The philosophy of mathematics is the
branch
A branch, sometimes called a ramus in botany, is a woody structural member connected to the central trunk of a tree (or sometimes a shrub). Large branches are known as boughs and small branches are known as twigs. The term '' twig'' usually ...
of
philosophy that studies the assumptions, foundations, and implications of
mathematics. It aims to understand the nature and
methods of mathematics, and find out the place of mathematics in people's lives. The logical and structural nature of mathematics itself makes this study both broad and unique among its philosophical counterparts.
The philosophy of mathematics has two major themes: mathematical realism and mathematical anti-realism.
History
The origin of mathematics is subject to arguments and disagreements. Whether the birth of mathematics was a random happening or induced by necessity during the development of other subjects, like physics, is still a matter of prolific debates.
Many thinkers have contributed their ideas concerning the nature of mathematics. Today, some philosophers of mathematics aim to give accounts of this form of inquiry and its products as they stand, while others emphasize a role for themselves that goes beyond simple interpretation to critical analysis. There are traditions of mathematical philosophy in both
Western philosophy
Western philosophy encompasses the philosophical thought and work of the Western world. Historically, the term refers to the philosophical thinking of Western culture, beginning with the ancient Greek philosophy of the pre-Socratics. The wo ...
and
Eastern philosophy. Western philosophies of mathematics go as far back as
Pythagoras
Pythagoras of Samos ( grc, Πυθαγόρας ὁ Σάμιος, Pythagóras ho Sámios, Pythagoras the Samian, or simply ; in Ionian Greek; ) was an ancient Ionian Greek philosopher and the eponymous founder of Pythagoreanism. His politic ...
, who described the theory "everything is mathematics" (
mathematicism
Mathematicism is 'the effort to employ the formal structure and rigorous method of mathematics as a model for the conduct of philosophy'. or else it is the epistemological view that reality is fundamentally mathematical. The term has been appli ...
),
Plato
Plato ( ; grc-gre, Πλάτων ; 428/427 or 424/423 – 348/347 BC) was a Greek philosopher born in Athens during the Classical period in Ancient Greece. He founded the Platonist school of thought and the Academy, the first institutio ...
, who paraphrased Pythagoras, and studied the
ontological status of mathematical objects, and
Aristotle
Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical Greece, Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatet ...
, who studied
logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premis ...
and issues related to
infinity
Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol .
Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions am ...
(actual versus potential).
Greek philosophy
Ancient Greek philosophy arose in the 6th century BC, marking the end of the Greek Dark Ages. Greek philosophy continued throughout the Hellenistic period and the period in which Greece and most Greek-inhabited lands were part of the Roman Empi ...
on mathematics was strongly influenced by their study of
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
. For example, at one time, the Greeks held the opinion that 1 (one) was not a
number
A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers ...
, but rather a unit of arbitrary length. A number was defined as a multitude. Therefore, 3, for example, represented a certain multitude of units, and was thus not "truly" a number. At another point, a similar argument was made that 2 was not a number but a fundamental notion of a pair. These views come from the heavily geometric straight-edge-and-compass viewpoint of the Greeks: just as lines drawn in a geometric problem are measured in proportion to the first arbitrarily drawn line, so too are the numbers on a number line measured in proportion to the arbitrary first "number" or "one".
These earlier Greek ideas of numbers were later upended by the discovery of the
irrationality of the square root of two.
Hippasus, a disciple of
Pythagoras
Pythagoras of Samos ( grc, Πυθαγόρας ὁ Σάμιος, Pythagóras ho Sámios, Pythagoras the Samian, or simply ; in Ionian Greek; ) was an ancient Ionian Greek philosopher and the eponymous founder of Pythagoreanism. His politic ...
, showed that the diagonal of a unit square was incommensurable with its (unit-length) edge: in other words he proved there was no existing (rational) number that accurately depicts the proportion of the diagonal of the unit square to its edge. This caused a significant re-evaluation of Greek philosophy of mathematics. According to legend, fellow Pythagoreans were so traumatized by this discovery that they murdered Hippasus to stop him from spreading his heretical idea.
Simon Stevin was one of the first in Europe to challenge Greek ideas in the 16th century. Beginning with
Leibniz, the focus shifted strongly to the relationship between mathematics and logic. This perspective dominated the philosophy of mathematics through the time of
Frege and of
Russell
Russell may refer to:
People
* Russell (given name)
* Russell (surname)
* Lady Russell (disambiguation)
* Lord Russell (disambiguation)
Places Australia
*Russell, Australian Capital Territory
*Russell Island, Queensland (disambiguation)
**Ru ...
, but was brought into question by developments in the late 19th and early 20th centuries.
Contemporary philosophy
A perennial issue in the philosophy of mathematics concerns the relationship between logic and mathematics at their joint foundations. While 20th-century philosophers continued to ask the questions mentioned at the outset of this article, the philosophy of mathematics in the 20th century was characterized by a predominant interest in
formal logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premise ...
,
set theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
(both
naive set theory
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics.
Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language. It ...
and
axiomatic set theory), and foundational issues.
It is a profound puzzle that on the one hand mathematical truths seem to have a compelling inevitability, but on the other hand the source of their "truthfulness" remains elusive. Investigations into this issue are known as the
foundations of mathematics program.
At the start of the 20th century, philosophers of mathematics were already beginning to divide into various schools of thought about all these questions, broadly distinguished by their pictures of mathematical
epistemology
Epistemology (; ), or the theory of knowledge, is the branch of philosophy concerned with knowledge. Epistemology is considered a major subfield of philosophy, along with other major subfields such as ethics, logic, and metaphysics.
Episte ...
and
ontology
In metaphysics, ontology is the philosophical study of being, as well as related concepts such as existence, becoming, and reality.
Ontology addresses questions like how entities are grouped into categories and which of these entities ...
. Three schools,
formalism,
intuitionism, and
logicism
In the philosophy of mathematics, logicism is a programme comprising one or more of the theses that — for some coherent meaning of 'logic' — mathematics is an extension of logic, some or all of mathematics is reducible to logic, or some or a ...
, emerged at this time, partly in response to the increasingly widespread worry that mathematics as it stood, and
analysis
Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...
in particular, did not live up to the standards of
certainty and
rigor
Rigour (British English) or rigor (American English; see spelling differences) describes a condition of stiffness or strictness. These constraints may be environmentally imposed, such as "the rigours of famine"; logically imposed, such as ma ...
that had been taken for granted. Each school addressed the issues that came to the fore at that time, either attempting to resolve them or claiming that mathematics is not entitled to its status as our most trusted knowledge.
Surprising and counter-intuitive developments in formal logic and set theory early in the 20th century led to new questions concerning what was traditionally called the ''foundations of mathematics''. As the century unfolded, the initial focus of concern expanded to an open exploration of the fundamental axioms of mathematics, the axiomatic approach having been taken for granted since the time of
Euclid
Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Elements'' treatise, which established the foundations of ...
around 300 BCE as the natural basis for mathematics. Notions of
axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy o ...
,
proposition
In logic and linguistics, a proposition is the meaning of a declarative sentence. In philosophy, "meaning" is understood to be a non-linguistic entity which is shared by all sentences with the same meaning. Equivalently, a proposition is the no ...
and
proof
Proof most often refers to:
* Proof (truth), argument or sufficient evidence for the truth of a proposition
* Alcohol proof, a measure of an alcoholic drink's strength
Proof may also refer to:
Mathematics and formal logic
* Formal proof, a con ...
, as well as the notion of a proposition being true of a mathematical object (see
Assignment), were formalized, allowing them to be treated mathematically. The
Zermelo–Fraenkel axioms for set theory were formulated which provided a conceptual framework in which much mathematical discourse would be interpreted. In mathematics, as in physics, new and unexpected ideas had arisen and significant changes were coming. With
Gödel numbering
In mathematical logic, a Gödel numbering is a function that assigns to each symbol and well-formed formula of some formal language a unique natural number, called its Gödel number. The concept was developed by Kurt Gödel for the proof of ...
