Personalized Medicine
   HOME

TheInfoList



OR:

Personalized medicine, also referred to as precision medicine, is a
medical model ''Medical model'' is the term coined by psychiatrist R. D. Laing in his ''The Politics of the Family and Other Essays'' (1971), for the "set of procedures in which all doctors are trained". It includes complaint, history, physical examinat ...
that separates people into different groups—with medical decisions, practices,
interventions ''Interventions'' is a book by Noam Chomsky, an American academic linguist and political activist. Published in May 2007, ''Interventions'' is a collection of 44 op-ed articles, post-9/11, from September 2002, through March 2007. The book's sub ...
and/or products being
tailored A tailor is a person who makes or alters clothing, particularly in men's clothing. The Oxford English Dictionary dates the term to the thirteenth century. History Although clothing construction goes back to prehistory, there is evidence of ...
to the individual
patient A patient is any recipient of health care services that are performed by healthcare professionals. The patient is most often ill or injured and in need of treatment by a physician, nurse, optometrist, dentist, veterinarian, or other health c ...
based on their predicted response or risk of disease. The terms personalized medicine, precision medicine, stratified medicine and P4 medicine are used interchangeably to describe this concept, though some authors and organizations differentiate between these expressions based on particular nuances. P4 is
short Short may refer to: Places * Short (crater), a lunar impact crater on the near side of the Moon * Short, Mississippi, an unincorporated community * Short, Oklahoma, a census-designated place People * Short (surname) * List of people known as ...
for "predictive, preventive, personalized and participatory". While the tailoring of treatment to patients dates back at least to the time of
Hippocrates Hippocrates of Kos (; grc-gre, Ἱπποκράτης ὁ Κῷος, Hippokrátēs ho Kôios; ), also known as Hippocrates II, was a Greek physician of the classical period who is considered one of the most outstanding figures in the history of ...
, the usage of the term has risen in recent years thanks to the development of new diagnostic and informatics approaches that provide an understanding of the molecular basis of disease, particularly
genomics Genomics is an interdisciplinary field of biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, three-dim ...
. This provides a clear
biomarker In biomedical contexts, a biomarker, or biological marker, is a measurable indicator of some biological state or condition. Biomarkers are often measured and evaluated using blood, urine, or soft tissues to examine normal biological processes, ...
on which to stratify related patients. Among the 14 Grand Challenges for Engineering, an initiative sponsored by
National Academy of Engineering The National Academy of Engineering (NAE) is an American nonprofit, non-governmental organization. The National Academy of Engineering is part of the National Academies of Sciences, Engineering, and Medicine, along with the National Academy ...
(NAE), personalized medicine has been identified as a key and prospective approach to "achieve optimal individual health decisions", therefore overcoming the challenge to " engineer better medicines".


Development of concept

In personalised medicine,
diagnostic testing A medical test is a medical procedure performed to detect, diagnose, or monitor diseases, disease processes, susceptibility, or to determine a course of treatment. Medical tests such as, physical and visual exams, diagnostic imaging, genetic te ...
is often employed for selecting appropriate and optimal therapies based on the patient's
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar wor ...
or their other
molecular A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
or
cellular Cellular may refer to: *Cellular automaton, a model in discrete mathematics * Cell biology, the evaluation of cells work and more * ''Cellular'' (film), a 2004 movie *Cellular frequencies, assigned to networks operating in cellular RF bands *Cell ...
characteristics. The use of genetic information has played a major role in certain aspects of personalized medicine (e.g.
pharmacogenomics Pharmacogenomics is the study of the role of the genome in drug response. Its name ('' pharmaco-'' + ''genomics'') reflects its combining of pharmacology and genomics. Pharmacogenomics analyzes how the genetic makeup of an individual affects the ...
), and the term was first coined in the context of genetics, though it has since broadened to encompass all sorts of
personalization Personalization (broadly known as customization) consists of tailoring a service or a product to accommodate specific individuals, sometimes tied to groups or segments of individuals. A wide variety of organizations use personalization to improv ...
measures, including the use of
proteomics Proteomics is the large-scale study of proteins. Proteins are vital parts of living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replication of DNA. In ...
, imaging analysis,
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 1 ...
-based theranostics, among others.


