HOME

TheInfoList



OR:

Rheological weldability (RW) of thermoplastics considers the materials flow characteristics in determining the weldability of the given material. The process of welding thermal plastics requires three general steps, first is surface preparation. The second step is the application of heat and pressure to create intimate contact between the components being joined and initiate inter-molecular diffusion across the joint and the third step is cooling. RW can be used to determine the effectiveness of the second step of the process for given materials.


Rheology

Rheology Rheology (; ) is the study of the flow of matter, primarily in a fluid ( liquid or gas) state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an appl ...
is the study of material flow as well as how a material deforms under an applied force. Rheological properties are typically applied to Non-Newtonian fluids but can also be applied to soft solids such as thermoplastics at elevated temperatures experienced during the welding process. The material properties associated with the rheological behavior include viscosity, elasticity, plasticity, viscoelasticity, and the material's activation energy as a function of temperature.


Rheological properties

To understand the rheological properties of a material it is also important to recognize the stress strain relationship for that material at varying temperatures.  This relationship is attained through experimental measurement of the resultant deformation as a function of an applied force.


Influences of microstructure and composition

A material's rheological behavior is influenced by a combination of the material's microstructure, its composition, the temperature and pressure acting on the material at a given time.  The rheological and viscoelastic properties of a polymer melt are sensitive to the material's molecular structure; including molecular weight distribution and effects of branching. As a result, rheology can be used to develop relationships between differing material combinations.


Determining microstructure

Melt rheology has shown to be an accurate method in determining the polymer's molecular structure. This is beneficial in determining weld compatibility between materials; as materials with drastically different flow characteristics will be more difficult to join compared to those with more closely matched viscosity and melting temperature properties. This information can also be used to help determine weld parameters for the given welding process to be used.


Viscosity

;The lower the ''η'', the better the ''RW'' Regarding
sessile drop technique image:Contact angle.svg, 400px, Fig 1: An illustration of the sessile drop technique with a liquid droplet partially wetting a solid substrate. is the contact angle, and represent the solid–gas, gas–liquid, and liquid–solid interfaces, res ...
,
wetting Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. This happens in presence of a gaseous phase or another liquid phase not miscible with th ...
is characterized by degree of interfacial contact and quantified via
contact angle The contact angle is the angle, conventionally measured through the liquid, where a liquid–vapor interface meets a solid surface. It quantifies the wettability of a solid surface by a liquid via the Young equation. A given system of solid, liq ...
(''θ''c) of a liquid on a solid surface at equilibrium, as shown in Fig. 1. Interrelation between
contact angle The contact angle is the angle, conventionally measured through the liquid, where a liquid–vapor interface meets a solid surface. It quantifies the wettability of a solid surface by a liquid via the Young equation. A given system of solid, liq ...
and
surface tension Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) to f ...
s at equilibrium is given by the Young equation: : \gamma_\ =\gamma_+\gamma_\cos, Where: *\gamma_ = Solid-Gas surface tension, *\gamma_ = Solid-Liquid surface tension, *\gamma_ = Liquid-Gas surface tension, *\theta_ = Contact angle. For perfectly good
wetting Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. This happens in presence of a gaseous phase or another liquid phase not miscible with th ...
,
contact angle The contact angle is the angle, conventionally measured through the liquid, where a liquid–vapor interface meets a solid surface. It quantifies the wettability of a solid surface by a liquid via the Young equation. A given system of solid, liq ...
(''θ''c) at equilibrium should be minimized. However, it is valid only at equilibrium, and rate of the equilibrium depends on the balance between driving force of
wetting Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. This happens in presence of a gaseous phase or another liquid phase not miscible with th ...
and
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
of the liquid. In the case of
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
melts,
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
can be very high and it may take a long time to reach the equilibrium contact angle (dynamic contact angle is likely higher than the contact angle at equilibrium). Consequently, for the evaluation of
weldability The weldability, also known as joinability,. of a material refers to its ability to be welded. Many metals and thermoplastics can be welded, but some are easier to weld than others (see Rheological weldability). A material's weldability is used to ...
,
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
of molten
thermoplastics A thermoplastic, or thermosoft plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling. Most thermoplastics have a high molecular weight. The polymer chains associate ...
(
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
melts) have to be taken into account since
welding Welding is a fabrication (metal), fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing Fusion welding, fusion. Welding is distinct from lower ...
is a rapid process. It can be said that the lower the
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
during welding process (at welding temperature and pressure), the better the
weldability The weldability, also known as joinability,. of a material refers to its ability to be welded. Many metals and thermoplastics can be welded, but some are easier to weld than others (see Rheological weldability). A material's weldability is used to ...
. Recalling that
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
(''η'') decreases with increasing temperature (''T'') and
shear rate In physics, shear rate is the rate at which a progressive shearing deformation is applied to some material. Simple shear The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary ...
(\dot\gamma) for most
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
melts,
weldability The weldability, also known as joinability,. of a material refers to its ability to be welded. Many metals and thermoplastics can be welded, but some are easier to weld than others (see Rheological weldability). A material's weldability is used to ...
is better where temperature and
shear rate In physics, shear rate is the rate at which a progressive shearing deformation is applied to some material. Simple shear The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary ...
(movement) are higher within the entire cross-section of the welding region.


