Rotational Loss
   HOME

TheInfoList



OR:

Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional object has an infinite number of possible central axes and rotational directions. If the rotation axis passes internally through the body's own
center of mass In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may ...
, then the body is said to be ''autorotating'' or ''
spinning Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally b ...
'', and the surface intersection of the axis can be called a '' pole''. A rotation around a completely external axis, e.g. the planet Earth around the Sun, is called ''revolving'' or '' orbiting'', typically when it is produced by gravity, and the ends of the rotation axis can be called the '' orbital poles''.


Mathematics

Mathematically Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a rotation is a rigid body movement which, unlike a translation, keeps a point fixed. This definition applies to rotations within both two and three dimensions (in a plane and in space, respectively.) All rigid body movements are rotations, translations, or combinations of the two. A rotation is simply a progressive radial orientation to a common point. That common point lies within the axis of that motion. The axis is 90 degrees perpendicular to the plane of the motion. If a rotation around a point or axis is followed by a second rotation around the same point/axis, a third rotation results. The reverse (
inverse Inverse or invert may refer to: Science and mathematics * Inverse (logic), a type of conditional sentence which is an immediate inference made from another conditional sentence * Additive inverse (negation), the inverse of a number that, when ad ...
) of a rotation is also a rotation. Thus, the rotations around a point/axis form a group. However, a rotation around a point or axis and a rotation around a different point/axis may result in something other than a rotation, e.g. a translation. Rotations around the ''x'', ''y'' and ''z'' axes are called ''principal rotations''. Rotation around any axis can be performed by taking a rotation around the ''x'' axis, followed by a rotation around the ''y'' axis, and followed by a rotation around the ''z'' axis. That is to say, any spatial rotation can be decomposed into a combination of principal rotations. In flight dynamics, the principal rotations are known as ''yaw'', ''pitch'', and ''roll'' (known as Tait–Bryan angles). This terminology is also used in computer graphics.


Astronomy

In astronomy, rotation is a commonly observed phenomenon.
Star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s, planets and similar bodies all spin around on their axes. The rotation rate of planets in the solar system was first measured by tracking visual features.
Stellar rotation Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface. The rotation of a star produces an equatorial bulge ...
is measured through
Doppler shift The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who d ...
or by tracking active surface features. This rotation induces a centrifugal acceleration in the reference frame of the Earth which slightly counteracts the effect of
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
the closer one is to the
equator The equator is a circle of latitude, about in circumference, that divides Earth into the Northern and Southern hemispheres. It is an imaginary line located at 0 degrees latitude, halfway between the North and South poles. The term can als ...
. Earth's gravity combines both mass effects such that an object weighs slightly less at the equator than at the poles. Another is that over time the Earth is slightly deformed into an
oblate spheroid A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circ ...
; a similar equatorial bulge develops for other planets. Another consequence of the rotation of a planet is the phenomenon of precession. Like a
gyroscope A gyroscope (from Ancient Greek γῦρος ''gŷros'', "round" and σκοπέω ''skopéō'', "to look") is a device used for measuring or maintaining orientation and angular velocity. It is a spinning wheel or disc in which the axis of rota ...
, the overall effect is a slight "wobble" in the movement of the axis of a planet. Currently the tilt of the Earth's axis to its orbital plane ( obliquity of the ecliptic) is 23.44 degrees, but this angle changes slowly (over thousands of years). (See also Precession of the equinoxes and Pole star.)


Revolution

While revolution is often used as a synonym for rotation, in many fields, particularly astronomy and related fields, revolution, often referred to as orbital revolution for clarity, is used when one body moves around another while rotation is used to mean the movement around an axis. Moons revolve around their planet, planets revolve about their star (such as the Earth around the Sun); and stars slowly revolve about their
galaxial center A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System ...
. The motion of the components of
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. ...
is complex, but it usually includes a rotation component.


Retrograde rotation

Most planets in the Solar System, including Earth, spin in the same direction as they orbit the Sun. The exceptions are Venus and Uranus. Venus may be thought of as rotating slowly backward (or being "upside down"). Uranus rotates nearly on its side relative to its orbit. Current speculation is that Uranus started off with a typical prograde orientation and was knocked on its side by a large impact early in its history. The dwarf planet Pluto (formerly considered a planet) is anomalous in several ways, including that it also rotates on its side.


