the raw organic matter, which are fed upon by
protozoa
Protozoa (singular: protozoan or protozoon; alternative plural: protozoans) are a group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic tissues and debris. Histo ...
arthropod
Arthropods (, (gen. ποδός)) are invertebrate animals with an exoskeleton, a Segmentation (biology), segmented body, and paired jointed appendages. Arthropods form the phylum Arthropoda. They are distinguished by their jointed limbs and Arth ...
s, themselves able to consume and transform raw or humified organic matter. This has been called the
soil food web
The soil food web is the community of organisms living all or part of their lives in the soil. It describes a complex living system in the soil and how it interacts with the environment, plants, and animals.
Food webs describe the transfer of en ...
, through which all organic matter is processed as in a
digestive system
The human digestive system consists of the gastrointestinal tract plus the accessory organs of digestion (the tongue, salivary glands, pancreas, liver, and gallbladder). Digestion involves the breakdown of food into smaller and smaller compone ...
. Organic matter holds soils open, allowing the infiltration of air and water, and may hold as much as twice its weight in water. Many soils, including desert and rocky-gravel soils, have little or no organic matter. Soils that are all organic matter, such as
peat
Peat (), also known as turf (), is an accumulation of partially decayed vegetation or organic matter. It is unique to natural areas called peatlands, bogs, mires, moors, or muskegs. The peatland ecosystem covers and is the most efficien ...
(
histosols
In both the World Reference Base for Soil Resources (WRB) and the USDA soil taxonomy, a Histosol is a soil consisting primarily of organic materials. They are defined as having or more of organic soil material in the upper . Organic soil materia ...
), are infertile. In its earliest stage of decomposition, the original organic material is often called raw organic matter. The final stage of decomposition is called humus.
In
grassland
A grassland is an area where the vegetation is dominated by grasses (Poaceae). However, sedge (Cyperaceae) and rush (Juncaceae) can also be found along with variable proportions of legumes, like clover, and other herbs. Grasslands occur natur ...
, much of the organic matter added to the soil is from the deep, fibrous, grass root systems. By contrast, tree leaves falling on the forest floor are the principal source of soil organic matter in the forest. Another difference is the frequent occurrence in the grasslands of fires that destroy large amounts of aboveground material but stimulate even greater contributions from roots. Also, the much greater acidity under any forests inhibits the action of certain soil organisms that otherwise would mix much of the surface litter into the mineral soil. As a result, the soils under grasslands generally develop a thicker
A horizon
A soil horizon is a layer parallel to the soil surface whose physical, chemical and biological characteristics differ from the layers above and beneath. Horizons are defined in many cases by obvious physical features, mainly colour and texture. ...
with a deeper distribution of organic matter than in comparable soils under forests, which characteristically store most of their organic matter in the forest floor (
O horizon
A soil horizon is a layer parallel to the soil surface whose physical, chemical and biological characteristics differ from the layers above and beneath. Horizons are defined in many cases by obvious physical features, mainly colour and texture. ...
) and thin A horizon.
Humus
Humus refers to organic matter that has been decomposed by soil microflora and fauna to the point where it is resistant to further breakdown. Humus usually constitutes only five percent of the soil or less by volume, but it is an essential source of nutrients and adds important textural qualities crucial to soil health and plant growth. Humus also feeds arthropods,
termites
Termites are small insects that live in colonies and have distinct castes (eusocial) and feed on wood or other dead plant matter. Termites comprise the infraorder Isoptera, or alternatively the epifamily Termitoidae, within the order Blattode ...
and
earthworms
An earthworm is a terrestrial invertebrate that belongs to the phylum Annelida. They exhibit a tube-within-a-tube body plan; they are externally segmented with corresponding internal segmentation; and they usually have setae on all segments. Th ...
which further improve the soil. The end product, humus, is suspended in colloidal form in the soil solution and forms a
weak acid
Acid strength is the tendency of an acid, symbolised by the chemical formula HA, to dissociate into a hydron (chemistry), proton, H+, and an anion, A-. The Dissociation (chemistry), dissociation of a strong acid in solution is effectively comple ...
that can attack silicate minerals by chelating their iron and aluminum atoms. Humus has a high cation and anion exchange capacity that on a dry weight basis is many times greater than that of clay colloids. It also acts as a buffer, like clay, against changes in pH and soil moisture.