Elasticity

; The lower a material's ''
elasticity Elasticity often refers to: *Elasticity (physics), continuum mechanics of bodies that deform reversibly under stress Elasticity may also refer to: Information technology * Elasticity (data store), the flexibility of the data model and the cl ...
'', the better the ''RW'' Elasticity is best described by stretching a rubber band. As one pulls on the rubber band it stretches and when the pulling force is lessened and finally removed the rubber band returns to its original length. Similarly when a force or load is applied to most materials the material deforms and as long as the force has not exceeded the material's yield strength the material will return to its original shape when the force or load is removed. The material property associated with a material's Elasticity is called Young's modulus and the relationship between the amount of deformation for a given load is described by Hooke's Law. : \sigma = E\left(L-Lo\right)/Lo Where \sigma, or the stress experienced by the material and equals the change in length divided by the original length multiplied by the material's elasticity or Yong's modulus "E".


Plasticity

; The lower a material's ''
plasticity Plasticity may refer to: Science * Plasticity (physics), in engineering and physics, the propensity of a solid material to undergo permanent deformation under load * Neuroplasticity, in neuroscience, how entire brain structures, and the brain it ...
'', the better the ''RW'' A material's ability to deform elastically while resisting flow is called plasticity. When an applied force or load exceeds the material's yield strength the material begins to deform plastically and the material will no longer return to its original shape. During the welding processes of polymers, this is experienced at temperatures above the glass transition temperature and below the material's melting temperature.


Viscoelasticity


Linear viscoelasticity

Linear viscoelastic behavior can be observed when a material experiences small and slow deformation at very slow shear rates, where the relaxation process has sufficient time to keep up with the process. This can also be experienced at the onset of larger deformation forces.


Nonlinear viscoelasticity

A polymer's response to fast and large deformation forces is a non linear behavior and is more representative of the reactions experienced during the welding processes. Knowing the viscoelastic behavior allows for adjustments to temperature and pressure during the weld process in order to improve the weld quality.