Physics

The
speed of rotation Rotational frequency (also known as rotational speed or rate of rotation) of an object rotating around an axis is the frequency of rotation of the object. Its unit is revolution per minute (rpm), cycle per second (cps), etc. The symbol for ...
is given by the angular frequency (rad/s) or frequency ( turns per time), or period (seconds, days, etc.). The time-rate of change of angular frequency is angular acceleration (rad/s²), caused by torque. The ratio of the two (how heavy is it to start, stop, or otherwise change rotation) is given by the
moment of inertia The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceler ...
. The
angular velocity In physics, angular velocity or rotational velocity ( or ), also known as angular frequency vector,(UP1) is a pseudovector representation of how fast the angular position or orientation of an object changes with time (i.e. how quickly an objec ...
vector (an '' axial vector'') also describes the direction of the axis of rotation. Similarly the torque is an axial vector. The physics of the rotation around a fixed axis is mathematically described with the axis–angle representation of rotations. According to the
right-hand rule In mathematics and physics, the right-hand rule is a common mnemonic for understanding orientation of axes in three-dimensional space. It is also a convenient method for quickly finding the direction of a cross-product of 2 vectors. Most of th ...
, the direction away from the observer is associated with clockwise rotation and the direction towards the observer with counterclockwise rotation, like a screw.


Cosmological principle

The laws of physics are currently believed to be invariant under any fixed rotation. (Although they do appear to change when viewed from a rotating viewpoint: see
rotating frame of reference A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth. (This article considers only ...
.) In modern physical cosmology, the cosmological principle is the notion that the distribution of matter in the universe is
homogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
and
isotropic Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe ...
when viewed on a large enough scale, since the forces are expected to act uniformly throughout the universe and have no preferred direction, and should, therefore, produce no observable irregularities in the large scale structuring over the course of evolution of the matter field that was initially laid down by the Big Bang. In particular, for a system which behaves the same regardless of how it is oriented in space, its
Lagrangian Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
is rotationally invariant. According to Noether's theorem, if the action (the integral over time of its Lagrangian) of a physical system is invariant under rotation, then angular momentum is conserved.


Euler rotations

Euler rotations provide an alternative description of a rotation. It is a composition of three rotations defined as the movement obtained by changing one of the
Euler angles The Euler angles are three angles introduced by Leonhard Euler to describe the Orientation (geometry), orientation of a rigid body with respect to a fixed coordinate system.Novi Commentarii academiae scientiarum Petropolitanae 20, 1776, pp. 189 ...
while leaving the other two constant. Euler rotations are never expressed in terms of the external frame, or in terms of the co-moving rotated body frame, but in a mixture. They constitute a mixed axes of rotation system, where the first angle moves the
line of nodes An orbital node is either of the two points where an orbit intersects a plane of reference to which it is inclined. A non-inclined orbit, which is contained in the reference plane, has no nodes. Planes of reference Common planes of reference ...
around the external axis ''z'', the second rotates around the
line of nodes An orbital node is either of the two points where an orbit intersects a plane of reference to which it is inclined. A non-inclined orbit, which is contained in the reference plane, has no nodes. Planes of reference Common planes of reference ...
and the third one is an intrinsic rotation around an axis fixed in the body that moves. These rotations are called precession, nutation, and ''intrinsic rotation''.


Flight dynamics

In flight dynamics, the principal rotations described with Euler angles above are known as ''pitch'', ''roll'' and ''yaw''. The term
rotation Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
is also used in aviation to refer to the upward pitch (nose moves up) of an aircraft, particularly when starting the climb after takeoff. Principal rotations have the advantage of modelling a number of physical systems such as gimbals, and
joystick A joystick, sometimes called a flight stick, is an input device consisting of a stick that pivots on a base and reports its angle or direction to the device it is controlling. A joystick, also known as the control column, is the principal cont ...
s, so are easily visualised, and are a very compact way of storing a rotation. But they are difficult to use in calculations as even simple operations like combining rotations are expensive to do, and suffer from a form of gimbal lock where the angles cannot be uniquely calculated for certain rotations.


Amusement rides

Many amusement rides provide rotation. A Ferris wheel has a horizontal central axis, and parallel axes for each gondola, where the rotation is opposite, by gravity or mechanically. As a result, at any time the orientation of the gondola is upright (not rotated), just translated. The tip of the translation vector describes a circle. A
carousel A carousel or carrousel (mainly North American English), merry-go-round (List of sovereign states, international), roundabout (British English), or hurdy-gurdy (an old term in Australian English, in South Australia, SA) is a type of amusement ...
provides rotation about a vertical axis. Many rides provide a combination of rotations about several axes. In Chair-O-Planes the rotation about the vertical axis is provided mechanically, while the rotation about the horizontal axis is due to the
centripetal force A centripetal force (from Latin ''centrum'', "center" and ''petere'', "to seek") is a force that makes a body follow a curved path. Its direction is always orthogonal to the motion of the body and towards the fixed point of the instantaneous c ...
. In roller coaster inversions the rotation about the horizontal axis is one or more full cycles, where inertia keeps people in their seats.