Difference between precision medicine and personalized medicine

Precision medicine is a
medical Medicine is the science and practice of caring for a patient, managing the diagnosis, prognosis, prevention, treatment, palliation of their injury or disease, and promoting their health. Medicine encompasses a variety of health care practic ...
model that proposes the customization of
healthcare Health care or healthcare is the improvement of health via the prevention, diagnosis, treatment, amelioration or cure of disease, illness, injury, and other physical and mental impairments in people. Health care is delivered by health profe ...
, with medical decisions, treatments, practices, or products being tailored to a subgroup of patients, instead of a one‐drug‐fits‐all model. In precision medicine, diagnostic testing is often employed for selecting appropriate and optimal therapies based on the context of a patient's genetic content or other molecular or cellular analysis. Tools employed in precision medicine can include
molecular diagnostics Molecular diagnostics is a collection of techniques used to analyze biological markers in the genome and proteome, and how their cells express their genes as proteins, applying molecular biology to medical testing. In medicine the technique is ...
, imaging, and analytics. Precision medicine and ''personalized'' medicine (also ''individualized'' medicine) are analogous, applying a person's genetic profile to guide clinical decisions about the prevention, diagnosis, and treatment of a disease. Personalized medicine is established on discoveries from the
Human Genome Project The Human Genome Project (HGP) was an international scientific research project with the goal of determining the base pairs that make up human DNA, and of identifying, mapping and sequencing all of the genes of the human genome from both a ...
. In explaining the distinction from the similar term of ''personalized medicine'', the United States
President's Council of Advisors on Science and Technology The President's Council of Advisors on Science and Technology (PCAST) is a council, chartered (or re-chartered) in each administration with a broad mandate to advise the president of the United States on science and technology. The current PCAST w ...
writes: The use of the term "precision medicine" can extend beyond treatment selection to also cover creating unique medical products for particular individuals—for example, "...patient-specific tissue or organs to tailor treatments for different people." Hence, the term in practice has so much overlap with "personalized medicine" that they are often used interchangeably, even though the latter is sometimes misterpreted as involving a unique treatment for each individual.