, propositions could be interpreted as referring to themselves or other propositions, enabling inquiry into the
consistency of mathematical theories. This reflective critique in which the theory under review "becomes itself the object of a mathematical study" led
Hilbert to call such study ''
metamathematics'' or ''
proof theory''.
At the middle of the century, a new mathematical theory was created by
Samuel Eilenberg and
Saunders Mac Lane, known as
category theory, and it became a new contender for the natural language of mathematical thinking. As the 20th century progressed, however, philosophical opinions diverged as to just how well-founded were the questions about foundations that were raised at the century's beginning.
Hilary Putnam summed up one common view of the situation in the last third of the century by saying:
When philosophy discovers something wrong with science, sometimes science has to be changed—Russell's paradox
In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox discovered by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contain ...
comes to mind, as does Berkeley's attack on the actual infinitesimal—but more often it is philosophy that has to be changed. I do not think that the difficulties that philosophy finds with classical mathematics today are genuine difficulties; and I think that the philosophical interpretations of mathematics that we are being offered on every hand are wrong, and that "philosophical interpretation" is just what mathematics doesn't need.
Philosophy of mathematics today proceeds along several different lines of inquiry, by philosophers of mathematics, logicians, and mathematicians, and there are many schools of thought on the subject. The schools are addressed separately in the next section, and their assumptions explained.
Major themes
Mathematical realism
Mathematical realism, like
realism in general, holds that mathematical entities exist independently of the human
mind
The mind is the set of faculties responsible for all mental phenomena. Often the term is also identified with the phenomena themselves. These faculties include thought, imagination, memory, will, and sensation. They are responsible for vario ...
. Thus, humans do not invent mathematics, but rather discover it, and any other intelligent beings in the universe would presumably do the same. In this point of view, there is really one sort of mathematics that can be discovered;
triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, any three points, when non- colli ...
s, for example, are real entities, not the creations of the human mind.
Many working mathematicians have been mathematical realists; they see themselves as discoverers of naturally occurring objects. Examples include
Paul Erdős and
Kurt Gödel
Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imm ...
. Gödel believed in an objective mathematical reality that could be perceived in a manner analogous to sense perception. Certain principles (e.g., for any two objects, there is a collection of objects consisting of precisely those two objects) could be directly seen to be true, but the
continuum hypothesis
In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that
or equivalently, that
In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent ...
conjecture might prove undecidable just on the basis of such principles. Gödel suggested that quasi-empirical methodology could be used to provide sufficient evidence to be able to reasonably assume such a conjecture.
Within realism, there are distinctions depending on what sort of existence one takes mathematical entities to have, and how we know about them. Major forms of mathematical realism include
Platonism
Platonism is the philosophy of Plato and philosophical systems closely derived from it, though contemporary platonists do not necessarily accept all of the doctrines of Plato. Platonism had a profound effect on Western thought. Platonism at ...
and
Aristotelianism
Aristotelianism ( ) is a philosophical tradition inspired by the work of Aristotle, usually characterized by deductive logic and an analytic inductive method in the study of natural philosophy and metaphysics. It covers the treatment of the soci ...
.
Mathematical anti-realism
Mathematical anti-realism generally holds that mathematical statements have truth-values, but that they do not do so by
corresponding to a special realm of immaterial or non-empirical entities. Major forms of mathematical anti-realism include
formalism and
fictionalism.
Contemporary schools of thought
Artistic
The view that claims that
mathematics is the
aesthetic
Aesthetics, or esthetics, is a branch of philosophy that deals with the nature of beauty and taste, as well as the philosophy of art (its own area of philosophy that comes out of aesthetics). It examines aesthetic values, often expressed t ...
combination of assumptions, and then also claims that mathematics is an
art. A famous
mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems.
Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
who claims that is the British
G. H. Hardy. For Hardy, in his book, ''
A Mathematician's Apology'', the definition of mathematics was more like the aesthetic combination of concepts.
Platonism
Mathematical Platonism is the form of realism that suggests that mathematical entities are abstract, have no spatiotemporal or causal properties, and are eternal and unchanging. This is often claimed to be the view most people have of numbers. The term ''Platonism'' is used because such a view is seen to parallel
Plato
Plato ( ; grc-gre, Πλάτων ; 428/427 or 424/423 – 348/347 BC) was a Greek philosopher born in Athens during the Classical period in Ancient Greece. He founded the Platonist school of thought and the Academy, the first institutio ...
's
Theory of Forms
The theory of Forms or theory of Ideas is a philosophical theory, fuzzy concept, or world-view, attributed to Plato, that the physical world is not as real or true as timeless, absolute, unchangeable ideas. According to this theory, ideas in t ...
and a "World of Ideas" (Greek: ''eidos'' (εἶδος)) described in Plato's
allegory of the cave: the everyday world can only imperfectly approximate an unchanging, ultimate reality. Both Plato's cave and Platonism have meaningful, not just superficial connections, because Plato's ideas were preceded and probably influenced by the hugely popular ''
Pythagoreans
Pythagoreanism originated in the 6th century BC, based on and around the teachings and beliefs held by Pythagoras and his followers, the Pythagoreans. Pythagoras established the first Pythagorean community in the ancient Greek colony of Kroton, ...
'' of ancient Greece, who believed that the world was, quite literally, generated by
number
A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers ...
s.
A major question considered in mathematical Platonism is: Precisely where and how do the mathematical entities exist, and how do we know about them? Is there a world, completely separate from our physical one, that is occupied by the mathematical entities? How can we gain access to this separate world and discover truths about the entities? One proposed answer is the
Ultimate Ensemble, a theory that postulates that all structures that exist mathematically also exist physically in their own universe.
Kurt Gödel
Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imm ...
's Platonism
postulates a special kind of mathematical intuition that lets us perceive mathematical objects directly. (This view bears resemblances to many things
Husserl said about mathematics, and supports
Kant's idea that mathematics is
synthetic Synthetic things are composed of multiple parts, often with the implication that they are artificial. In particular, 'synthetic' may refer to:
Science
* Synthetic chemical or compound, produced by the process of chemical synthesis
* Synthetic o ...
''
a priori
("from the earlier") and ("from the later") are Latin phrases used in philosophy to distinguish types of knowledge, justification, or argument by their reliance on empirical evidence or experience. knowledge is independent from current ex ...
''.)
Davis and
Hersh have suggested in their 1999 book ''
The Mathematical Experience'' that most mathematicians act as though they are Platonists, even though, if pressed to defend the position carefully, they may retreat to
formalism.
Full-blooded Platonism is a modern variation of Platonism, which is in reaction to the fact that different sets of mathematical entities can be proven to exist depending on the axioms and inference rules employed (for instance, the law of the
excluded middle, and the
axiom of choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
). It holds that all mathematical entities exist. They may be provable, even if they cannot all be derived from a single consistent set of axioms.
Set-theoretic realism (also set-theoretic Platonism) a position defended by
Penelope Maddy, is the view that
set theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
is about a single universe of sets. This position (which is also known as naturalized Platonism because it is a
naturalized version of mathematical Platonism) has been criticized by Mark Balaguer on the basis of
Paul Benacerraf's
epistemological problem. A similar view, termed Platonized naturalism, was later defended by the
Stanford–Edmonton School
In the philosophy of mathematics, logicism is a programme comprising one or more of the theses that — for some coherent meaning of 'logic' — mathematics is an extension of logic, some or all of mathematics is reducible to logic, or some or al ...
: according to this view, a more traditional kind of Platonism is consistent with
naturalism; the more traditional kind of Platonism they defend is distinguished by general principles that assert the existence of
abstract object
In metaphysics, the distinction between abstract and concrete refers to a divide between two types of entities. Many philosophers hold that this difference has fundamental metaphysical significance. Examples of concrete objects include plants, hum ...
s.