Humic acid Humic substances (HS) are organic compounds that are important components of humus, the major organic fraction of soil, peat, and coal (and also a constituent of many upland streams, dystrophic lakes, and ocean water). For a long era in the 19th ...
s and
fulvic acid Humic substances (HS) are organic compounds that are important components of humus, the major organic fraction of soil, peat, and coal (and also a constituent of many upland streams, dystrophic lakes, and ocean water). For a long era in the 19th an ...
s, which begin as raw organic matter, are important constituents of humus. After the death of plants, animals, and microbes, microbes begin to feed on the residues through their production of extra-cellular soil enzymes, resulting finally in the formation of humus. As the residues break down, only molecules made of
aliphatic
In organic chemistry, hydrocarbons ( compounds composed solely of carbon and hydrogen) are divided into two classes: aromatic compounds and aliphatic compounds (; G. ''aleiphar'', fat, oil). Aliphatic compounds can be saturated, like hexane, or ...
and
aromatic
In chemistry, aromaticity is a chemical property of cyclic ( ring-shaped), ''typically'' planar (flat) molecular structures with pi bonds in resonance (those containing delocalized electrons) that gives increased stability compared to satur ...
hydrocarbons, assembled and stabilized by oxygen and hydrogen bonds, remain in the form of complex molecular assemblages collectively called humus. Humus is never pure in the soil, because it reacts with metals and clays to form complexes which further contribute to its stability and to soil structure. Although the structure of humus has in itself few nutrients (with the exception of constitutive metals such as calcium, iron and aluminum) it is able to attract and link, by weak bonds, cation and anion nutrients that can further be released into the soil solution in response to selective root uptake and changes in soil pH, a process of paramount importance for the maintenance of fertility in tropical soils.
Lignin
Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidity ...
is resistant to breakdown and accumulates within the soil. It also reacts with
proteins
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
, which further increases its resistance to decomposition, including enzymatic decomposition by microbes.
Fat
In nutrition science, nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such chemical compound, compounds, most commonly those that occur in living beings or in food.
The term often refers spec ...
s and
wax
Waxes are a diverse class of organic compounds that are lipophilic, malleable solids near ambient temperatures. They include higher alkanes and lipids, typically with melting points above about 40 °C (104 °F), melting to give low ...
es from plant matter have still more resistance to decomposition and persist in soils for thousand years, hence their use as tracers of past vegetation in buried soil layers. Clay soils often have higher organic contents that persist longer than soils without clay as the organic molecules adhere to and are stabilised by the clay. Proteins normally decompose readily, to the exception of
scleroproteins
In molecular biology, fibrous proteins or scleroproteins are one of the three main classifications of protein structure (alongside globular and membrane proteins). Fibrous proteins are made up of elongated or fibrous polypeptide chains which fo ...
, but when bound to clay particles they become more resistant to decomposition. As for other proteins clay particles absorb the enzymes exuded by microbes, decreasing enzyme activity while protecting
extracellular enzymes
Extracellular enzymes or exoenzymes are synthesized inside the cell and then secreted outside the cell, where their function is to break down complex macromolecules into smaller units to be taken up by the cell for growth and assimilation. These ...
from degradation. The addition of organic matter to clay soils can render that organic matter and any added nutrients inaccessible to plants and microbes for many years. A study showed increased soil fertility following the addition of mature compost to a clay soil. High soil
tannin
Tannins (or tannoids) are a class of astringent, polyphenolic biomolecules that bind to and precipitate proteins and various other organic compounds including amino acids and alkaloids.
The term ''tannin'' (from Anglo-Norman ''tanner'', ...
content can cause nitrogen to be sequestered as resistant tannin-protein complexes.
Humus formation is a process dependent on the amount of plant material added each year and the type of base soil. Both are affected by climate and the type of organisms present. Soils with humus can vary in nitrogen content but typically have 3 to 6 percent nitrogen. Raw organic matter, as a reserve of nitrogen and phosphorus, is a vital component affecting
soil fertility
Soil fertility refers to the ability of soil to sustain agricultural plant growth, i.e. to provide plant habitat and result in sustained and consistent yields of high quality.
. Humus also absorbs water, and expands and shrinks between dry and wet states to a higher extent than clay, increasing soil porosity. Humus is less stable than the soil's mineral constituents, as it is reduced by microbial decomposition, and over time its concentration diminishes without the addition of new organic matter. However, humus in its most stable forms may persist over centuries if not millennia.
Charcoal
Charcoal is a lightweight black carbon residue produced by strongly heating wood (or other animal and plant materials) in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, cal ...
is a source of highly stable humus, called black carbon, which had been used traditionally to improve the fertility of nutrient-poor tropical soils. This very ancient practice, as ascertained in the genesis of Amazonian dark earths, has been renewed and became popular under the name of biochar. It has been suggested that biochar could be used to sequester more carbon in the fight against the greenhouse effect.
