HOME

TheInfoList



OR:

The sine-Gordon equation is a nonlinear hyperbolic
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be sol ...
in 1 + 1 dimensions involving the
d'Alembert operator In special relativity, electromagnetism and wave theory, the d'Alembert operator (denoted by a box: \Box), also called the d'Alembertian, wave operator, box operator or sometimes quabla operator (''cf''. nabla symbol) is the Laplace operator of ...
and the
sine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is oppo ...
of the unknown function. It was originally introduced by in the course of study of surfaces of constant negative curvature as the Gauss–Codazzi equation for surfaces of curvature −1 in 3-space, and rediscovered by in their study of crystal dislocations known as the
Frenkel–Kontorova model The Frenkel–Kontorova model, also known as the FK model, is a fundamental model of low-dimensional nonlinear physics. The generalized FK model describes a chain of classical particles with nearest neighbor interactions and subjected to a periodic ...
. This equation attracted a lot of attention in the 1970s due to the presence of
soliton In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium ...
solutions.


Origin of the equation and its name

There are two equivalent forms of the sine-Gordon equation. In the (
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
) ''space-time coordinates'', denoted (''x'', ''t''), the equation reads: : \varphi_ - \varphi_ + \sin\varphi = 0, where partial derivatives are denoted by subscripts. Passing to the
light-cone coordinates In physics, particularly special relativity, light-cone coordinates, introduced by Paul Dirac and also known as Dirac coordinates, are a special coordinate system where two coordinate axes combine both space and time, while all the others are spati ...
(''u'', ''v''), akin to ''asymptotic coordinates'' where : u = \frac, \quad v = \frac, the equation takes the form : \varphi_ = \sin\varphi. This is the original form of the sine-Gordon equation, as it was considered in the 19th century in the course of investigation of
surfaces A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. Surface or surfaces may also refer to: Mathematics *Surface (mathematics), a generalization of a plane which needs not be flat *Surf ...
of constant
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. The Gaussian radius of curvature is the reciprocal of . F ...
''K'' = −1, also called
pseudospherical surface In geometry, a pseudosphere is a surface with constant negative Gaussian curvature. A pseudosphere of radius is a surface in \mathbb^3 having curvature in each point. Its name comes from the analogy with the sphere of radius , which is a surface ...
s. Choose a coordinate system for such a surface in which the coordinate mesh ''u'' = constant, ''v'' = constant is given by the asymptotic lines parameterized with respect to the arc length. The
first fundamental form In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of . It permits the calculation of curvature and me ...
of the surface in these coordinates has a special form : ds^2 = du^2 + 2\cos\varphi \,du\,dv + dv^2, where \varphi expresses the angle between the asymptotic lines, and for the
second fundamental form In differential geometry, the second fundamental form (or shape tensor) is a quadratic form on the tangent plane of a smooth surface in the three-dimensional Euclidean space, usually denoted by \mathrm (read "two"). Together with the first fundamen ...
, ''L'' = ''N'' = 0. Then the Codazzi–Mainardi equation expressing a compatibility condition between the first and second fundamental forms results in the sine-Gordon equation. The study of this equation and of the associated transformations of pseudospherical surfaces in the 19th century by
Bianchi Bianchi may refer to: Places *Bianchi, Calabria, a ''comune'' in the Province of Cosenza, Italy Manufacturing *Bianchi Bicycles (F.I.V. Edoardo Bianchi S.p.A.), an Italian manufacturer of bicycles, and former manufacturer of motorcycles and a ...
and Bäcklund led to the discovery of Bäcklund transformations. Another transformation of pseudospherical surfaces is the Lie transform introduced by
Sophus Lie Marius Sophus Lie ( ; ; 17 December 1842 – 18 February 1899) was a Norwegian mathematician. He largely created the theory of continuous symmetry and applied it to the study of geometry and differential equations. Life and career Marius Sophu ...
in 1879, which corresponds to
Lorentz boost In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation i ...
s in terms of light-cone coordinates, thus the sine-Gordon equation is
Lorentz-invariant In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same ...
. The name "sine-Gordon equation" is a pun on the well-known
Klein–Gordon equation The Klein–Gordon equation (Klein–Fock–Gordon equation or sometimes Klein–Gordon–Fock equation) is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. ...
in physics: : \varphi_ - \varphi_ + \varphi = 0. The sine-Gordon equation is the
Euler–Lagrange equation In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered ...
of the field whose
Lagrangian density Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
is given by : \mathcal_\text(\varphi) = \frac (\varphi_t^2 - \varphi_x^2) - 1 + \cos\varphi. Using the Taylor series expansion of the cosine in the Lagrangian, : \cos(\varphi) = \sum_^\infty \frac, it can be rewritten as the Klein–Gordon Lagrangian plus higher-order terms: : \begin \mathcal_\text(\varphi) &= \frac (\varphi_t^2 - \varphi_x^2) - \frac + \sum_^\infty \frac \\ &= \mathcal_\text(\varphi) + \sum_^\infty \frac. \end


Soliton solutions

An interesting feature of the sine-Gordon equation is the existence of
soliton In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium ...
and multisoliton solutions.