Mathematicism
Max Tegmark's
mathematical universe hypothesis (or
mathematicism
Mathematicism is 'the effort to employ the formal structure and rigorous method of mathematics as a model for the conduct of philosophy'. or else it is the epistemological view that reality is fundamentally mathematical. The term has been appli ...
) goes further than Platonism in asserting that not only do all mathematical objects exist, but nothing else does. Tegmark's sole postulate is: ''All structures that exist mathematically also exist physically''. That is, in the sense that "in those
orldscomplex enough to contain self-aware substructures
heywill subjectively perceive themselves as existing in a physically 'real' world".
Logicism
Logicism
In the philosophy of mathematics, logicism is a programme comprising one or more of the theses that — for some coherent meaning of 'logic' — mathematics is an extension of logic, some or all of mathematics is reducible to logic, or some or a ...
is the thesis that mathematics is reducible to logic, and hence nothing but a part of logic.
[ Carnap, Rudolf (1931), "Die logizistische Grundlegung der Mathematik", ''Erkenntnis'' 2, 91-121. Republished, "The Logicist Foundations of Mathematics", E. Putnam and G.J. Massey (trans.), in Benacerraf and Putnam (1964). Reprinted, pp. 41–52 in Benacerraf and Putnam (1983).] Logicists hold that mathematics can be known ''a priori'', but suggest that our knowledge of mathematics is just part of our knowledge of logic in general, and is thus
analytic, not requiring any special faculty of mathematical intuition. In this view,
logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premis ...
is the proper foundation of mathematics, and all mathematical statements are necessary
logical truth
Logical truth is one of the most fundamental concepts in logic. Broadly speaking, a logical truth is a statement which is true regardless of the truth or falsity of its constituent propositions. In other words, a logical truth is a statement whi ...
s.
Rudolf Carnap (1931) presents the logicist thesis in two parts:
[
#The ''concepts'' of mathematics can be derived from logical concepts through explicit definitions.
#The ''theorems'' of mathematics can be derived from logical axioms through purely logical deduction.
]Gottlob Frege
Friedrich Ludwig Gottlob Frege (; ; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic ph ...
was the founder of logicism. In his seminal ''Die Grundgesetze der Arithmetik'' (''Basic Laws of Arithmetic'') he built up arithmetic
Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th c ...
from a system of logic with a general principle of comprehension, which he called "Basic Law V" (for concepts ''F'' and ''G'', the extension of ''F'' equals the extension of ''G'' if and only if for all objects ''a'', ''Fa'' equals ''Ga''), a principle that he took to be acceptable as part of logic.
Frege's construction was flawed. Bertrand Russell
Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British mathematician, philosopher, logician, and public intellectual. He had a considerable influence on mathematics, logic, set theory, linguistics, ar ...
discovered that Basic Law V is inconsistent (this is Russell's paradox
In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox discovered by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contain ...
). Frege abandoned his logicist program soon after this, but it was continued by Russell and Whitehead. They attributed the paradox to "vicious circularity" and built up what they called ramified type theory
The ''Principia Mathematica'' (often abbreviated ''PM'') is a three-volume work on the foundations of mathematics written by mathematician–philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. ...
to deal with it. In this system, they were eventually able to build up much of modern mathematics but in an altered, and excessively complex form (for example, there were different natural numbers in each type, and there were infinitely many types). They also had to make several compromises in order to develop much of mathematics, such as the " axiom of reducibility". Even Russell said that this axiom did not really belong to logic.
Modern logicists (like Bob Hale, Crispin Wright, and perhaps others) have returned to a program closer to Frege's. They have abandoned Basic Law V in favor of abstraction principles such as Hume's principle (the number of objects falling under the concept ''F'' equals the number of objects falling under the concept ''G'' if and only if the extension of ''F'' and the extension of ''G'' can be put into one-to-one correspondence). Frege required Basic Law V to be able to give an explicit definition of the numbers, but all the properties of numbers can be derived from Hume's principle. This would not have been enough for Frege because (to paraphrase him) it does not exclude the possibility that the number 3 is in fact Julius Caesar. In addition, many of the weakened principles that they have had to adopt to replace Basic Law V no longer seem so obviously analytic, and thus purely logical.
Formalism
Formalism holds that mathematical statements may be thought of as statements about the consequences of certain string manipulation rules. For example, in the "game" of Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
(which is seen as consisting of some strings called "axioms", and some "rules of inference" to generate new strings from given ones), one can prove that the Pythagorean theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposit ...
holds (that is, one can generate the string corresponding to the Pythagorean theorem). According to formalism, mathematical truths are not about numbers and sets and triangles and the like—in fact, they are not "about" anything at all.
Another version of formalism is often known as deductivism. In deductivism, the Pythagorean theorem is not an absolute truth, but a relative one: ''if'' one assigns meaning to the strings in such a way that the rules of the game become true (i.e., true statements are assigned to the axioms and the rules of inference are truth-preserving), ''then'' one must accept the theorem, or, rather, the interpretation one has given it must be a true statement. The same is held to be true for all other mathematical statements. Thus, formalism need not mean that mathematics is nothing more than a meaningless symbolic game. It is usually hoped that there exists some interpretation in which the rules of the game hold. (Compare this position to structuralism.) But it does allow the working mathematician to continue in his or her work and leave such problems to the philosopher or scientist. Many formalists would say that in practice, the axiom systems to be studied will be suggested by the demands of science or other areas of mathematics.
A major early proponent of formalism was David Hilbert, whose program was intended to be a complete and consistent
In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consisten ...
axiomatization of all of mathematics. Hilbert aimed to show the consistency of mathematical systems from the assumption that the "finitary arithmetic" (a subsystem of the usual arithmetic
Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th c ...
of the positive integers
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
, chosen to be philosophically uncontroversial) was consistent. Hilbert's goals of creating a system of mathematics that is both complete and consistent were seriously undermined by the second of Gödel's incompleteness theorems, which states that sufficiently expressive consistent axiom systems can never prove their own consistency. Since any such axiom system would contain the finitary arithmetic as a subsystem, Gödel's theorem implied that it would be impossible to prove the system's consistency relative to that (since it would then prove its own consistency, which Gödel had shown was impossible). Thus, in order to show that any axiomatic system
In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually conta ...
of mathematics is in fact consistent, one needs to first assume the consistency of a system of mathematics that is in a sense stronger than the system to be proven consistent.
Hilbert was initially a deductivist, but, as may be clear from above, he considered certain metamathematical methods to yield intrinsically meaningful results and was a realist with respect to the finitary arithmetic. Later, he held the opinion that there was no other meaningful mathematics whatsoever, regardless of interpretation.
Other formalists, such as Rudolf Carnap, Alfred Tarski
Alfred Tarski (, born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician ...
, and Haskell Curry, considered mathematics to be the investigation of formal axiom systems. Mathematical logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal ...
ians study formal systems but are just as often realists as they are formalists.
Formalists are relatively tolerant and inviting to new approaches to logic, non-standard number systems, new set theories etc. The more games we study, the better. However, in all three of these examples, motivation is drawn from existing mathematical or philosophical concerns. The "games" are usually not arbitrary.
The main critique of formalism is that the actual mathematical ideas that occupy mathematicians are far removed from the string manipulation games mentioned above. Formalism is thus silent on the question of which axiom systems ought to be studied, as none is more meaningful than another from a formalistic point of view.
Recently, some formalist mathematicians have proposed that all of our ''formal'' mathematical knowledge should be systematically encoded in computer-readable formats, so as to facilitate automated proof checking of mathematical proofs and the use of interactive theorem proving
In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human-machine collaboration. This involves some sort of interactive proof editor ...
in the development of mathematical theories and computer software. Because of their close connection with computer science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includin ...
, this idea is also advocated by mathematical intuitionists and constructivists in the "computability" tradition—see QED project for a general overview.
Conventionalism
The French mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems.
Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
Henri Poincaré
Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The ...
was among the first to articulate a conventionalist
Conventionalism is the philosophical attitude that fundamental principles of a certain kind are grounded on (explicit or implicit) agreements in society, rather than on external reality. Unspoken rules play a key role in the philosophy's structur ...
view. Poincaré's use of non-Euclidean geometries in his work on differential equations convinced him that Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
should not be regarded as ''a priori'' truth. He held that axioms in geometry should be chosen for the results they produce, not for their apparent coherence with human intuitions about the physical world.
Intuitionism
In mathematics, intuitionism is a program of methodological reform whose motto is that "there are no non-experienced mathematical truths" ( L. E. J. Brouwer). From this springboard, intuitionists seek to reconstruct what they consider to be the corrigible portion of mathematics in accordance with Kantian concepts of being, becoming, intuition, and knowledge. Brouwer, the founder of the movement, held that mathematical objects arise from the ''a priori'' forms of the volitions that inform the perception of empirical objects.
A major force behind intuitionism was L. E. J. Brouwer, who rejected the usefulness of formalized logic of any sort for mathematics. His student Arend Heyting postulated an intuitionistic logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, system ...
, different from the classical Aristotelian logic; this logic does not contain the law of the excluded middle and therefore frowns upon proofs by contradiction. The axiom of choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
is also rejected in most intuitionistic set theories, though in some versions it is accepted.
In intuitionism, the term "explicit construction" is not cleanly defined, and that has led to criticisms. Attempts have been made to use the concepts of Turing machine
A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algor ...
or computable function to fill this gap, leading to the claim that only questions regarding the behavior of finite algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
s are meaningful and should be investigated in mathematics. This has led to the study of the computable numbers, first introduced by Alan Turing
Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical c ...
. Not surprisingly, then, this approach to mathematics is sometimes associated with theoretical computer science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includin ...
.
Constructivism
Like intuitionism, constructivism involves the regulative principle that only mathematical entities which can be explicitly constructed in a certain sense should be admitted to mathematical discourse. In this view, mathematics is an exercise of the human intuition, not a game played with meaningless symbols. Instead, it is about entities that we can create directly through mental activity. In addition, some adherents of these schools reject non-constructive proofs, such as using proof by contradiction when showing the existence of an object or when trying to establish the truth of some proposition. Important work was done by Errett Bishop
Errett Albert Bishop (July 14, 1928 – April 14, 1983) was an American mathematician known for his work on analysis. He expanded constructive analysis in his 1967 ''Foundations of Constructive Analysis'', where he proved most of the important th ...
, who managed to prove versions of the most important theorems in real analysis as constructive analysis in his 1967 ''Foundations of Constructive Analysis.''
Finitism
Finitism is an extreme form of constructivism, according to which a mathematical object does not exist unless it can be constructed from natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...
s in a finite number of steps. In her book ''Philosophy of Set Theory'', Mary Tiles characterized those who allow countably infinite objects as classical finitists, and those who deny even countably infinite objects as strict finitists.
The most famous proponent of finitism was Leopold Kronecker, who said:
Ultrafinitism is an even more extreme version of finitism, which rejects not only infinities but finite quantities that cannot feasibly be constructed with available resources. Another variant of finitism is Euclidean arithmetic, a system developed by John Penn Mayberry in his book ''The Foundations of Mathematics in the Theory of Sets''. Mayberry's system is Aristotelian in general inspiration and, despite his strong rejection of any role for operationalism or feasibility in the foundations of mathematics, comes to somewhat similar conclusions, such as, for instance, that super-exponentiation is not a legitimate finitary function.
Structuralism
Structuralism is a position holding that mathematical theories describe structures, and that mathematical objects are exhaustively defined by their ''places'' in such structures, consequently having no intrinsic properties. For instance, it would maintain that all that needs to be known about the number 1 is that it is the first whole number after 0. Likewise all the other whole numbers are defined by their places in a structure, the number line
In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a po ...
. Other examples of mathematical objects might include lines and planes
Plane(s) most often refers to:
* Aero- or airplane, a powered, fixed-wing aircraft
* Plane (geometry), a flat, 2-dimensional surface
Plane or planes may also refer to:
Biology
* Plane (tree) or ''Platanus'', wetland native plant
* ''Planes' ...
in geometry, or elements and operations in abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The te ...
.
Structuralism is an epistemologically realistic view in that it holds that mathematical statements have an objective truth value. However, its central claim only relates to what ''kind'' of entity a mathematical object is, not to what kind of ''existence'' mathematical objects or structures have (not, in other words, to their ontology
In metaphysics, ontology is the philosophical study of being, as well as related concepts such as existence, becoming, and reality.
Ontology addresses questions like how entities are grouped into categories and which of these entities ...
). The kind of existence mathematical objects have would clearly be dependent on that of the structures in which they are embedded; different sub-varieties of structuralism make different ontological claims in this regard.
The ''ante rem'' structuralism ("before the thing") has a similar ontology to Platonism
Platonism is the philosophy of Plato and philosophical systems closely derived from it, though contemporary platonists do not necessarily accept all of the doctrines of Plato. Platonism had a profound effect on Western thought. Platonism at ...
. Structures are held to have a real but abstract and immaterial existence. As such, it faces the standard epistemological problem of explaining the interaction between such abstract structures and flesh-and-blood mathematicians (see Benacerraf's identification problem).
The ''in re'' structuralism ("in the thing") is the equivalent of Aristotelian realism. Structures are held to exist inasmuch as some concrete system exemplifies them. This incurs the usual issues that some perfectly legitimate structures might accidentally happen not to exist, and that a finite physical world might not be "big" enough to accommodate some otherwise legitimate structures.
The ''post rem'' structuralism ("after the thing") is anti-realist about structures in a way that parallels nominalism
In metaphysics, nominalism is the view that universals and abstract objects do not actually exist other than being merely names or labels. There are at least two main versions of nominalism. One version denies the existence of universalsthings th ...
. Like nominalism, the ''post rem'' approach denies the existence of abstract mathematical objects with properties other than their place in a relational structure. According to this view mathematical ''systems'' exist, and have structural features in common. If something is true of a structure, it will be true of all systems exemplifying the structure. However, it is merely instrumental to talk of structures being "held in common" between systems: they in fact have no independent existence.
Embodied mind theories
Embodied mind theories hold that mathematical thought is a natural outgrowth of the human cognitive apparatus which finds itself in our physical universe. For example, the abstract concept of number
A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers ...
springs from the experience of counting discrete objects (requiring the human senses such as sight for detecting the objects, touch; and signalling from the brain). It is held that mathematics is not universal and does not exist in any real sense, other than in human brains. Humans construct, but do not discover, mathematics.
The cognitive processes of pattern-finding and distinguishing objects are also subject to neuroscience
Neuroscience is the science, scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions and disorders. It is a Multidisciplinary approach, multidisciplinary science that combines physiology, an ...
; if mathematics is considered to be relevant to a natural world (such as from realism or a degree of it, as opposed to pure solipsism).
Its actual relevance to reality, while accepted to be a trustworthy approximation (it is also suggested the evolution
Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
of perceptions, the body, and the senses may have been necessary for survival) is not necessarily accurate to a full realism (and is still subject to flaws such as illusion
An illusion is a distortion of the senses, which can reveal how the mind normally organizes and interprets sensory stimulation. Although illusions distort the human perception of reality, they are generally shared by most people.
Illusions may ...
, assumptions (consequently; the foundations and axioms in which mathematics have been formed by humans), generalisations, deception, and hallucination
A hallucination is a perception in the absence of an external stimulus that has the qualities of a real perception. Hallucinations are vivid, substantial, and are perceived to be located in external objective space. Hallucination is a combinati ...
s). As such, this may also raise questions for the modern scientific method
The scientific method is an Empirical evidence, empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century (with notable practitioners in previous centuries; see the article hist ...
for its compatibility with general mathematics; as while relatively reliable, it is still limited by what can be measured by empiricism which may not be as reliable as previously assumed (see also: 'counterintuitive' concepts ins science such as quantum nonlocality, and action at a distance
In physics, action at a distance is the concept that an object can be affected without being physically touched (as in mechanical contact) by another object. That is, it is the non-local interaction of objects that are separated in space.