Climatological influence
The production, accumulation and degradation of organic matter are greatly dependent on climate. For example, when a thawing event occurs, the flux of soil gases with atmospheric gases is significantly influenced. Temperature, soil moisture and
topography
Topography is the study of the forms and features of land surfaces. The topography of an area may refer to the land forms and features themselves, or a description or depiction in maps.
Topography is a field of geoscience and planetary sci ...
are the major factors affecting the accumulation of organic matter in soils. Organic matter tends to accumulate under wet or cold conditions where
decomposer
Decomposers are organisms that break down dead or decaying organisms; they carry out decomposition, a process possible by only certain kingdoms, such as fungi. Like herbivores and predators, decomposers are heterotrophic, meaning that they use o ...
activity is impeded by low temperature or excess moisture which results in anaerobic conditions. Conversely, excessive rain and high temperatures of tropical climates enables rapid decomposition of organic matter and leaching of plant nutrients. Forest ecosystems on these soils rely on efficient recycling of nutrients and plant matter by the living plant and microbial biomass to maintain their productivity, a process which is disturbed by human activities. Excessive slope, in particular in the presence of cultivation for the sake of agriculture, may encourage the erosion of the top layer of soil which holds most of the raw organic material that would otherwise eventually become humus.
Plant residue
Cellulose
Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell wall ...
and hemicellulose undergo fast decomposition by fungi and bacteria, with a half-life of 12–18 days in a temperate climate.Brown rot fungi can decompose the cellulose and hemicellulose, leaving the lignin and
phenolic compounds
In organic chemistry, phenols, sometimes called phenolics, are a class of chemical compounds consisting of one or more hydroxyl groups (— O H) bonded directly to an aromatic hydrocarbon group. The simplest is phenol, . Phenolic compounds are c ...
behind.
Starch
Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage. Worldwide, it is the most common carbohydrate in human diets ...
, which is an
energy storage
Energy storage is the capture of energy produced at one time for use at a later time to reduce imbalances between energy demand and energy production.
A device that stores energy is generally called an accumulator or battery.
Energy comes in ...
system for plants, undergoes fast decomposition by bacteria and fungi. Lignin consists of
polymers
A polymer (; Greek '' poly-'', "many" + ''-mer'', "part")
is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic an ...
composed of 500 to 600 units with a highly branched, amorphous structure, linked to cellulose, hemicellulose and
pectin
Pectin ( grc, πηκτικός ': "congealed" and "curdled") is a heteropolysaccharide, a structural acid contained in the primary lamella, in the middle lamella, and in the cell walls of terrestrial plants. The principal, chemical component of ...
in plant cell walls. Lignin undergoes very slow decomposition, mainly by white rot fungi and actinomycetes; its half-life under temperate conditions is about six months.
Horizons
A horizontal layer of the soil, whose physical features, composition and age are distinct from those above and beneath, is referred to as a soil horizon. The naming of a horizon is based on the type of material of which it is composed. Those materials reflect the duration of specific processes of soil formation. They are labelled using a shorthand notation of letters and numbers which describe the horizon in terms of its colour, size, texture, structure, consistency, root quantity, pH, voids, boundary characteristics and presence of nodules or concretions. No soil profile has all the major horizons. Some, called
entisols
Entisols are soils defined in USDA soil taxonomy that do not show any profile development other than an A horizon. An entisol has no diagnostic horizons, and most are basically unaltered from their parent material, which can be unconsolidated sedi ...
, may have only one horizon or are currently considered as having no horizon, in particular incipient soils from unreclaimed mining waste deposits,
moraines
A moraine is any accumulation of unconsolidated debris (regolith and rock), sometimes referred to as glacial till, that occurs in both currently and formerly glaciated regions, and that has been previously carried along by a glacier or ice shee ...
,
volcanic cones
Volcanic cones are among the simplest volcanic landforms. They are built by ejecta from a volcanic vent, piling up around the vent in the shape of a cone with a central crater. Volcanic cones are of different types, depending upon the nature and ...
sand dunes
A dune is a landform composed of wind- or water-driven sand. It typically takes the form of a mound, ridge, or hill. An area with dunes is called a dune system or a dune complex. A large dune complex is called a dune field, while broad, fl ...
or
alluvial terrace
Fluvial terraces are elongated terraces that flank the sides of floodplains and fluvial valleys all over the world. They consist of a relatively level strip of land, called a "tread", separated from either an adjacent floodplain, other fluvial te ...
s. Upper soil horizons may be lacking in truncated soils following wind or water ablation, with concomitant downslope burying of soil horizons, a natural process aggravated by agricultural practices such as tillage. The growth of trees is another source of disturbance, creating a micro-scale heterogeneity which is still visible in soil horizons once trees have died. By passing from a horizon to another, from the top to the bottom of the soil profile, one goes back in time, with past events registered in soil horizons like in
sediment
Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand an ...
layers. Sampling
pollen
Pollen is a powdery substance produced by seed plants. It consists of pollen grains (highly reduced microgametophytes), which produce male gametes (sperm cells). Pollen grains have a hard coat made of sporopollenin that protects the gametophyt ...