Background


Basics

Every person has a unique variation of the human
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ge ...
. Although most of the variation between individuals has no effect on health, an individual's health stems from genetic variation with behaviors and influences from the environment. Modern advances in personalized medicine rely on technology that confirms a patient's fundamental biology, DNA,
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
, or
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
, which ultimately leads to confirming disease. For example, personalised techniques such as genome sequencing can reveal mutations in DNA that influence diseases ranging from cystic fibrosis to cancer. Another method, called
RNA-seq RNA-Seq (named as an abbreviation of RNA sequencing) is a sequencing technique which uses next-generation sequencing (NGS) to reveal the presence and quantity of RNA in a biological sample at a given moment, analyzing the continuously changing c ...
, can show which RNA molecules are involved with specific diseases. Unlike DNA, levels of RNA can change in response to the environment. Therefore, sequencing RNA can provide a broader understanding of a person's state of health. Recent studies have linked genetic differences between individuals to
RNA expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. The ...
, translation, and protein levels. The concepts of personalised medicine can be applied to new and transformative approaches to health care. Personalised health care is based on the dynamics of systems biology and uses predictive tools to evaluate health risks and to design personalised health plans to help patients mitigate risks, prevent disease and to treat it with precision when it occurs. The concepts of personalised health care are receiving increasing acceptance with the Veterans Administration committing to personalised, proactive patient driven care for all veterans. In some instances personalised health care can be tailored to the markup of the disease causing agent instead of the patient's genetic markup; examples are drug resistant bacteria or viruses. Precision medicine often involves the application of panomic analysis and
systems biology Systems biology is the computational modeling, computational and mathematical analysis and modeling of complex biological systems. It is a biology-based interdisciplinary field of study that focuses on complex interactions within biological syst ...
to analyze the cause of an individual patient's disease at the molecular level and then to utilize targeted treatments (possibly in combination) to address that individual patient's disease process. The patient's response is then tracked as closely as possible, often using surrogate measures such as tumor load (versus true outcomes, such as five-year survival rate), and the treatment finely adapted to the patient's response. The branch of precision medicine that addresses cancer is referred to as "precision oncology". The field of precision medicine that is related to psychiatric disorders and mental health is called "precision psychiatry." Inter-personal difference of
molecular pathology Molecular pathology is an emerging discipline within pathology which is focused in the study and diagnosis of disease through the examination of molecules within organs, tissues or bodily fluids. Molecular pathology shares some aspects of practice ...
is diverse, so as inter-personal difference in the
exposome An environmental factor, ecological factor or eco factor is any factor, abiotic or biotic, that influences living organisms. Abiotic factors include ambient temperature, amount of sunlight, and pH of the water soil in which an organism lives. Bi ...
, which influence disease processes through the
interactome In molecular biology, an interactome is the whole set of molecular interactions in a particular cell. The term specifically refers to physical interactions among molecules (such as those among proteins, also known as protein–protein interactions, ...
within the tissue microenvironment, differentially from person to person. As the theoretical basis of precision medicine, the "unique disease principle" emerged to embrace the ubiquitous
phenomenon A phenomenon ( : phenomena) is an observable event. The term came into its modern philosophical usage through Immanuel Kant, who contrasted it with the noumenon, which ''cannot'' be directly observed. Kant was heavily influenced by Gottfried W ...
of
heterogeneity Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
of
disease A disease is a particular abnormal condition that negatively affects the structure or function of all or part of an organism, and that is not immediately due to any external injury. Diseases are often known to be medical conditions that a ...
etiology Etiology (pronounced ; alternatively: aetiology or ætiology) is the study of causation or origination. The word is derived from the Greek (''aitiología'') "giving a reason for" (, ''aitía'', "cause"); and ('' -logía''). More completely, e ...
and
pathogenesis Pathogenesis is the process by which a disease or disorder develops. It can include factors which contribute not only to the onset of the disease or disorder, but also to its progression and maintenance. The word comes from Greek πάθος ''pat ...
. The unique disease principle was first described in neoplastic diseases as the unique tumor principle. As the exposome is a common
concept Concepts are defined as abstract ideas. They are understood to be the fundamental building blocks of the concept behind principles, thoughts and beliefs. They play an important role in all aspects of cognition. As such, concepts are studied by s ...
of
epidemiology Epidemiology is the study and analysis of the distribution (who, when, and where), patterns and determinants of health and disease conditions in a defined population. It is a cornerstone of public health, and shapes policy decisions and evidenc ...
, precision medicine is intertwined with
molecular pathological epidemiology Molecular pathological epidemiology (MPE, also molecular pathologic epidemiology) is a discipline combining epidemiology and pathology. It is defined as "epidemiology of molecular pathology and heterogeneity of disease". Pathology and epidemiology s ...
, which is capable of identifying potential
biomarkers In biomedical contexts, a biomarker, or biological marker, is a measurable indicator of some biological state or condition. Biomarkers are often measured and evaluated using blood, urine, or soft tissues to examine normal biological processes, p ...
for precision medicine.


Method

In order for physicians to know if a mutation is connected to a certain disease, researchers often do a study called a "
genome-wide association study In genomics, a genome-wide association study (GWA study, or GWAS), also known as whole genome association study (WGA study, or WGAS), is an observational study of a genome-wide set of Single-nucleotide polymorphism, genetic variants in different i ...
" (GWAS). A GWAS study will look at one disease, and then sequence the genome of many patients with that particular disease to look for shared mutations in the genome. Mutations that are determined to be related to a disease by a GWAS study can then be used to diagnose that disease in future patients, by looking at their genome sequence to find that same mutation. The first GWAS, conducted in 2005, studied patients with
age-related macular degeneration Macular degeneration, also known as age-related macular degeneration (AMD or ARMD), is a medical condition which may result in blurred or no vision in the center of the visual field. Early on there are often no symptoms. Over time, however, som ...
(ARMD). It found two different mutations, each containing only a variation in only one nucleotide (called
single nucleotide polymorphism In genetics, a single-nucleotide polymorphism (SNP ; plural SNPs ) is a germline substitution of a single nucleotide at a specific position in the genome. Although certain definitions require the substitution to be present in a sufficiently larg ...
s, or SNPs), which were associated with ARMD. GWAS studies like this have been very successful in identifying common genetic variations associated with diseases. As of early 2014, over 1,300 GWAS studies have been completed.


