HOME
*





Klein–Gordon Equation
The Klein–Gordon equation (Klein–Fock–Gordon equation or sometimes Klein–Gordon–Fock equation) is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy–momentum relation E^2 = (pc)^2 + \left(m_0c^2\right)^2\,. Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. Its theoretical relevance is similar to that of the Dirac equation. Electromagnetic interactions can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles like the pions are unstable and also experience the strong interaction (with unknown interaction term in the Hamiltonian,) the practical utility is limited. The equation can be put into the form of a Schrödinger equation. In this form it is expressed as two coupled differential equations, each of first order in time. The so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relativistic Wave Equation
In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as or (Greek psi), are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT. The equations themselves are called "wave equations" or "field equations", because they have the mathematical form of a wave equation or are generated from a Lagrangian density and the field-theoretic Euler–Lagrange equations (see classical field theory for background). In the Schrödinger picture, the wave function or field is the solution to the Schrödinger equation; i\hbar\frac\psi = \hat \psi one of the postulates of quantum mechanics. All relativistic wave equations can be cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Four-vector
In special relativity, a four-vector (or 4-vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the (,) representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts (a change by a constant velocity to another inertial reference frame). Four-vectors describe, for instance, position in spacetime modeled as Minkowski space, a particle's four-momentum , the amplitude of the electromagnetic four-potential at a point in spacetime, and the elements of the subspace spanned by the gamma matrices inside the Dirac algebra. The Lorentz group may be represented by 4×4 matrices . The action of a Lorentz transformation o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


On Shell And Off Shell
In physics, particularly in quantum field theory, configurations of a physical system that satisfy classical equations of motion are called "on the mass shell" or simply more often on shell; while those that do not are called "off the mass shell", or off shell. In quantum field theory, virtual particles are termed off shell because they do not satisfy the energy–momentum relation; real exchange particles do satisfy this relation and are termed on shell (mass shell). In classical mechanics for instance, in the action formulation, extremal solutions to the variational principle are on shell and the Euler–Lagrange equations give the on-shell equations. Noether's theorem regarding differentiable symmetries of physical action and conservation laws is another on-shell theorem. Mass shell Mass shell is a synonym for mass hyperboloid, meaning the hyperboloid in energy–momentum space describing the solutions to the equation: :E^2 - , \vec \,, ^2 c^2 = m_0^2 c^4, the mass–en ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orthogonal Functions
In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form. When the function space has an interval (mathematics), interval as the domain of a function, domain, the bilinear form may be the integral of the product of functions over the interval: : \langle f,g\rangle = \int \overlineg(x)\,dx . The functions f and g are bilinear form#Reflexivity and orthogonality, orthogonal when this integral is zero, i.e. \langle f, \, g \rangle = 0 whenever f \neq g. As with a basis (linear algebra), basis of vectors in a finite-dimensional space, orthogonal functions can form an infinite basis for a function space. Conceptually, the above integral is the equivalent of a vector dot-product; two vectors are mutually independent (orthogonal) if their dot-product is zero. Suppose \ is a sequence of orthogonal functions of nonzero L2-norm, ''L''2-norms \left\, f_n \right\, _2 = \sqrt = \left(\int f_n ^2 \ dx \right) ^\frac . It follows th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Screened Poisson Equation
In physics, the screened Poisson equation is a Poisson equation, which arises in (for example) the Klein–Gordon equation, electric field screening in plasmas, and nonlocal granular fluidity in granular flow. Statement of the equation The equation is : \left \Delta - \lambda^2 \rightu(\mathbf) = - f(\mathbf), where \Delta is the Laplace operator, ''λ'' is a constant that expresses the "screening", ''f'' is an arbitrary function of position (known as the "source function") and ''u'' is the function to be determined. In the homogeneous case (''f''=0), the screened Poisson equation is the same as the time-independent Klein–Gordon equation. In the inhomogeneous case, the screened Poisson equation is very similar to the inhomogeneous Helmholtz equation, the only difference being the sign within the brackets. Electrostatics In electric-field screening, screened Poisson equation for the electric potential \phi(\mathbf r) is usually written as (SI units) : \left \Delta - k_0^ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Natural Units