,
testate amoebae
Testate amoebae (formerly thecamoebians, Testacea or Thecamoeba) are a polyphyletic group of unicellular amoeboid protists, which differ from naked amoebae in the presence of a test that partially encloses the cell, with an aperture from which the ...
and plant remains in soil horizons may help to reveal environmental changes (e.g. climate change,
land use
Land use involves the management and modification of natural environment or wilderness into built environment such as settlements and semi-natural habitats such as arable fields, pastures, and managed woods. Land use by humans has a long h ...
change) which occurred in the course of soil formation. Soil horizons can be dated by several methods such as
radiocarbon
Carbon-14, C-14, or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic materials is the basis of the radiocarbon dating method pioneered by Willard Libby and coll ...
, using pieces of charcoal provided they are of enough size to escape pedoturbation by earthworm activity and other mechanical disturbances. Fossil soil horizons from paleosols can be found within sedimentary rock sequences, allowing the study of past environments.
The exposure of parent material to favourable conditions produces mineral soils that are marginally suitable for plant growth, as is the case in eroded soils. The growth of vegetation results in the production of organic residues which fall on the ground as litter for plant aerial parts (leaf litter) or are directly produced belowground for subterranean plant organs (root litter), and then release dissolved organic matter. The remaining surficial organic layer, called the forest floor, O horizon, produces a more active soil due to the effect of the organisms that live within it. Organisms colonise and break down organic materials, making available nutrients upon which other plants and animals can live. After sufficient time, humus moves downward and is deposited in a distinctive organic-mineral surface layer called the A horizon, in which organic matter is mixed with mineral matter through the activity of burrowing animals, a process called pedoturbation. This natural process does not go to completion in the presence of conditions detrimental to soil life such as strong acidity, cold climate or pollution, stemming in the accumulation of undecomposed organic matter within a single organic horizon overlying the mineral soil and in the juxtaposition of humified organic matter and mineral particles, without intimate mixing, in the underlying mineral horizons.
Classification
One of the first soil classification systems was developed by Russian scientist Vasily Dokuchaev around 1880. It was modified a number of times by American and European researchers and was developed into the system commonly used until the 1960s. It was based on the idea that soils have a particular morphology based on the materials and factors that form them. In the 1960s, a different classification system began to emerge which focused on soil morphology instead of parental materials and soil-forming factors. Since then, it has undergone further modifications. The World Reference Base for Soil Resources aims to establish an international reference base for soil classification.
Uses
Soil is used in agriculture, where it serves as the anchor and primary nutrient base for plants. The types of soil and available moisture determine the species of plants that can be cultivated. Agricultural soil science was the primeval domain of soil knowledge, long time before the advent of pedology in the 19th century. However, as demonstrated by aeroponics, aquaponics and hydroponics, soil material is not an absolute essential for agriculture, and soilless cropping systems have been claimed as the future of agriculture for an endless growing mankind.
Soil material is also a critical component in mining, construction and landscape development industries. Soil serves as a foundation for most construction projects. The movement of massive volumes of soil can be involved in surface mining, road building and dam construction. Earth sheltering is the architectural practice of using soil for external thermal mass against building walls. Many building materials are soil based. Loss of soil through urbanization is growing at a high rate in many areas and can be critical for the maintenance of subsistence agriculture.
Soil resources are critical to the environment, as well as to food and fibre production, producing 98.8% of food consumed by humans. Soil provides minerals and water to plants according to several processes involved in plant nutrition. Soil absorbs rainwater and releases it later, thus preventing floods and drought, flood regulation being one of the major ecosystem services provided by soil. Soil cleans water as it percolates through it. Soil is the habitat for many organisms: the major part of known and unknown biodiversity is in the soil, in the form of earthworms, woodlice, millipedes, centipedes, snails, slugs, mites, springtails, Enchytraeidae, enchytraeids, nematodes, protists), bacteria, archaea, fungi and algae; and most organisms living above ground have part of them (plants) or spend part of their Biological life cycle, life cycle (insects) below-ground. Above-ground and below-ground biodiversities are tightly interconnected, making soil protection of paramount importance for any Environmental restoration, restoration or Nature conservation, conservation plan.