Non- ...
).
Another issue is that one numeral system
A numeral system (or system of numeration) is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner.
The same sequence of symb ...
may not necessarily be applicable to problem solving. Subjects such as complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s or imaginary numbers require specific changes to more commonly used axioms of mathematics; otherwise they cannot be adequately understood.
Alternatively, computer programmers may use hexadecimal
In mathematics and computing, the hexadecimal (also base-16 or simply hex) numeral system is a positional numeral system that represents numbers using a radix (base) of 16. Unlike the decimal system representing numbers using 10 symbols, h ...
for its 'human-friendly' representation of binary-coded values, rather than decimal (convenient for counting because humans have ten fingers). The axioms or logical rules behind mathematics also vary through time (such as the adaption and invention of zero
0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usu ...
).
As perception
Perception () is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment. All perception involves signals that go through the nervous system, ...
s from the human brain are subject to illusion
An illusion is a distortion of the senses, which can reveal how the mind normally organizes and interprets sensory stimulation. Although illusions distort the human perception of reality, they are generally shared by most people.
Illusions may ...
s, assumptions, deceptions, (induced) hallucination
A hallucination is a perception in the absence of an external stimulus that has the qualities of a real perception. Hallucinations are vivid, substantial, and are perceived to be located in external objective space. Hallucination is a combinati ...
s, cognitive errors or assumptions in a general context, it can be questioned whether they are accurate or strictly indicative of truth (see also: philosophy of being), and the nature of empiricism itself in relation to the universe and whether it is independent to the senses and the universe.
The human mind has no special claim on reality or approaches to it built out of math. If such constructs as Euler's identity are true then they are true as a map of the human mind and cognition
Cognition refers to "the mental action or process of acquiring knowledge and understanding through thought, experience, and the senses". It encompasses all aspects of intellectual functions and processes such as: perception, attention, thoug ...
.
Embodied mind theorists thus explain the effectiveness of mathematics—mathematics was constructed by the brain in order to be effective in this universe.
The most accessible, famous, and infamous treatment of this perspective is '' Where Mathematics Comes From'', by George Lakoff
George Philip Lakoff (; born May 24, 1941) is an American cognitive linguist and philosopher, best known for his thesis that people's lives are significantly influenced by the conceptual metaphors they use to explain complex phenomena.
The co ...
and Rafael E. Núñez. In addition, mathematician Keith Devlin has investigated similar concepts with his book ''The Math Instinct
''The'' () is a grammatical article in English, denoting persons or things that are already or about to be mentioned, under discussion, implied or otherwise presumed familiar to listeners, readers, or speakers. It is the definite article in En ...
'', as has neuroscientist Stanislas Dehaene with his book ''The Number Sense''. For more on the philosophical ideas that inspired this perspective, see cognitive science of mathematics
Numerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes r ...
.
Aristotelian realism
Aristotelian realism holds that mathematics studies properties such as symmetry, continuity and order that can be literally realized in the physical world (or in any other world there might be). It contrasts with Platonism in holding that the objects of mathematics, such as numbers, do not exist in an "abstract" world but can be physically realized. For example, the number 4 is realized in the relation between a heap of parrots and the universal "being a parrot" that divides the heap into so many parrots. Aristotelian realism is defended by James Franklin and th
Sydney School
in the philosophy of mathematics and is close to the view of Penelope Maddy that when an egg carton is opened, a set of three eggs is perceived (that is, a mathematical entity realized in the physical world).[ Maddy, Penelope (1990), ''Realism in Mathematics'', Oxford University Press, Oxford, UK.] A problem for Aristotelian realism is what account to give of higher infinities, which may not be realizable in the physical world.
The Euclidean arithmetic developed by John Penn Mayberry in his book ''The Foundations of Mathematics in the Theory of Sets'' also falls into the Aristotelian realist tradition. Mayberry, following Euclid, considers numbers to be simply "definite multitudes of units" realized in nature—such as "the members of the London Symphony Orchestra" or "the trees in Birnam wood". Whether or not there are definite multitudes of units for which Euclid's Common Notion 5 (the whole is greater than the part) fails and which would consequently be reckoned as infinite is for Mayberry essentially a question about Nature and does not entail any transcendental suppositions.
Psychologism
Psychologism in the philosophy of mathematics is the position that mathematical
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
concept
Concepts are defined as abstract ideas. They are understood to be the fundamental building blocks of the concept behind principles, thoughts and beliefs.
They play an important role in all aspects of cognition. As such, concepts are studied by s ...
s and/or truths are grounded in, derived from or explained by psychological facts (or laws).
John Stuart Mill seems to have been an advocate of a type of logical psychologism, as were many 19th-century German logicians such as Sigwart and Erdmann as well as a number of psychologists, past and present: for example, Gustave Le Bon
Charles-Marie Gustave Le Bon (; 7 May 1841 – 13 December 1931) was a leading French polymath whose areas of interest included anthropology, psychology, sociology, medicine, invention, and physics. He is best known for his 1895 work '' The Crowd ...
. Psychologism was famously criticized by Frege in his ''The Foundations of Arithmetic
''The Foundations of Arithmetic'' (german: Die Grundlagen der Arithmetik) is a book by Gottlob Frege, published in 1884, which investigates the philosophical foundations of arithmetic. Frege refutes other theories of number and develops his own ...
'', and many of his works and essays, including his review of Husserl's '' Philosophy of Arithmetic''. Edmund Husserl, in the first volume of his '' Logical Investigations'', called "The Prolegomena of Pure Logic", criticized psychologism thoroughly and sought to distance himself from it. The "Prolegomena" is considered a more concise, fair, and thorough refutation of psychologism than the criticisms made by Frege, and also it is considered today by many as being a memorable refutation for its decisive blow to psychologism. Psychologism was also criticized by Charles Sanders Peirce
Charles Sanders Peirce ( ; September 10, 1839 – April 19, 1914) was an American philosopher, logician, mathematician and scientist who is sometimes known as "the father of pragmatism".
Educated as a chemist and employed as a scientist for ...
and Maurice Merleau-Ponty
Maurice Jean Jacques Merleau-Ponty. (; 14 March 1908 – 3 May 1961) was a French phenomenological philosopher, strongly influenced by Edmund Husserl and Martin Heidegger. The constitution of meaning in human experience was his main interest an ...
.
Empiricism
Mathematical empiricism
The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics. It aims to understand the nature and methods of mathematics, and find out the place of mathematics in people's ...
is a form of realism that denies that mathematics can be known ''a priori'' at all. It says that we discover mathematical facts by empirical research
Empirical research is research using empirical evidence. It is also a way of gaining knowledge by means of direct and indirect observation or experience. Empiricism values some research more than other kinds. Empirical evidence (the record of on ...
, just like facts in any of the other sciences. It is not one of the classical three positions advocated in the early 20th century, but primarily arose in the middle of the century. However, an important early proponent of a view like this was John Stuart Mill. Mill's view was widely criticized, because, according to critics, such as A.J. Ayer, it makes statements like come out as uncertain, contingent truths, which we can only learn by observing instances of two pairs coming together and forming a quartet.
Karl Popper was another philosopher to point out empirical aspects of mathematics, observing that "most mathematical theories are, like those of physics and biology, hypothetico-deductive: pure mathematics therefore turns out to be much closer to the natural sciences whose hypotheses are conjectures, than it seemed even recently." Popper also noted he would "admit a system as empirical or scientific only if it is capable of being tested by experience."
Contemporary mathematical empiricism, formulated by W. V. O. Quine and Hilary Putnam, is primarily supported by the indispensability argument: mathematics is indispensable to all empirical sciences, and if we want to believe in the reality of the phenomena described by the sciences, we ought also believe in the reality of those entities required for this description. That is, since physics needs to talk about electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary partic ...
s to say why light bulbs behave as they do, then electrons must exist. Since physics needs to talk about numbers in offering any of its explanations, then numbers must exist. In keeping with Quine and Putnam's overall philosophies, this is a naturalistic argument. It argues for the existence of mathematical entities as the best explanation for experience, thus stripping mathematics of being distinct from the other sciences.