1-soliton solutions

The sine-Gordon equation has the following 1-
soliton In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium ...
solutions: : \varphi_\text(x, t) := 4 \arctan \left(e^\right), where : \gamma^2 = \frac, and the slightly more general form of the equation is assumed: : \varphi_ - \varphi_ + m^2 \sin\varphi = 0. The 1-soliton solution for which we have chosen the positive root for \gamma is called a ''kink'' and represents a twist in the variable \varphi which takes the system from one solution \varphi = 0 to an adjacent with \varphi = 2\pi. The states \varphi = 0 \pmod are known as vacuum states, as they are constant solutions of zero energy. The 1-soliton solution in which we take the negative root for \gamma is called an ''antikink''. The form of the 1-soliton solutions can be obtained through application of a
Bäcklund transform In mathematics, Bäcklund transforms or Bäcklund transformations (named after the Swedish mathematician Albert Victor Bäcklund) relate partial differential equations and their solutions. They are an important tool in soliton theory and integrable ...
to the trivial (constant vacuum) solution and the integration of the resulting first-order differentials: : \varphi'_u = \varphi_u + 2\beta \sin\frac, : \varphi'_v = -\varphi_v + \frac \sin\frac \text \varphi = \varphi_0 = 0 for all time. The 1-soliton solutions can be visualized with the use of the elastic ribbon sine-Gordon model introduced by Julio Rubinstein in 1970. Here we take a clockwise (
left-handed In human biology, handedness is an individual's preferential use of one hand, known as the dominant hand, due to it being stronger, faster or more dextrous. The other hand, comparatively often the weaker, less dextrous or simply less subjecti ...
) twist of the elastic ribbon to be a kink with topological charge \theta_\text = -1. The alternative counterclockwise (
right-handed In human biology, handedness is an individual's preferential use of one hand, known as the dominant hand, due to it being stronger, faster or more dextrous. The other hand, comparatively often the weaker, less dextrous or simply less subjecti ...
) twist with topological charge \theta_\text = +1 will be an antikink.


2-soliton solutions

Multi-
soliton In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium ...
solutions can be obtained through continued application of the
Bäcklund transform In mathematics, Bäcklund transforms or Bäcklund transformations (named after the Swedish mathematician Albert Victor Bäcklund) relate partial differential equations and their solutions. They are an important tool in soliton theory and integrable ...
to the 1-soliton solution, as prescribed by a Bianchi lattice relating the transformed results. The 2-soliton solutions of the sine-Gordon equation show some of the characteristic features of the solitons. The traveling sine-Gordon kinks and/or antikinks pass through each other as if perfectly permeable, and the only observed effect is a
phase shift In physics and mathematics, the phase of a periodic function F of some real variable t (such as time) is an angle-like quantity representing the fraction of the cycle covered up to t. It is denoted \phi(t) and expressed in such a scale that it v ...
. Since the colliding solitons recover their
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity is a ...
and
shape A shape or figure is a graphics, graphical representation of an object or its external boundary, outline, or external Surface (mathematics), surface, as opposed to other properties such as color, Surface texture, texture, or material type. A pl ...
, such kind of
interaction Interaction is action that occurs between two or more objects, with broad use in philosophy and the sciences. It may refer to: Science * Interaction hypothesis, a theory of second language acquisition * Interaction (statistics) * Interactions o ...
is called an
elastic collision In physics, an elastic collision is an encounter ( collision) between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into ...
. Another interesting 2-soliton solutions arise from the possibility of coupled kink-antikink behaviour known as a '' breather''. There are known three types of breathers: ''standing breather'', ''traveling large-amplitude breather'', and ''traveling small-amplitude breather''.Miroshnichenko A. E., Vasiliev A. A., Dmitriev S. V.
Solitons and Soliton Collisions
'.


3-soliton solutions

3-soliton collisions between a traveling kink and a standing breather or a traveling antikink and a standing breather results in a phase shift of the standing breather. In the process of collision between a moving kink and a standing breather, the shift of the breather \Delta_\text is given by : \Delta_\text =\frac, where v_\text is the velocity of the kink, and \omega is the breather's frequency. If the old position of the standing breather is x_0, after the collision the new position will be x_0 + \Delta_\text.