The biological component of soil is an extremely important carbon sink since about 57% of the biotic content is carbon. Even in deserts, cyanobacteria,
lichen
A lichen ( , ) is a composite organism that arises from algae or cyanobacteria living among filaments of multiple fungi species in a mutualistic relationship.
Soils filter and purify water and affect its chemistry. Rain water and pooled water from ponds, lakes and rivers percolate through the soil horizons and the upper Stratum, rock strata, thus becoming
groundwater
Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidate ...
. Pest (organism), Pests (viruses) and pollutants, such as persistent organic pollutants (chlorinated pesticides, polychlorinated biphenyls), oils (hydrocarbons), heavy metals (lead, zinc, cadmium), and excess nutrients (nitrates, sulfates, phosphates) are filtered out by the soil. Soil organisms metabolise them or immobilise them in their biomass and necromass, thereby incorporating them into stable humus. The physical integrity of soil is also a prerequisite for avoiding landslides in rugged landscapes.
Degradation
Land degradation is a human-induced or natural process which impairs the capacity of land (economics), land to function. Soil degradation involves Soil acidification, acidification, soil contamination, contamination, desertification,
erosion
Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock, or dissolved material from one location on the Earth's crust, and then transports it to another location where it is deposited. Erosion is distin ...
or Soil salinity, salination.
Acidification
Soil acidification is beneficial in the case of alkaline soils, but it degrades land when it lowers crop productivity, soil biological activity and increases soil vulnerability to contamination and erosion. Soils are initially acid and remain such when their parent materials are low in basic cations (calcium, magnesium, potassium and sodium). On parent materials richer in mineral weathering, weatherable minerals acidification occurs when basic cations are Leaching (pedology), leached from the soil profile by rainfall or exported by the harvesting of forest or agricultural crops. Soil acidification is accelerated by the use of acid-forming nitrogenous fertilizers and by the effects of acid precipitation. Deforestation is another cause of soil acidification, mediated by increased leaching of soil nutrients in the absence of tree canopies.
Contamination
Soil contamination at low levels is often within a soil's capacity to treat and assimilate waste material. Soil biota can treat waste by transforming it, mainly through microbial Enzyme, enzymatic activity. Soil organic matter and soil minerals can adsorb the waste material and decrease its toxicity, although when in colloidal form they may transport the adsorbed contaminants to subsurface environments. Many waste treatment processes rely on this natural bioremediation capacity. Exceeding treatment capacity can damage soil biota and limit soil function. Derelict soils occur where industrial contamination or other development activity damages the soil to such a degree that the land cannot be used safely or productively. Environmental remediation, Remediation of derelict soil uses principles of geology, physics, chemistry and biology to degrade, attenuate, isolate or remove soil contaminants to restore soil functions and values. Techniques include Leaching (chemistry), leaching, air sparging, soil conditioners, phytoremediation, bioremediation and In situ bioremediation, Monitored Natural Attenuation. An example of diffuse pollution with contaminants is copper accumulation in vineyards and orchards to which fungicides are repeatedly applied, even in organic farming.
Microfibres from synthetic textiles are another type of plastic soil contamination, 100% of agricultural soil samples from southwestern China contained plastic particles, 92% of which were microfibres. Sources of microfibres likely included string or twine, as well as irrigation water in which clothes had been washed.
The application of biosolids from sewage sludge and compost can introduce microplastics to soils. This adds to the burden of microplastics from other sources (e.g. the atmosphere). Approximately half the sewage sludge in Europe and North America is applied to agricultural land. In Europe it has been estimated that for every million inhabitants 113 to 770 tonnes of microplastics are added to agricultural soils each year.
Desertification
Desertification, an environmental process of ecosystem degradation in arid and semi-arid regions, is often caused by badly adapted human activities such as overgrazing or excess harvesting of firewood. It is a common misconception that drought causes desertification. Droughts are common in arid and semiarid lands. Well-managed lands can recover from drought when the rains return. Soil management tools include maintaining soil nutrient and organic matter levels, reduced tillage and increased cover. These practices help to control erosion and maintain productivity during periods when moisture is available. Continued land abuse during droughts, however, increases land degradation. Increased population and livestock pressure on marginal lands accelerates desertification. It is now questioned whether present-day climate warming will favour or disfavour desertification, with contradictory reports about predicted rainfall trends associated with increased temperature, and strong discrepancies among regions, even in the same country.