Putnam strongly rejected the term "Platonist
Platonism is the philosophy of Plato and philosophical systems closely derived from it, though contemporary platonists do not necessarily accept all of the doctrines of Plato. Platonism had a profound effect on Western thought. Platonism at ...
" as implying an over-specific ontology
In metaphysics, ontology is the philosophical study of being, as well as related concepts such as existence, becoming, and reality.
Ontology addresses questions like how entities are grouped into categories and which of these entities ...
that was not necessary to mathematical practice in any real sense. He advocated a form of "pure realism" that rejected mystical notions of truth
Truth is the property of being in accord with fact or reality.Merriam-Webster's Online Dictionarytruth 2005 In everyday language, truth is typically ascribed to things that aim to represent reality or otherwise correspond to it, such as beliefs ...
and accepted much quasi-empiricism in mathematics. This grew from the increasingly popular assertion in the late 20th century that no one foundation of mathematics
Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of math ...
could be ever proven to exist. It is also sometimes called "postmodernism in mathematics" although that term is considered overloaded by some and insulting by others. Quasi-empiricism argues that in doing their research, mathematicians test hypotheses as well as prove theorems. A mathematical argument can transmit falsity from the conclusion to the premises just as well as it can transmit truth from the premises to the conclusion. Putnam has argued that any theory of mathematical realism would include quasi-empirical methods. He proposed that an alien species doing mathematics might well rely on quasi-empirical methods primarily, being willing often to forgo rigorous and axiomatic proofs, and still be doing mathematics—at perhaps a somewhat greater risk of failure of their calculations. He gave a detailed argument for this in ''New Directions''. Quasi-empiricism was also developed by Imre Lakatos.
The most important criticism of empirical views of mathematics is approximately the same as that raised against Mill. If mathematics is just as empirical as the other sciences, then this suggests that its results are just as fallible as theirs, and just as contingent. In Mill's case the empirical justification comes directly, while in Quine's case it comes indirectly, through the coherence of our scientific theory as a whole, i.e. consilience
In science and history, consilience (also convergence of evidence or concordance of evidence) is the principle that evidence from independent, unrelated sources can "converge" on strong conclusions. That is, when multiple sources of evidence are ...
after E.O. Wilson. Quine suggests that mathematics seems completely certain because the role it plays in our web of belief is extraordinarily central, and that it would be extremely difficult for us to revise it, though not impossible.
For a philosophy of mathematics that attempts to overcome some of the shortcomings of Quine and Gödel's approaches by taking aspects of each see Penelope Maddy's ''Realism in Mathematics''. Another example of a realist theory is the embodied mind theory.
For experimental evidence suggesting that human infants can do elementary arithmetic, see Brian Butterworth.
Fictionalism
Mathematical fictionalism was brought to fame in 1980 when Hartry Field published ''Science Without Numbers'', which rejected and in fact reversed Quine's indispensability argument. Where Quine suggested that mathematics was indispensable for our best scientific theories, and therefore should be accepted as a body of truths talking about independently existing entities, Field suggested that mathematics was dispensable, and therefore should be considered as a body of falsehoods not talking about anything real. He did this by giving a complete axiomatization of Newtonian mechanics
Newton's laws of motion are three basic Scientific law, laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows:
# A body remains at re ...
with no reference to numbers or functions at all. He started with the "betweenness" of Hilbert's axioms to characterize space without coordinatizing it, and then added extra relations between points to do the work formerly done by vector fields. Hilbert's geometry is mathematical, because it talks about abstract points, but in Field's theory, these points are the concrete points of physical space, so no special mathematical objects at all are needed.
Having shown how to do science without using numbers, Field proceeded to rehabilitate mathematics as a kind of useful fiction
Fictionalism is the view in philosophy according to which statements that appear to be descriptions of the world should not be construed as such, but should instead be understood as cases of "make believe", of pretending to treat something as liter ...
. He showed that mathematical physics is a conservative extension of his non-mathematical physics (that is, every physical fact provable in mathematical physics is already provable from Field's system), so that mathematics is a reliable process whose physical applications are all true, even though its own statements are false. Thus, when doing mathematics, we can see ourselves as telling a sort of story, talking as if numbers existed. For Field, a statement like is just as fictitious as " Sherlock Holmes lived at 221B Baker Street"—but both are true according to the relevant fictions.
Another fictionalist, Mary Leng, expresses the perspective succinctly by dismissing any seeming connection between mathematics and the physical world as "a happy coincidence". This rejection separates fictionalism from other forms of anti-realism, which see mathematics itself as artificial but still bounded or fitted to reality in some way.
By this account, there are no metaphysical or epistemological problems special to mathematics. The only worries left are the general worries about non-mathematical physics, and about fiction in general. Field's approach has been very influential, but is widely rejected. This is in part because of the requirement of strong fragments of second-order logic
In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory.
First-order logic quantifies ...
to carry out his reduction, and because the statement of conservativity seems to require quantification over abstract models or deductions.
Social constructivism
Social constructivism sees mathematics primarily as a social construct
Social constructionism is a theory in sociology, social ontology, and communication theory which proposes that certain ideas about physical reality arise from collaborative consensus, instead of pure observation of said reality. The theory ...
, as a product of culture, subject to correction and change. Like the other sciences, mathematics is viewed as an empirical endeavor whose results are constantly evaluated and may be discarded. However, while on an empiricist view the evaluation is some sort of comparison with "reality", social constructivists emphasize that the direction of mathematical research is dictated by the fashions of the social group performing it or by the needs of the society financing it. However, although such external forces may change the direction of some mathematical research, there are strong internal constraints—the mathematical traditions, methods, problems, meanings and values into which mathematicians are enculturated—that work to conserve the historically-defined discipline.
This runs counter to the traditional beliefs of working mathematicians, that mathematics is somehow pure or objective. But social constructivists argue that mathematics is in fact grounded by much uncertainty: as mathematical practice evolves, the status of previous mathematics is cast into doubt, and is corrected to the degree it is required or desired by the current mathematical community. This can be seen in the development of analysis from reexamination of the calculus of Leibniz and Newton. They argue further that finished mathematics is often accorded too much status, and folk mathematics not enough, due to an overemphasis on axiomatic proof and peer review as practices.
The social nature of mathematics is highlighted in its subcultures. Major discoveries can be made in one branch of mathematics and be relevant to another, yet the relationship goes undiscovered for lack of social contact between mathematicians. Social constructivists argue each speciality forms its own epistemic community and often has great difficulty communicating, or motivating the investigation of unifying conjectures that might relate different areas of mathematics. Social constructivists see the process of "doing mathematics" as actually creating the meaning, while social realists see a deficiency either of human capacity to abstractify, or of human's cognitive bias
A cognitive bias is a systematic pattern of deviation from norm or rationality in judgment. Individuals create their own "subjective reality" from their perception of the input. An individual's construction of reality, not the objective input, ...
, or of mathematicians' collective intelligence
Collective intelligence (CI) is shared or group intelligence (GI) that Emergence, emerges from the collaboration, collective efforts, and competition of many individuals and appears in consensus decision making. The term appears in sociobiology ...
as preventing the comprehension of a real universe of mathematical objects. Social constructivists sometimes reject the search for foundations of mathematics as bound to fail, as pointless or even meaningless.
Contributions to this school have been made by Imre Lakatos and Thomas Tymoczko, although it is not clear that either would endorse the title. More recently Paul Ernest
Paul Ernest is a contributor to the social constructivist philosophy of mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are containe ...
has explicitly formulated a social constructivist philosophy of mathematics. Some consider the work of Paul Erdős as a whole to have advanced this view (although he personally rejected it) because of his uniquely broad collaborations, which prompted others to see and study "mathematics as a social activity", e.g., via the Erdős number. Reuben Hersh has also promoted the social view of mathematics, calling it a "humanistic" approach, similar to but not quite the same as that associated with Alvin White; one of Hersh's co-authors, Philip J. Davis, has expressed sympathy for the social view as well.