Disease risk assessment

Multiple genes collectively influence the likelihood of developing many common and complex diseases. Personalised medicine can also be used to predict a person's risk for a particular disease, based on one or even several genes. This approach uses the same sequencing technology to focus on the evaluation of disease risk, allowing the physician to initiate preventive treatment before the disease presents itself in their patient. For example, if it is found that a DNA mutation increases a person's risk of developing
Type 2 Diabetes Type 2 diabetes, formerly known as adult-onset diabetes, is a form of diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. Common symptoms include increased thirst, frequent urination, ...
, this individual can begin lifestyle changes that will lessen their chances of developing Type 2 Diabetes later in life.


Practice

The ability to provide precision medicine to patients in routine clinical settings depends on the availability of molecular profiling tests, e.g. individual
germline In biology and genetics, the germline is the population of a multicellular organism's cells that pass on their genetic material to the progeny (offspring). In other words, they are the cells that form the egg, sperm and the fertilised egg. They ...
DNA sequencing. While precision medicine currently individualizes treatment mainly on the basis of genomic tests (e.g. Oncotype DX), several promising technology modalities are being developed, from techniques combining spectrometry and computational power to real-time imaging of drug effects in the body. Many different aspects of precision medicine are tested in research settings (e.g., proteome, microbiome), but in routine practice not all available inputs are used. The ability to practice precision medicine is also dependent on the knowledge bases available to assist clinicians in taking action based on test results. Early studies applying omics-based precision medicine to cohorts of individuals with undiagnosed disease has yielded a diagnosis rate ~35% with ~1 in 5 of newly diagnosed receiving recommendations regarding changes in therapy. It has been suggested that until pharmacogenetics becomes further developed and able to predict individual treatment responses, the N-of-1 trials are the best method of identifying patients responding to treatments. On the treatment side, PM can involve the use of customized medical products such drug cocktails produced by pharmacy
compounding In the field of pharmacy, compounding (performed in compounding pharmacies) is preparation of a custom formulation of a medication to fit a unique need of a patient that cannot be met with commercially available products. This may be done for me ...
or customized devices. It can also prevent harmful drug interactions, increase overall efficiency when prescribing medications, and reduce costs associated with healthcare. The question of who benefits from publicly funded genomics is an important public health consideration, and attention is needed to ensure that implementation of genomic medicine does not further entrench social‐equity concerns.


Artificial intelligence in precision medicine

Artificial intelligence Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by animals and humans. Example tasks in which this is done include speech re ...
is a providing paradigm shift toward precision medicine.
Machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
algorithms In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing c ...
are used for genomic sequence and to analyze and draw inferences from the vast amounts of data patients and healthcare institutions recorded in every moment. AI techniques are used in precision cardiovascular medicine to understand genotypes and phenotypes in existing diseases, improve the quality of patient care, enable cost-effectiveness, and reduce readmission and mortality rates. A 2021 paper reported that machine learning was able to predict the outcomes of Phase III clinical trials (for treatment of prostate cancer) with 76% accuracy. This suggests that clinical trial data could provide a practical source for machine learning-based tools for precision medicine. Precision medicine may be susceptible to subtle forms of
algorithmic bias Algorithmic bias describes systematic and repeatable errors in a computer system that create "unfair" outcomes, such as "privileging" one category over another in ways different from the intended function of the algorithm. Bias can emerge from ...
. For example, the presence of multiple entry fields with values entered by multiple observers can create distortions in the ways data is understood and interpreted. A 2020 paper showed that training machine learning models in a population-specific fashion (i.e. training models specifically for Black cancer patients) can yield significantly superior performance than population-agnostic models.