Erosion
Erosion of soil is caused by Water erosion#Rainfall, water, Water erosion#Wind erosion, wind, Water erosion#Glaciers, ice, and Water erosion#Mass movement, movement in response to gravity. More than one kind of erosion can occur simultaneously. Erosion is distinguished from
weathering
Weathering is the deterioration of rocks, soils and minerals as well as wood and artificial materials through contact with water, atmospheric gases, and biological organisms. Weathering occurs ''in situ'' (on site, with little or no movement), ...
, since erosion also transports eroded soil away from its place of origin (soil in transit may be described as
sediment
Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand an ...
). Erosion is an intrinsic natural process, but in many places it is greatly increased by human activity, especially unsuitable land use practices. These include agriculture, agricultural activities which leave the soil bare during times of heavy rain or strong winds, overgrazing, deforestation, and improper construction activity. Improved management can limit erosion. Soil conservation#Erosion prevention, Soil conservation techniques which are employed include changes of land use (such as replacing erosion-prone crops with grass or other soil-binding plants), changes to the timing or type of agricultural operations, Terrace (agriculture), terrace building, use of erosion-suppressing cover materials (including Cover crop#Water management, cover crops and other plants), limiting disturbance during construction, and avoiding construction during erosion-prone periods and in erosion-prone places such as steep slopes. Historically, one of the best examples of large-scale soil erosion due to unsuitable land-use practices is wind erosion (the so-called Dust Bowl, dust bowl) which ruined American and Canadian prairies during the 1930s, when immigrant farmers, encouraged by the federal government of both countries, settled and converted the original shortgrass prairie to agricultural crops and cattle ranching.
A serious and long-running water erosion problem occurs in China, on the middle reaches of the Yellow River and the upper reaches of the Yangtze River. From the Yellow River, over 1.6 billion tons of sediment flow each year into the ocean. The sediment originates primarily from water erosion (gully erosion) in the Loess Plateau region of northwest China.
Soil piping is a particular form of soil erosion that occurs below the soil surface. It causes levee and dam failure, as well as Sinkhole, sink hole formation. Turbulent flow removes soil starting at the mouth of the Seep (hydrology), seep flow and the subsoil erosion advances up-gradient. The term sand boil is used to describe the appearance of the discharging end of an active soil pipe.
Salination
Soil salination is the accumulation of free salts to such an extent that it leads to degradation of the agricultural value of soils and vegetation. Consequences include corrosion damage, reduced plant growth, erosion due to loss of plant cover and soil structure, and
water quality
Water quality refers to the chemical, physical, and biological characteristics of water based on the standards of its usage. It is most frequently used by reference to a set of standards against which compliance, generally achieved through tr ...
problems due to sedimentation. Salination occurs due to a combination of natural and human-caused processes. Arid conditions favour salt accumulation. This is especially apparent when soil parent material is saline. Surface irrigation, Irrigation of arid lands is especially problematic. All irrigation water has some level of salinity. Irrigation, especially when it involves leakage from canals and overirrigation in the field, often raises the underlying water table. Rapid salination occurs when the land surface is within the capillary fringe of saline groundwater. Soil salinity control involves watertable control and leaching model, flushing with higher levels of applied water in combination with tile drainage or another form of Drainage system (agriculture), subsurface drainage.
Reclamation
Soils which contain high levels of particular clays with high swelling properties, such as smectites, are often very fertile. For example, the smectite-rich Paddy field, paddy soils of Thailand's Central Thailand, Central Plains are among the most productive in the world. However, the overuse of mineral nitrogen fertilizers and pesticides in Irrigation, irrigated intensive Rice production in Thailand, rice production has endangered these soils, forcing farmers to implement integrated farming, integrated practices based on Cost Reduction Operating Principles.
Many farmers in tropical areas, however, struggle to retain organic matter and clay in the soils they work. In recent years, for example, productivity has declined and soil erosion has increased in the low-clay soils of northern Thailand, following the abandonment of shifting cultivation for a more permanent land use. Farmers initially responded by adding organic matter and clay from Mound-building termites, termite mound material, but this was Sustainability, unsustainable in the long-term because of rarefaction of termite mounds. Scientists experimented with adding bentonite, one of the smectite family of clays, to the soil. In field trials, conducted by scientists from the International Water Management Institute (IWMI) in cooperation with Khon Kaen University and local farmers, this had the effect of helping retain water and nutrients. Supplementing the farmer's usual practice with a single application of 200 kg bentonite per Rai (unit), rai (6.26 rai = 1 hectare) resulted in an average yield increase of 73%. Other studies showed that applying bentonite to degraded sandy soils reduced the risk of crop failure during drought years.