Beyond the traditional schools
Unreasonable effectiveness
Rather than focus on narrow debates about the true nature of mathematical truth
Truth is the property of being in accord with fact or reality.Merriam-Webster's Online Dictionarytruth 2005 In everyday language, truth is typically ascribed to things that aim to represent reality or otherwise correspond to it, such as beliefs ...
, or even on practices unique to mathematicians such as the proof
Proof most often refers to:
* Proof (truth), argument or sufficient evidence for the truth of a proposition
* Alcohol proof, a measure of an alcoholic drink's strength
Proof may also refer to:
Mathematics and formal logic
* Formal proof, a con ...
, a growing movement from the 1960s to the 1990s began to question the idea of seeking foundations or finding any one right answer to why mathematics works. The starting point for this was Eugene Wigner
Eugene Paul "E. P." Wigner ( hu, Wigner Jenő Pál, ; November 17, 1902 – January 1, 1995) was a Hungarian-American theoretical physicist who also contributed to mathematical physics. He received the Nobel Prize in Physics in 1963 "for his con ...
's famous 1960 paper " The Unreasonable Effectiveness of Mathematics in the Natural Sciences", in which he argued that the happy coincidence of mathematics and physics being so well matched seemed to be unreasonable and hard to explain.
Popper's two senses of number statements
Realist and constructivist theories are normally taken to be contraries. However, Karl Popper argued that a number statement such as can be taken in two senses. In one sense it is irrefutable and logically true. In the second sense it is factually true and falsifiable. Another way of putting this is to say that a single number statement can express two propositions: one of which can be explained on constructivist lines; the other on realist lines.
Philosophy of language
Innovations in the philosophy of language during the 20th century renewed interest in whether mathematics is, as is often said, the ''language'' of science. Although some mathematicians and philosophers would accept the statement " mathematics is a language", linguists believe that the implications of such a statement must be considered. For example, the tools of linguistics
Linguistics is the scientific study of human language. It is called a scientific study because it entails a comprehensive, systematic, objective, and precise analysis of all aspects of language, particularly its nature and structure. Lingu ...
are not generally applied to the symbol systems of mathematics, that is, mathematics is studied in a markedly different way from other languages. If mathematics is a language, it is a different type of language from natural languages
In neuropsychology, linguistics, and philosophy of language, a natural language or ordinary language is any language that has evolved naturally in humans through use and repetition without conscious planning or premeditation. Natural languages ...
. Indeed, because of the need for clarity and specificity, the language of mathematics is far more constrained than natural languages studied by linguists. However, the methods developed by Frege and Tarski for the study of mathematical language have been extended greatly by Tarski's student Richard Montague and other linguists working in formal semantics to show that the distinction between mathematical language and natural language may not be as great as it seems.
Mohan Ganesalingam has analysed mathematical language using tools from formal linguistics. Ganesalingam notes that some features of natural language are not necessary when analysing mathematical language (such as tense), but many of the same analytical tools can be used (such as context-free grammar
In formal language theory, a context-free grammar (CFG) is a formal grammar whose production rules are of the form
:A\ \to\ \alpha
with A a ''single'' nonterminal symbol, and \alpha a string of terminals and/or nonterminals (\alpha can be ...
s). One important difference is that mathematical objects have clearly defined types, which can be explicitly defined in a text: "Effectively, we are allowed to introduce a word in one part of a sentence, and declare its part of speech
In grammar, a part of speech or part-of-speech ( abbreviated as POS or PoS, also known as word class or grammatical category) is a category of words (or, more generally, of lexical items) that have similar grammatical properties. Words that are as ...
in another; and this operation has no analogue in natural language."
Arguments
Indispensability argument for realism
This argument, associated with Willard Quine and Hilary Putnam, is considered by Stephen Yablo
Stephen Yablo is a Canadian-born American philosopher. He is David W. Skinner Professor of Philosophy at the Massachusetts Institute of Technology (MIT), and taught previously at the University of Michigan, Ann Arbor. He specializes in the philos ...
to be one of the most challenging arguments in favor of the acceptance of the existence of abstract mathematical entities, such as numbers and sets. The form of the argument is as follows.
#One must have ontological commitments to ''all'' entities that are indispensable to the best scientific theories, and to those entities ''only'' (commonly referred to as "all and only").
#Mathematical entities are indispensable to the best scientific theories. Therefore,
#One must have ontological commitments to mathematical entities.[Putnam, H. ''Mathematics, Matter and Method. Philosophical Papers, vol. 1''. Cambridge: Cambridge University Press, 1975. 2nd. ed., 1985.]
The justification for the first premise is the most controversial. Both Putnam and Quine invoke naturalism to justify the exclusion of all non-scientific entities, and hence to defend the "only" part of "all and only". The assertion that "all" entities postulated in scientific theories, including numbers, should be accepted as real is justified by confirmation holism
In philosophy of science, confirmation holism, also called epistemological holism, is the view that no individual statement can be confirmed or disconfirmed by an empirical test, but rather that only a set of statements (a whole theory) can be so. ...
. Since theories are not confirmed in a piecemeal fashion, but as a whole, there is no justification for excluding any of the entities referred to in well-confirmed theories. This puts the nominalist who wishes to exclude the existence of sets and non-Euclidean geometry, but to include the existence of quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All common ...
s and other undetectable entities of physics, for example, in a difficult position.
Epistemic argument against realism
The anti-realist " epistemic argument" against Platonism has been made by Paul Benacerraf and Hartry Field. Platonism posits that mathematical objects are ''abstract
Abstract may refer to:
* ''Abstract'' (album), 1962 album by Joe Harriott
* Abstract of title a summary of the documents affecting title to parcel of land
* Abstract (law), a summary of a legal document
* Abstract (summary), in academic publishi ...
'' entities. By general agreement, abstract entities cannot interact causally with concrete, physical entities ("the truth-values of our mathematical assertions depend on facts involving Platonic entities that reside in a realm outside of space-time"). Whilst our knowledge of concrete, physical objects is based on our ability to perceive them, and therefore to causally interact with them, there is no parallel account of how mathematicians come to have knowledge of abstract objects. Another way of making the point is that if the Platonic world were to disappear, it would make no difference to the ability of mathematicians to generate proofs, etc., which is already fully accountable in terms of physical processes in their brains.
Field developed his views into fictionalism. Benacerraf also developed the philosophy of mathematical structuralism, according to which there are no mathematical objects. Nonetheless, some versions of structuralism are compatible with some versions of realism.
The argument hinges on the idea that a satisfactory naturalistic account of thought processes in terms of brain processes can be given for mathematical reasoning along with everything else. One line of defense is to maintain that this is false, so that mathematical reasoning uses some special intuition
Intuition is the ability to acquire knowledge without recourse to conscious reasoning. Different fields use the word "intuition" in very different ways, including but not limited to: direct access to unconscious knowledge; unconscious cognition; ...
that involves contact with the Platonic realm. A modern form of this argument is given by Sir Roger Penrose.Review
of The Emperor's New Mind.
Another line of defense is to maintain that abstract objects are relevant to mathematical reasoning in a way that is non-causal, and not analogous to perception. This argument is developed by
Jerrold Katz in his 2000 book ''
Realistic Rationalism''.
A more radical defense is denial of physical reality, i.e. the
mathematical universe hypothesis. In that case, a mathematician's knowledge of mathematics is one mathematical object making contact with another.
Aesthetics
Many practicing mathematicians have been drawn to their subject because of a sense of
beauty
Beauty is commonly described as a feature of objects that makes these objects pleasurable to perceive. Such objects include landscapes, sunsets, humans and works of art. Beauty, together with art and taste, is the main subject of aesthetics, o ...
they perceive in it. One sometimes hears the sentiment that mathematicians would like to leave philosophy to the philosophers and get back to mathematics—where, presumably, the beauty lies.