Sports

Rotation of a ball or other object, usually called ''spin'', plays a role in many sports, including topspin and backspin in tennis, ''English'', ''follow'' and ''draw'' in billiards and pool, curve balls in baseball, spin bowling in
cricket Cricket is a bat-and-ball game played between two teams of eleven players on a field at the centre of which is a pitch with a wicket at each end, each comprising two bails balanced on three stumps. The batting side scores runs by striki ...
, flying disc sports, etc. Table tennis paddles are manufactured with different surface characteristics to allow the player to impart a greater or lesser amount of spin to the ball. Rotation of a player one or more times around a vertical axis may be called ''spin'' in figure skating, ''twirling'' (of the baton or the performer) in baton twirling, or ''360'', ''540'', ''720'', etc. in
snowboarding Snowboarding is a recreational and competitive activity that involves descending a snow-covered surface while standing on a snowboard that is almost always attached to a rider's feet. It features in the Winter Olympic Games and Winter Paralympi ...
, etc. Rotation of a player or performer one or more times around a horizontal axis may be called a
flip Flip, FLIP, or flips may refer to: People * Flip (nickname), a list of people * Lil' Flip (born 1981), American rapper * Flip Simmons, Australian actor and musician * Flip Wilson, American comedian Arts and entertainment Fictional characters * ...
, roll, somersault, ''heli'', etc. in gymnastics, waterskiing, or many other sports, or a ''one-and-a-half'', ''two-and-a-half'', ''gainer'' (starting facing away from the water), etc. in diving, etc. A combination of vertical and horizontal rotation (back flip with 360°) is called a ''möbius'' in waterskiing freestyle jumping. Rotation of a player around a vertical axis, generally between 180 and 360 degrees, may be called a ''spin move'' and is used as a deceptive or avoidance maneuver, or in an attempt to play, pass, or receive a ball or puck, etc., or to afford a player a view of the goal or other players. It is often seen in hockey, basketball,
football Football is a family of team sports that involve, to varying degrees, kicking a ball to score a goal. Unqualified, the word ''football'' normally means the form of football that is the most popular where the word is used. Sports commonly c ...
of various codes, tennis, etc.


Fixed axis vs. fixed point

The ''end result'' of any sequence of rotations of any object in 3D about a fixed point is always equivalent to a rotation about an axis. However, an object may ''physically'' rotate in 3D about a fixed point on more than one axis simultaneously, in which case there is no single fixed axis of rotation - just the fixed point. However, these two descriptions can be reconciled - such a physical motion can always be re-described in terms of a single axis of rotation, provided the orientation of that axis relative to the object is allowed to change moment by moment.


Axis of 2 dimensional rotations

2 dimensional rotations, unlike the 3 dimensional ones, possess no axis of rotation. This is equivalent, for linear transformations, with saying that there is no direction in the plane which is kept unchanged by a 2 dimensional rotation, except, of course, the identity. The question of the existence of such a direction is the question of existence of an eigenvector for the matrix A representing the rotation. Every 2D rotation around the origin through an angle \theta in counterclockwise direction can be quite simply represented by the following matrix: :A = \begin \cos \theta & -\sin \theta\\ \sin \theta & \cos \theta \end A standard eigenvalue determination leads to the characteristic equation :\lambda^2 -2 \lambda \cos \theta + 1 = 0, which has :\cos \theta \pm i \sin \theta as its eigenvalues. Therefore, there is no real eigenvalue whenever \cos \theta \neq \pm 1, meaning that no real vector in the plane is kept unchanged by A.