In 2008, three years after the initial trials, IWMI scientists conducted a survey among 250 farmers in northeast Thailand, half of whom had applied bentonite to their fields. The average improvement for those using the clay addition was 18% higher than for non-clay users. Using the clay had enabled some farmers to switch to growing vegetables, which need more fertile soil. This helped to increase their income. The researchers estimated that 200 farmers in northeast Thailand and 400 in Cambodia had adopted the use of clays, and that a further 20,000 farmers were introduced to the new technique.
If the soil is too high in clay or salts (e.g. saline sodic soil), adding gypsum, washed river sand and organic matter (e.g.municipal solid waste) will balance the composition.
Adding organic matter, like ramial chipped wood or compost, to soil which is depleted in nutrients and too high in sand will boost its quality and improve production.
Special mention must be made of the use of charcoal, and more generally biochar to improve nutrient-poor tropical soils, a process based on the higher fertility of anthropogenic Pre-Columbian era, pre-Columbian Amazonian Dark earth, Dark Earths, also called Terra Preta de Índio, due to interesting physical and chemical properties of soil black carbon as a source of stable humus. However, the uncontrolled application of Charring, charred waste products of all kinds may endanger soil life and human health.
History of studies and research
The history of the study of soil is intimately tied to humans' urgent need to provide food for themselves and forage for their animals. Throughout history, civilizations have prospered or declined as a function of the availability and productivity of their soils.
Studies of soil fertility
The Greek historian Xenophon (450–355 Before the Common Era, BCE) is credited with being the first to expound upon the merits of green-manuring crops: 'But then whatever weeds are upon the ground, being turned into earth, enrich the soil as much as dung.'
Columella's ''Of husbandry'', circa 60 Common Era, CE, advocated the use of lime and that clover and alfalfa (green manure) should be turned under, and was used by 15 generations (450 years) under the Roman Empire until its collapse. From the fall of Rome to the French Revolution, knowledge of soil and agriculture was passed on from parent to child and as a result, crop yields were low. During the European Middle Ages, Ibn al-'Awwam, Yahya Ibn al-'Awwam's handbook, with its emphasis on irrigation, guided the people of North Africa, Spain and the Middle East; a translation of this work was finally carried to the southwest of the United States when under Spanish influence. Olivier de Serres, considered the father of French agronomy, was the first to suggest the abandonment of fallowing and its replacement by hay meadows within crop rotations. He also highlighted the importance of soil (the French terroir) in the management of vineyards. His famous book contributed to the rise of modern, sustainable agriculture and to the collapse of old agricultural practices such as soil amendment for crops by the lifting of forest litter and assarting, which ruined the soils of western Europe during the Middle Ages and even later on according to regions.
Experiments into what made plants grow first led to the idea that the ash left behind when plant matter was burned was the essential element but overlooked the role of nitrogen, which is not left on the ground after combustion, a belief which prevailed until the 19th century. In about 1635, the Flemish chemist Jan Baptist van Helmont thought he had proved water to be the essential element from his famous five years' experiment with a willow tree grown with only the addition of rainwater. His conclusion came from the fact that the increase in the plant's weight had apparently been produced only by the addition of water, with no reduction in the soil's weight. John Woodward (naturalist), John Woodward ( 1728) experimented with various types of water ranging from clean to muddy and found muddy water the best, and so he concluded that earthy matter was the essential element. Others concluded it was humus in the soil that passed some essence to the growing plant. Still others held that the vital growth principal was something passed from dead plants or animals to the new plants. At the start of the 18th century, Jethro Tull (agriculturist), Jethro Tull demonstrated that it was beneficial to cultivate (stir) the soil, but his opinion that the stirring made the fine parts of soil available for plant absorption was erroneous.
As chemistry developed, it was applied to the investigation of soil fertility. The French chemist Antoine Lavoisier showed in about 1778 that plants and animals must Combustion, combust oxygen internally to live. He was able to deduce that most of the weight of van Helmont's willow tree derived from air. It was the French agriculturalist Jean-Baptiste Boussingault who by means of experimentation obtained evidence showing that the main sources of carbon, hydrogen and oxygen for plants were air and water, while nitrogen was taken from soil. Justus von Liebig in his book ''Organic chemistry in its applications to agriculture and physiology'' (published 1840), asserted that the chemicals in plants must have come from the soil and air and that to maintain soil fertility, the used minerals must be replaced. Liebig nevertheless believed the nitrogen was supplied from the air. The enrichment of soil with guano by the Incas was rediscovered in 1802, by Alexander von Humboldt. This led to its mining and that of Chilean nitrate and to its application to soil in the United States and Europe after 1840.