Activation energy

; The lower the , ''E''a, , the better the ''RW'' During operation of a welding process, the softened or molten portion of
thermoplastics A thermoplastic, or thermosoft plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling. Most thermoplastics have a high molecular weight. The polymer chains associate ...
(
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
articles) is able to flow through the interface. Less flow results in less diffusion at the interface and lower weld strength. In order for a
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
melt to flow, macromolecular chain segments must be able to move. When the chain segments obtain sufficient thermal energy to overcome the energy barrier, they begin to move readily. The energy barrier is called
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules pe ...
(''E''a). It can be said that if a
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
’s absolute value of
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules pe ...
(, ''E''a, ) is lower, its
weldability The weldability, also known as joinability,. of a material refers to its ability to be welded. Many metals and thermoplastics can be welded, but some are easier to weld than others (see Rheological weldability). A material's weldability is used to ...
becomes better. , ''E''a, values of such polymers as PVC decrease with increasing
shear rate In physics, shear rate is the rate at which a progressive shearing deformation is applied to some material. Simple shear The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary ...
(\dot\gamma), implying better
weldability The weldability, also known as joinability,. of a material refers to its ability to be welded. Many metals and thermoplastics can be welded, but some are easier to weld than others (see Rheological weldability). A material's weldability is used to ...
where
shear rate In physics, shear rate is the rate at which a progressive shearing deformation is applied to some material. Simple shear The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary ...
(movement) is higher within the entire cross-section of the welding region. Using
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
-
shear rate In physics, shear rate is the rate at which a progressive shearing deformation is applied to some material. Simple shear The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary ...
(\eta - \dot\gamma) data at various temperatures for a
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
,
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules pe ...
(''E''a) can be calculated via
Arrhenius equation In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 18 ...
: Laidler, K. J. (1987) ''Chemical Kinetics'',Third Edition, Harper & Row, p.42 : \eta = C \exp \left( \frac \right), Where: * ''η'' is
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
of molten polymer, * ''C'' is
pre-exponential factor In chemical kinetics, the pre-exponential factor or A factor is the pre-exponential constant in the Arrhenius equation#Equation, Arrhenius equation (equation shown below), an empirical relationship between temperature and Reaction rate constant, ...
, * ''R'' is
universal gas constant The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol or . It is the molar equivalent to the Boltzmann constant, expressed in units of energy per temperature increment per ...
, * ''T'' is
absolute temperature Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics. Historically, thermodynamic temperature was defined by Kelvin in terms of a macroscopic relation between thermodynamic wor ...
. The absolute value of the
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules pe ...
(, ''E''a, ) can be calculated by taking the
natural logarithm The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
of the
Arrhenius equation In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 18 ...
. (see
Arrhenius equation In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 18 ...
).


Weldability of polymers

Welding of polymers is dependent on intimate contact resulting in molecular diffusion and chain entanglement across the weld joint.  This action requires the polymer to be in a molten state where the melt viscosity and flow behavior have a drastic influence on the amount of diffusion and entanglement. Therefore, the rheological weldability is best between materials with matching or very similar melting temperatures and melt viscosity. Also as a material's viscosity and activation energies are reduced the weldability of that material is improved. For example, welding semi-crystalline to compatible semi-crystalline material and amorphous to compatible amorphous material have exhibited the best results.  While a rheological analysis can provide reasonable insight to a material's weldability, in most cases production welding is typically prefaced with a series of tests to verify compatibility between both base materials as well as the process employed. Similar to welding metals, the solidified polymer weld experiences residual stresses inherent to the joining process.  With polymers, these residual stresses are in part due to the squeeze flow rate leading to a specific molecular alignment direction, ultimately influencing the weld strength and overall quality.  Having a thorough understanding of the rheological properties of the materials being joined can aid in determining the resultant residual stresses and in turn provide insight to processing methods that could reduce these stresses.


See also

*
Activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules pe ...
*
Arrhenius equation In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 18 ...
*
Plastic welding Plastic welding is welding for semi-finished plastic materials, and is described in ISO 472 as a process of uniting softened surfaces of materials, generally with the aid of heat (except solvent welding). Welding of thermoplastics is accomplishe ...
*
Rheology Rheology (; ) is the study of the flow of matter, primarily in a fluid ( liquid or gas) state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an appl ...
*
Weldability The weldability, also known as joinability,. of a material refers to its ability to be welded. Many metals and thermoplastics can be welded, but some are easier to weld than others (see Rheological weldability). A material's weldability is used to ...
*
Welding Welding is a fabrication (metal), fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing Fusion welding, fusion. Welding is distinct from lower ...
*
Wetting Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. This happens in presence of a gaseous phase or another liquid phase not miscible with th ...


References

{{Reflist, refs=Mokhtar Awang (2017), 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering {{ISBN, 978-981-10-4232-4
Thermoplastics