In physics, natural units are physical units of measurement in which only universal physical constants are used as defining constants, such that each of these constants acts as a Coherence (units of measurement), coherent unit of a quantity. For example, the elementary charge may be used as a natural unit of electric charge, and the speed of light may be used as a natural unit of speed. A purely natural system of units has all of its units defined such that each of these can be expressed as a product of powers of defining physical constants. Through nondimensionalization, physical quantities may then redefined so that the defining constants can be omitted from mathematical expressions of physical laws, and while this has the apparent advantage of simplicity, it may entail a loss of clarity due to the loss of information for dimensional analysis. It precludes the interpretation of an expression in terms of constants, such as and , unless it is ''known'' which units (in dimensionf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Planck Constant
The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivalence, the relationship between mass and frequency. Specifically, a photon's energy is equal to its frequency multiplied by the Planck constant. The constant is generally denoted by h. The reduced Planck constant, or Dirac constant, equal to the constant divided by 2 \pi, is denoted by \hbar. In metrology it is used, together with other constants, to define the kilogram, the SI unit of mass. The SI units are defined in such a way that, when the Planck constant is expressed in SI units, it has the exact value The constant was first postulated by Max Planck in 1900 as part of a solution to the ultraviolet catastrophe. At the end of the 19th century, accurate measurements of the spectrum of black body radiation existed, but the distribut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Speed Of Light
The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit for the speed at which conventional matter or energy (and thus any signal carrying information) can travel through space. All forms of electromagnetic radiation, including visible light, travel at the speed of light. For many practical purposes, light and other electromagnetic waves will appear to propagate instantaneously, but for long distances and very sensitive measurements, their finite speed has noticeable effects. Starlight viewed on Earth left the stars many years ago, allowing humans to study the history of the universe by viewing distant objects. When communicating with distant space probes, it can take minutes to hours for signals to travel from Earth to the spacecraft and vice versa. In computing, the speed of light fixes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Laplace Operator
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the nabla operator), or \Delta. In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian of a function at a point measures by how much the average value of over small spheres or balls centered at deviates from . The Laplace operator is named after the French mathematician Pierre-Simon de Laplace (1749–1827), who first applied the operator to the study of celestial mechanics: the Laplacian of the gravitational potential due to a given mass density distribution is a constant multiple of that densi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wave Operator
In special relativity, electromagnetism and wave theory, the d'Alembert operator (denoted by a box: \Box), also called the d'Alembertian, wave operator, box operator or sometimes quabla operator (''cf''. nabla symbol) is the Laplace operator of Minkowski space. The operator is named after French mathematician and physicist Jean le Rond d'Alembert. In Minkowski space, in standard coordinates , it has the form : \begin \Box & = \partial^\mu \partial_\mu = \eta^ \partial_\nu \partial_\mu = \frac \frac - \frac - \frac - \frac \\ & = \frac - \nabla^2 = \frac - \Delta ~~. \end Here \nabla^2 := \Delta is the 3-dimensional Laplacian and is the inverse Minkowski metric with :\eta_ = 1, \eta_ = \eta_ = \eta_ = -1, \eta_ = 0 for \mu \neq \nu. Note that the and summation indices range from 0 to 3: see Einstein notation. We have assumed units such that the speed of light = 1. (Some authors alternatively use the negative metric signature of , with \eta_ = -1,\; \eta_ = \eta_ = \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metric Signature
In mathematics, the signature of a metric tensor ''g'' (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix of the metric tensor with respect to a basis. In relativistic physics, the ''v'' represents the time or virtual dimension, and the ''p'' for the space and physical dimension. Alternatively, it can be defined as the dimensions of a maximal positive and null subspace. By Sylvester's law of inertia these numbers do not depend on the choice of basis. The signature thus classifies the metric up to a choice of basis. The signature is often denoted by a pair of integers implying ''r''= 0, or as an explicit list of signs of eigenvalues such as or for the signatures and , respectively. The signature is said to be indefinite or mixed if both ''v'' and ''p'' are nonzero, and degenerate if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Special Relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws of physics are invariant (that is, identical) in all inertial frames of reference (that is, frames of reference with no acceleration). # The speed of light in vacuum is the same for all observers, regardless of the motion of the light source or the observer. Origins and significance Special relativity was originally proposed by Albert Einstein in a paper published on 26 September 1905 titled "On the Electrodynamics of Moving Bodies".Albert Einstein (1905)''Zur Elektrodynamik bewegter Körper'', ''Annalen der Physik'' 17: 891; English translatioOn the Electrodynamics of Moving Bodiesby George Barker Jeffery and Wilfrid Perrett (1923); Another English translation On the Electrodynamics of Moving Bodies by Megh Nad Saha (1920). The incompa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]