The work of Liebig was a revolution for agriculture, and so other investigators started experimentation based on it. In England John Bennet Lawes and Joseph Henry Gilbert worked in the Rothamsted Research, Rothamsted Experimental Station, founded by the former, and that plants took nitrogen from the soil, and that salts needed to be in an available state to be absorbed by plants. Their investigations also produced the superphosphate, consisting in the acid treatment of phosphate rock. This led to the invention and use of salts of potassium (K) and nitrogen (N) as fertilizers. Ammonia generated by the production of coke (fuel), coke was recovered and used as fertiliser. Finally, the chemical basis of nutrients delivered to the soil in manure was understood and in the mid-19th century chemical fertilisers were applied. However, the dynamic interaction of soil and its life forms was still not understood.
In 1856, J. Thomas Way discovered that ammonia contained in fertilisers was transformed into nitrates, and twenty years later Robert Warington proved that this transformation was done by living organisms. In 1890 Sergei Winogradsky announced he had found the bacteria responsible for this transformation.
It was known that certain legumes could take up nitrogen from the air and fix it to the soil but it took the development of bacteriology towards the end of the 19th century to lead to an understanding of the role played in nitrogen fixation by bacteria. The symbiosis of bacteria and leguminous roots, and the fixation of nitrogen by the bacteria, were simultaneously discovered by the German agronomist Hermann Hellriegel and the Dutch microbiologist Martinus Beijerinck.
Crop rotation, mechanisation, chemical and natural fertilisers led to a doubling of wheat yields in western Europe between 1800 and 1900.
Studies of soil formation
The scientists who studied the soil in connection with agricultural practices had considered it mainly as a static substrate. However, soil is the result of evolution from more ancient geological materials, under the action of biotic and abiotic processes. After studies of the improvement of the soil commenced, other researchers began to study soil genesis and as a result also soil types and classifications.
In 1860, while in Mississippi, Eugene W. Hilgard (1833–1916) studied the relationship between rock material, climate, vegetation, and the type of soils that were developed. He realised that the soils were dynamic, and considered the classification of soil types. Unfortunately, his work was not continued. At about the same time, Friedrich Albert Fallou was describing soil profiles and relating soil characteristics to their formation as part of his professional work evaluating forest and farm land for the principality of Saxony. His 1857 book, (First principles of soil science) established modern soil science. Contemporary with Fallou's work, and driven by the same need to accurately assess land for equitable taxation, Vasily Dokuchaev led a team of soil scientists in Russia who conducted an extensive survey of soils, observing that similar basic rocks, climate and vegetation types lead to similar soil layering and types, and established the concepts for soil classifications. Due to language barriers, the work of this team was not communicated to western Europe until 1914 through a publication in German by Konstantin Glinka, a member of the Russian team.
Curtis F. Marbut, influenced by the work of the Russian team, translated Glinka's publication into English, and, as he was placed in charge of the U.S. National Cooperative Soil Survey, applied it to a national soil classification system.
See also
References
Sources
Bibliography
*
*
*
**
**
**
**
**
Further reading
Soil-Net.com A free schools-age educational site teaching about soil and its importance.
* Adams, J.A. 1986. ''Dirt''. College Station, Texas: Texas A&M University Press
* Certini, G., Scalenghe, R. 2006. Soils: Basic concepts and future challenges. Cambridge Univ Press, Cambridge.
* David R. Montgomery, ''Dirt: The Erosion of Civilizations'',
* Faulkner, Edward H. 1943. Plowman's Folly. New York, Grosset & Dunlap.
LandIS Free Soilscapes Viewer Free interactive viewer for the Soils of England and Wales
* Jenny, Hans. 1941 Factors of Soil Formation: A System of Quantitative Pedology * Logan, W.B. 1995. Dirt: The ecstatic skin of the earth.
* Mann, Charles C. September 2008. " Our good earth" ''National Geographic Magazine''
* Photographs of sand boils.
* Soil Survey Division Staff. 1999. ''Soil survey manual''. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.
* Soil Survey Staff. 1975. ''Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys.'' USDA-SCS Agric. Handb. 436. United States Government Printing Office, Washington, DC.
Soils (Matching suitable forage species to soil type) Oregon State University
*
* Janick, Jules. 2002 Purdue University
LandIS Soils Data for England and Wales a pay source for GIS data on the soils of England and Wales and soils data source; they charge a handling fee to researchers.
External links
{{Authority control
Soil,
Land management
Horticulture
Granularity of materials
Natural materials
Natural resources