Rotation angle and axis in 3 dimensions

Knowing that the trace is an invariant, the rotation angle \alpha for a proper orthogonal 3x3 rotation matrix A is found by \alpha=\cos^\left(\frac\right) Using the principal arc-cosine, this formula gives a rotation angle satisfying 0\le\alpha\le 180^\circ. The corresponding rotation axis must be defined to point in a direction that limits the rotation angle to not exceed 180 degrees. (This can always be done because any rotation of more than 180 degrees about an axis m can always be written as a rotation having 0\le\alpha\le 180^\circ if the axis is replaced with n=-m.) Every proper rotation A in 3D space has an axis of rotation, which is defined such that any vector v that is aligned with the rotation axis will not be affected by rotation. Accordingly, A v = v , and the rotation axis therefore corresponds to an eigenvector of the rotation matrix associated with an eigenvalue of 1. As long as the rotation angle \alpha is nonzero (i.e., the rotation is not the identity tensor), there is one and only one such direction. Because A has only real components, there is at least one real eigenvalue, and the remaining two eigenvalues must be complex conjugates of each other (see Eigenvalues and eigenvectors#Eigenvalues and the characteristic polynomial). Knowing that 1 is an eigenvalue, it follows that the remaining two eigenvalues are complex conjugates of each other, but this does not imply that they are complex—they could be real with double multiplicity. In the degenerate case of a rotation angle \alpha=180^\circ, the remaining two eigenvalues are both equal to -1. In the degenerate case of a zero rotation angle, the rotation matrix is the identity, and all three eigenvalues are 1 (which is the only case for which the rotation axis is arbitrary). A spectral analysis is not required to find the rotation axis. If n denotes the unit eigenvector aligned with the rotation axis, and if \alpha denotes the rotation angle, then it can be shown that 2\sin(\alpha)n=\. Consequently, the expense of an eigenvalue analysis can be avoided by simply normalizing this vector ''if it has a nonzero magnitude.'' On the other hand, if this vector has a zero magnitude, it means that \sin(\alpha)=0. In other words, this vector will be zero if and only if the rotation angle is 0 or 180 degrees, and the rotation axis may be assigned in this case by normalizing any column of A+I that has a nonzero magnitude.Brannon, R.M.
"Rotation, Reflection, and Frame Change"
2018
This discussion applies to a proper rotation, and hence \det A = 1. Any improper orthogonal 3x3 matrix B may be written as B=-A, in which A is proper orthogonal. That is, any improper orthogonal 3x3 matrix may be decomposed as a proper rotation (from which an axis of rotation can be found as described above) followed by an inversion (multiplication by -1). It follows that the rotation axis of A is also the eigenvector of B corresponding to an eigenvalue of -1.


Rotation plane

As much as every tridimensional rotation has a rotation axis, also every tridimensional rotation has a plane, which is perpendicular to the rotation axis, and which is left invariant by the rotation. The rotation, restricted to this plane, is an ordinary 2D rotation. The proof proceeds similarly to the above discussion. First, suppose that all eigenvalues of the 3D rotation matrix ''A'' are real. This means that there is an orthogonal basis, made by the corresponding eigenvectors (which are necessarily orthogonal), over which the effect of the rotation matrix is just stretching it. If we write ''A'' in this basis, it is diagonal; but a diagonal orthogonal matrix is made of just +1s and −1s in the diagonal entries. Therefore, we don't have a proper rotation, but either the identity or the result of a sequence of reflections. It follows, then, that a proper rotation has some complex eigenvalue. Let ''v'' be the corresponding eigenvector. Then, as we showed in the previous topic, \bar is also an eigenvector, and v + \bar and i(v - \bar) are such that their scalar product vanishes: : i (v^\text + \bar^\text)(v - \bar) = i (v^\text v - \bar^\text \bar + \bar^\text v - v^\text \bar ) = 0 because, since \bar^\text \bar is real, it equals its complex conjugate v^\text v , and \bar^\text v and v^\text \bar are both representations of the same scalar product between v and \bar . This means v + \bar and i(v - \bar) are orthogonal vectors. Also, they are both real vectors by construction. These vectors span the same subspace as v and \bar , which is an invariant subspace under the application of ''A''. Therefore, they span an invariant plane. This plane is orthogonal to the invariant axis, which corresponds to the remaining eigenvector of ''A'', with eigenvalue 1, because of the orthogonality of the eigenvectors of ''A''.


See also

* * * * * * * , the fastest rotation object * * * * * * *


References


External links

*
Product of Rotations
at
cut-the-knot Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Math ...
. cut-the-knot.org
When a Triangle is Equilateral
at cut-the-knot. cut-the-knot.org
Rotate Points Using Polar Coordinates
howtoproperly.com
Rotation in Two Dimensions
by Sergio Hannibal Mejia after work by Roger Germundsson an
Understanding 3D Rotation
by Roger Germundsson, Wolfram Demonstrations Project. demonstrations.wolfram.com
Rotation, Reflection, and Frame Change: Orthogonal tensors in computational engineering mechanics
IOP Publishing {{Authority control Euclidean geometry Classical mechanics Orientation (geometry) Kinematics