FDTD (1D) video simulation of a soliton with forces

The following video shows a simulation of two parking solitons. Both send out a pressure–speed field with different polarity. Because the end of the 1D space is not terminated symmetrically, waves are reflected. Lines in the video: # cos() part of the soliton. # sin() part of the soliton. # Angle acceleration of the soliton. # Pressure component of the field with different polarity. # Speed component of the field, direction-dependent. Steps: # # Solitons send the ''p''–''v'' field, which reaches the peer. # Solitons begin to move. # They meet in the middle and annihilate. # Mass is spread as wave.


Related equations

The is given by : \varphi_ - \varphi_ = \sinh\varphi. This is the
Euler–Lagrange equation In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered ...
of the
Lagrangian Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
: \mathcal = \frac (\varphi_t^2 - \varphi_x^2) - \cosh\varphi. Another closely related equation is the elliptic sine-Gordon equation, given by : \varphi_ + \varphi_ = \sin\varphi, where \varphi is now a function of the variables ''x'' and ''y''. This is no longer a soliton equation, but it has many similar properties, as it is related to the sine-Gordon equation by the
analytic continuation In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new ...
(or
Wick rotation In physics, Wick rotation, named after Italian physicist Gian Carlo Wick, is a method of finding a solution to a mathematical problem in Minkowski space from a solution to a related problem in Euclidean space by means of a transformation that sub ...
) ''y'' = i''t''. The elliptic sinh-Gordon equation may be defined in a similar way. Another similar equation comes from the Euler–Lagrange equation for
Liouville field theory In physics, Liouville field theory (or simply Liouville theory) is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation. Liouville theory is defined for all complex values of the ...
\varphi_ - \varphi_ = 2e^. A generalization is given by
Toda field theory In mathematics and physics, specifically the study of field theory and partial differential equations, a Toda field theory, named after Morikazu Toda, is specified by a choice of Kac–Moody algebra and a specific Lagrangian. Fixing the Kac– ...
.


Quantum version

In
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
the sine-Gordon model contains a parameter that can be identified with the
Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
. The particle spectrum consists of a soliton, an anti-soliton and a finite (possibly zero) number of breathers. The number of the breathers depends on the value of the parameter. Multiparticle productions cancels on mass shell. Semi-classical quantization of the sine-Gordon model was done by
Ludwig Faddeev Ludvig Dmitrievich Faddeev (also ''Ludwig Dmitriyevich''; russian: Лю́двиг Дми́триевич Фадде́ев; 23 March 1934 – 26 February 2017) was a Soviet and Russian mathematical physicist. He is known for the discovery of the ...
and
Vladimir Korepin Vladimir E. Korepin (born 1951) is a professor at the C. N. Yang Institute of Theoretical Physics of the Stony Brook University. Korepin made research contributions in several areas of mathematics and physics. Educational background Korepin c ...
. The exact quantum
scattering matrix In physics, the ''S''-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT). More forma ...
was discovered by
Alexander Zamolodchikov Alexander Borisovich Zamolodchikov (russian: Алекса́ндр Бори́сович Замоло́дчиков; born September 18, 1952) is a Russian physicist, known for his contributions to condensed matter physics, two-dimensional conformal ...
. This model is S-dual to the
Thirring model The Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions. Definition The Thirring model is given by the Lagrangian density : \mathcal= \overline(i\partial\!\!\!/ ...
.


Infinite volume and on a half line

One can also consider the sine-Gordon model on a circle, on a line segment, or on a half line. It is possible to find boundary conditions which preserve the integrability of the model. On a half line the spectrum contains ''boundary bound states'' in addition to the solitons and breathers.


Supersymmetric sine-Gordon model

A supersymmetric extension of the sine-Gordon model also exists. Integrability preserving boundary conditions for this extension can be found as well.


See also

*
Josephson effect In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. It is an example of a macroscopic quantum phenomenon, where the effects of quantum mech ...
*
Fluxon In physics, a fluxon is a quantum of electromagnetic flux. The term may have any of several related meanings. Superconductivity In the context of superconductivity, in type II superconductors fluxons (also known as Abrikosov vortices) can form ...
*
Shape waves Shape waves are excitations propagating along Josephson vortices or fluxons. In the case of two-dimensional Josephson junctions (thick long Josephson junctions with an extra dimension) described by the 2D sine-Gordon equation, shape waves are d ...


References


External links


sine-Gordon equation
at EqWorld: The World of Mathematical Equations.
Sinh-Gordon Equation
at EqWorld: The World of Mathematical Equations.
sine-Gordon equation
at NEQwiki, the nonlinear equations encyclopedia. {{DEFAULTSORT:Sine-Gordon Equation Solitons Differential geometry Surfaces Exactly solvable models Equations of physics Mathematical physics Articles containing video clips