HOME



picture info

Saunders Mac Lane
Saunders Mac Lane (August 4, 1909 – April 14, 2005), born Leslie Saunders MacLane, was an American mathematician who co-founded category theory with Samuel Eilenberg. Early life and education Mac Lane was born in Norwich, Connecticut, near where his family lived in Taftville, Connecticut, Taftville.. He was christened "Leslie Saunders MacLane", but "Leslie" fell into disuse because his parents, Donald MacLane and Winifred Saunders, came to dislike it. He began inserting a space into his surname because his first wife found it difficult to type the name without a space. He was the eldest of three brothers; one of his brothers, Gerald MacLane, also became a mathematics professor at Rice University and Purdue University. Another sister died as a baby. His father and grandfather were both ministers; his grandfather had been a Presbyterian, but was kicked out of the church for believing in evolution, and his father was a Congregational church, Congregationalist. His mother, Winifre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Norwich, Connecticut
Norwich ( ) is a city in New London County, Connecticut, United States. The Yantic River, Yantic, Shetucket River, Shetucket, and Quinebaug Rivers flow into the city and form its harbor, from which the Thames River (Connecticut), Thames River flows south to Long Island Sound. The city is part of the Southeastern Connecticut Planning Region, Connecticut, Southeastern Connecticut Planning Region. The population was 40,125 at the 2020 United States Census. History The town of Norwich was founded in 1659, on the site of what is now the neighborhood of Norwichtown, by settlers from Saybrook Colony led by Major John Mason (c. 1600–1672), John Mason, James Fitch (minister), James Fitch, and Lieutenant Francis Griswold. They purchased the land "nine miles square" that became Norwich from Mohegan Sachem Uncas. One of the co-founders of Norwich was Thomas Leffingwell, who rescued Uncas when surrounded by his Narragansett people, Narragansett tribesmen, and whose son established the Leff ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Irving Kaplansky
Irving Kaplansky (March 22, 1917 – June 25, 2006) was a mathematician, college professor, author, and amateur musician.O'Connor, John J.; Robertson, Edmund F., "Irving Kaplansky", MacTutor History of Mathematics archive, University of St Andrews. http://www-history.mcs.st-andrews.ac.uk/Biographies/Kaplansky.html. Biography Kaplansky or "Kap" as his friends and colleagues called him was born in Toronto, Ontario, Canada, to Polish Jews, Polish-Jewish immigrants. His father worked as a tailor, and his mother ran a grocery and, eventually, a chain of bakeries. He went to Harbord Collegiate Institute receiving the Prince of Wales Scholarship as a teenager. He attended the University of Toronto as an undergraduate and finished first in his class for three consecutive years. In his senior year, he competed in the first William Lowell Putnam Mathematical Competition, becoming one of the first five recipients of the Putnam Fellowship, which paid for graduate studies at Harvard Univers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mac Lane's Planarity Criterion
In graph theory, Mac Lane's planarity criterion is a characterisation of planar graphs in terms of their cycle spaces, named after Saunders Mac Lane who published it in 1937. It states that a finite undirected graph is planar if and only if the cycle space of the graph (taken modulo 2) has a cycle basis in which each edge of the graph participates in at most two basis vectors. Statement For any cycle in a graph on edges, one can form an -dimensional 0-1 vector that has a 1 in the coordinate positions corresponding to edges in and a 0 in the remaining coordinate positions. The cycle space of the graph is the vector space formed by all possible linear combinations of vectors formed in this way. In Mac Lane's characterization, is a vector space over the finite field with two elements; that is, in this vector space, vectors are added coordinatewise modulo two. A ''2-basis'' of is a basis of with the property that, for each edge in , at most two basis vectors have nonzero co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semimodular Lattice
In the branch of mathematics known as order theory, a semimodular lattice, is a lattice that satisfies the following condition: ;Semimodular law: ''a'' ∧ ''b''  <:  ''a''   implies   ''b''  <:  ''a'' ∨ ''b''. The notation ''a'' <: ''b'' means that ''b'' covers ''a'', i.e. ''a'' < ''b'' and there is no element ''c'' such that ''a'' < ''c'' < ''b''. An atomistic semimodular bounded lattice is called a matroid lattice because such lattices are equivalent to (simple)