In his work on the
divine proportion
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0,
where the Greek letter phi ( ...
, H.E. Huntley relates the feeling of reading and understanding someone else's proof of a theorem of mathematics to that of a viewer of a masterpiece of art—the reader of a proof has a similar sense of exhilaration at understanding as the original author of the proof, much as, he argues, the viewer of a masterpiece has a sense of exhilaration similar to the original painter or sculptor. Indeed, one can study mathematical and scientific writings as
literature
Literature is any collection of written work, but it is also used more narrowly for writings specifically considered to be an art form, especially prose fiction, drama, and poetry. In recent centuries, the definition has expanded to inclu ...
.
Philip J. Davis and
Reuben Hersh have commented that the sense of mathematical beauty is universal amongst practicing mathematicians. By way of example, they provide two proofs of the irrationality of . The first is the traditional proof by
contradiction, ascribed to
Euclid
Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Elements'' treatise, which established the foundations of ...
; the second is a more direct proof involving the
fundamental theorem of arithmetic that, they argue, gets to the heart of the issue. Davis and Hersh argue that mathematicians find the second proof more aesthetically appealing because it gets closer to the nature of the problem.
Paul Erdős was well known for his notion of a hypothetical "Book" containing the most elegant or beautiful mathematical proofs. There is not universal agreement that a result has one "most elegant" proof;
Gregory Chaitin has argued against this idea.
Philosophers have sometimes criticized mathematicians' sense of beauty or elegance as being, at best, vaguely stated. By the same token, however, philosophers of mathematics have sought to characterize what makes one proof more desirable than another when both are logically sound.
Another aspect of aesthetics concerning mathematics is mathematicians' views towards the possible uses of mathematics for purposes deemed unethical or inappropriate. The best-known exposition of this view occurs in
G. H. Hardy's book ''
A Mathematician's Apology'', in which Hardy argues that pure mathematics is superior in beauty to
applied mathematics
Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathemat ...
precisely because it cannot be used for war and similar ends.
Journals
''Philosophia Mathematica'' journal''The Philosophy of Mathematics Education Journal'' homepage
See also
*
Definitions of mathematics
*
Formal language
In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules.
The alphabet of a formal language consists of s ...
*
Foundations of mathematics
*
Golden ratio
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0,
where the Greek letter phi ( ...
*
Model theory
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the ...
*
Non-standard analysis
*
Philosophy of language
In analytic philosophy, philosophy of language investigates the nature of language and the relations between language, language users, and the world. Investigations may include inquiry into the nature of meaning, intentionality, reference, the ...
*
Philosophy of logic
*
Philosophy of science
Philosophy of science is a branch of philosophy concerned with the foundations, methods, and implications of science. The central questions of this study concern what qualifies as science, the reliability of scientific theories, and the ulti ...
*
Philosophy of physics
In philosophy, philosophy of physics deals with conceptual and interpretational issues in modern physics, many of which overlap with research done by certain kinds of theoretical physicists. Philosophy of physics can be broadly divided into t ...
*
Philosophy of probability
The word probability has been used in a variety of ways since it was first applied to the mathematical study of games of chance. Does probability measure the real, physical, tendency of something to occur, or is it a measure of how strongly one be ...
*
Rule of inference
In the philosophy of logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of ...
*
Science studies
*
Scientific method
The scientific method is an Empirical evidence, empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century (with notable practitioners in previous centuries; see the article hist ...
Related works
*''
The Analyst''
*Euclid's
''Elements''
*"
On Formally Undecidable Propositions of Principia Mathematica and Related Systems"
*"
On Computable Numbers, with an Application to the Entscheidungsproblem"
*''
Introduction to Mathematical Philosophy
''Introduction to Mathematical Philosophy'' is a book (1919 first edition) by philosopher Bertrand Russell, in which the author seeks to create an accessible introduction to various topics within the foundations of mathematics. According to the pr ...
''
*"
New Foundations for Mathematical Logic"
*''
Principia Mathematica''
*''
The Simplest Mathematics''
Historical topics
*
History and philosophy of science
*
History of mathematics
*
History of philosophy
Philosophy (from , ) is the systematized study of general and fundamental questions, such as those about existence, reason, knowledge, values, mind, and language. Such questions are often posed as problems to be studied or resolved. Some ...
Notes
Further reading
*
Aristotle
Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical Greece, Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatet ...
, "
Prior Analytics",
Hugh Tredennick
Hugh may refer to:
*Hugh (given name)
Noblemen and clergy French
* Hugh the Great (died 956), Duke of the Franks
* Hugh Magnus of France (1007–1025), co-King of France under his father, Robert II
* Hugh, Duke of Alsace (died 895), modern-day ...
(trans.), pp. 181–531 in ''Aristotle, Volume 1'',
Loeb Classical Library
The Loeb Classical Library (LCL; named after James Loeb; , ) is a series of books originally published by Heinemann_(publisher), Heinemann in London, but is currently published by Harvard University Press. The library contains important works ...
, William Heinemann, London, UK, 1938.
*
*
Berkeley, George (1734), ''
The Analyst; or, a Discourse Addressed to an Infidel Mathematician. Wherein It is examined whether the Object, Principles, and Inferences of the modern Analysis are more distinctly conceived, or more evidently deduced, than Religious Mysteries and Points of Faith'', London & Dublin. Online text,
David R. Wilkins
David (; , "beloved one") (traditional spelling), , ''Dāwūd''; grc-koi, Δαυΐδ, Dauíd; la, Davidus, David; gez , ዳዊት, ''Dawit''; xcl, Դաւիթ, ''Dawitʿ''; cu, Давíдъ, ''Davidŭ''; possibly meaning "beloved one". w ...
(ed.)
Eprint
*
*
*Colyvan, Mark (2004), "Indispensability Arguments in the Philosophy of Mathematics", ''Stanford Encyclopedia of Philosophy'',
Edward N. Zalta (ed.)
Eprint
*
*
*
*
*
*
*
*
*
*
* / VIP,
キャッシング対策局【審査・在籍確認・増額・おまとめ・借り換え】*
*
*
*
*
* Reprinted, "On the Foundations of Set Theory and the Continuum Problem",
Stefan Bauer-Mengelberg (trans.), pp. 145–149 in Jean van Heijenoort (ed., 1967).
*
*
*
*
*
*
*
*
*
Mount, Matthew, ''Classical Greek Mathematical Philosophy'', .
*
*
Peirce, Benjamin (1870), "Linear Associative Algebra", § 1. See
*
Peirce, C.S., ''Collected Papers of Charles Sanders Peirce'', vols. 1-6,
Charles Hartshorne and
Paul Weiss (eds.), vols. 7-8,
Arthur W. Burks (ed.), Harvard University Press, Cambridge, MA, 1931 – 1935, 1958. Cited as CP (volume).(paragraph).
*Peirce, C.S., various pieces on mathematics and logic, many readable online through links at the
Charles Sanders Peirce bibliography, especially under
Books authored or edited by Peirce, published in his lifetime and the two sections following it.
*Plato, "The Republic, Volume 1",
Paul Shorey (trans.), pp. 1–535 in ''Plato, Volume 5'', Loeb Classical Library, William Heinemann, London, UK, 1930.
*Plato, "The Republic, Volume 2", Paul Shorey (trans.), pp. 1–521 in ''Plato, Volume 6'', Loeb Classical Library, William Heinemann, London, UK, 1935.
*
*
*
*
*
*
*
*
*
* Reprinted in
*
*
*
*
*
*
External links
*
*
*
*
*
''Mathematical Structuralism'', Internet Encyclopaedia of Philosophy*
''Abstractionism'', Internet Encyclopaedia of Philosophy**
*Th
London Philosophy Study Guide offers many suggestions on what to read, depending on the student's familiarity with the subject:
*
*
*
{{DEFAULTSORT:Philosophy Of Mathematics