Mac Lane Set Theory
Zermelo set theory (sometimes denoted by Z-), as set out in a seminal paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo–Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article sets out the original axioms, with the original text (translated into English) and original numbering. The axioms of Zermelo set theory The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set. Later versions of set theory often assume that all objects are sets so there are no urelements and there is no need for the unary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mac Lane Coherence Theorem
In category theory, a branch of mathematics, Mac Lane's coherence theorem states, in the words of Saunders Mac Lane, “every diagram commutes”. But regarding a result about certain commutative diagrams, Kelly is states as follows: "no longer be seen as constituting the essence of a coherence theorem". More precisely (cf. #Counter-example), it states every formal diagram commutes, where "formal diagram" is an analog of well-formed formulae and terms in proof theory. The theorem can be stated as a strictification result; namely, every monoidal category is monoidally equivalent to a strict monoidal category. Counter-example It is ''not'' reasonable to expect we can show literally every diagram commutes, due to the following example of Isbell. Let \mathsf_0 \subset \mathsf be a skeleton of the category of sets and ''D'' a unique countable set in it; note D \times D = D by uniqueness. Let p : D = D \times D \to D be the projection onto the first factor. For any functions f, g: D ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Standard Complex
In mathematics, the bar complex, also called the bar resolution, bar construction, standard resolution, or standard complex, is a way of constructing resolutions in homological algebra. It was first introduced for the special case of algebras over a commutative ring by and and has since been generalized in many ways. The name "bar complex" comes from the fact that used a vertical bar , as a shortened form of the tensor product \otimes in their notation for the complex. Definition Let R be an algebra over a field k, let M_1 be a right R- module, and let M_2 be a left R-module. Then, one can form the bar complex \operatorname_R(M_1,M_2) given by :\cdots\rightarrow M_1 \otimes_k R \otimes_k R \otimes_k M_2 \rightarrow M_1 \otimes_k R \otimes_k M_2 \rightarrow M_1 \otimes_k M_2 \rightarrow 0\,, with the differential :\begin d(m_1 \otimes r_1 \otimes \cdots \otimes r_n \otimes m_2) &= m_1 r_1 \otimes \cdots \otimes r_n \otimes m_2 \\ &+ \sum_^ (-1)^i m_1 \otimes r_1 \otimes \cdo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shuffle Algebra
In mathematics, a shuffle algebra is a Hopf algebra with a basis corresponding to words on some set, whose product is given by the shuffle product ''X'' ⧢ ''Y'' of two words ''X'', ''Y'': the sum of all ways of interlacing them. The interlacing is given by the riffle shuffle permutation. The shuffle algebra on a finite set is the graded dual of the universal enveloping algebra of the free Lie algebra on the set. Over the rational numbers, the shuffle algebra is isomorphic to the polynomial algebra in the Lyndon words. The shuffle product occurs in generic settings in non-commutative algebras; this is because it is able to preserve the relative order of factors being multiplied together - the riffle shuffle permutation. This can be held in contrast to the divided power structure, which becomes appropriate when factors are commutative. Shuffle product The shuffle product of words of lengths ''m'' and ''n'' is a sum over the ways of interleaving the two words, as shown in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Acyclic Model
In algebraic topology, a discipline within mathematics, the acyclic models theorem can be used to show that two homology theories are isomorphic. The theorem was developed by topologists Samuel Eilenberg and Saunders MacLane. They discovered that, when topologists were writing proofs to establish equivalence of various homology theories, there were numerous similarities in the processes. Eilenberg and MacLane then discovered the theorem to generalize this process. It can be used to prove the Eilenberg–Zilber theorem; this leads to the idea of the model category. Statement of the theorem Let \mathcal be an arbitrary category and \mathcal(R) be the category of chain complexes of R- modules over some ring R. Let F,V : \mathcal \to \mathcal(R) be covariant functors such that: * F_i = V_i = 0 for i 0 and all M \in \mathcal_k \cup \mathcal_. Then the following assertions hold: * Every natural transformation \varphi : H_0(F) \to H_0(V) induces a natural chain map f : F \to V. * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




John G
John is a common English name and surname: * John (given name) * John (surname) John may also refer to: New Testament Works * Gospel of John, a title often shortened to John * First Epistle of John, often shortened to 1 John * Second Epistle of John, often shortened to 2 John * Third Epistle of John, often shortened to 3 John People * John the Baptist (died ), regarded as a prophet and the forerunner of Jesus Christ * John the Apostle (died ), one of the twelve apostles of Jesus Christ * John the Evangelist, assigned author of the Fourth Gospel, once identified with the Apostle * John of Patmos, also known as John the Divine or John the Revelator, the author of the Book of Revelation, once identified with the Apostle * John the Presbyter, a figure either identified with or distinguished from the Apostle, the Evangelist and John of Patmos Other people with the given name Religious figures * John, father of Andrew the Apostle and Saint Peter * Pope John ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robert Solovay
Robert Martin Solovay (born December 15, 1938) is an American mathematician working in set theory. Biography Solovay earned his Ph.D. from the University of Chicago in 1964 under the direction of Saunders Mac Lane, with a dissertation on ''A Functorial Form of the Differentiable Riemann–Roch theorem''. Solovay has spent his career at the University of California at Berkeley, where his Ph.D. students include W. Hugh Woodin and Matthew Foreman. Work Solovay's theorems include: * Solovay's theorem showing that, if one assumes the existence of an inaccessible cardinal, then the statement "every set of real numbers is Lebesgue measurable" is consistent with Zermelo–Fraenkel set theory without the axiom of choice; * Isolating the notion of 0#; * Proving that the existence of a real-valued measurable cardinal is equiconsistent with the existence of a measurable cardinal; * Proving that if \lambda is a strong limit singular cardinal, greater than a strongly compact cardina ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]