Precision Medicine Initiative

In his 2015
State of the Union address The State of the Union Address (sometimes abbreviated to SOTU) is an annual message delivered by the president of the United States to a joint session of the United States Congress near the beginning of each calendar year on the current conditio ...
, then-
U.S. President The president of the United States (POTUS) is the head of state and head of government of the United States of America. The president directs the executive branch of the federal government and is the commander-in-chief of the United States ...
Barack Obama Barack Hussein Obama II ( ; born August 4, 1961) is an American politician who served as the 44th president of the United States from 2009 to 2017. A member of the Democratic Party, Obama was the first African-American president of the U ...
stated his intention to give $215 million of funding to the "
Precision Medicine Initiative The All of Us Research Program (previously known as the Precision Medicine Initiative Cohort Program) is a research program created in 2015 during the tenure of Barack Obama with $130 million in funding that aims to make advances in tailoring med ...
" of the
United States National Institutes of Health The National Institutes of Health, commonly referred to as NIH (with each letter pronounced individually), is the primary agency of the United States government responsible for biomedical and public health research. It was founded in the late 1 ...
. A short-term goal of this initiative was to expand cancer genomics to develop better prevention and treatment methods. In the long term, the Precision Medicine Initiative aimed to build a comprehensive scientific knowledge base by creating a national network of scientists and embarking on a national
cohort study A cohort study is a particular form of longitudinal study that samples a cohort (a group of people who share a defining characteristic, typically those who experienced a common event in a selected period, such as birth or graduation), performing ...
of one million
Americans Americans are the Citizenship of the United States, citizens and United States nationality law, nationals of the United States, United States of America.; ; Although direct citizens and nationals make up the majority of Americans, many Multi ...
to expand our understanding of health and disease. The
mission statement A mission statement is a short statement of why an organization exists, what its overall goal is, the goal of its operations: what kind of product or service it provides, its primary customers or market, and its geographical region of operation ...
of the Precision Medicine Initiative read: "To enable a new era of medicine through research, technology, and policies that empower patients, researchers, and providers to work together toward development of individualized treatments". In 2016 this initiative was renamed to "All of Us" and by January 2018, 10,000 people had enrolled in its pilot phase.


Benefits of precision medicine

Precision medicine helps health care providers better understand the many things—including environment, lifestyle, and heredity—that play a role in a patient's health, disease, or condition. This information lets them more accurately predict which treatments will be most effective and safe, or possibly how to prevent the illness from starting in the first place. In addition, benefits are to: * shift the emphasis in medicine from reaction to prevention * predict susceptibility to disease * improve disease detection * preempt disease progression * customize disease-prevention strategies * prescribe more effective drugs * avoid prescribing drugs with predictable negative side effects * reduce the time, cost, and failure rate of pharmaceutical clinical trials * eliminate trial-and-error inefficiencies that inflate health care costs and undermine patient care


Applications

Advances in personalised medicine will create a more unified treatment approach specific to the individual and their genome. Personalised medicine may provide better diagnoses with earlier intervention, and more efficient drug development and more targeted therapies.


Diagnosis and intervention

Having the ability to look at a patient on an individual basis will allow for a more accurate diagnosis and specific treatment plan.
Genotyping Genotyping is the process of determining differences in the genetic make-up ( genotype) of an individual by examining the individual's DNA sequence using biological assays and comparing it to another individual's sequence or a reference sequence. ...
is the process of obtaining an individual's DNA sequence by using
biological assays An assay is an investigative (analytic) procedure in laboratory medicine, mining, pharmacology, environmental biology and molecular biology for qualitatively assessing or quantitatively measuring the presence, amount, or functional activity of a ...
. By having a detailed account of an individual's DNA sequence, their genome can then be compared to a reference genome, like that of the
Human Genome Project The Human Genome Project (HGP) was an international scientific research project with the goal of determining the base pairs that make up human DNA, and of identifying, mapping and sequencing all of the genes of the human genome from both a ...
, to assess the existing genetic variations that can account for possible diseases. A number of private companies, such as
23andMe 23andMe Holding Co. is a publicly held personal genomics and biotechnology company based in South San Francisco, California. It is best known for providing a direct-to-consumer genetic testing service in which customers provide a saliva sample t ...
,
Navigenics Navigenics, Inc. was a privately held personal genomics company, based in Foster City, California, that used genetic testing to help people determine their individual risk for dozens of health conditions.Navigenics, Inc"Navigenics launches Healt ...
, and Illumina, have created Direct-to-Consumer genome sequencing accessible to the public. Having this information from individuals can then be applied to effectively treat them. An individual's genetic make-up also plays a large role in how well they respond to a certain treatment, and therefore, knowing their genetic content can change the type of treatment they receive. An aspect of this is
pharmacogenomics Pharmacogenomics is the study of the role of the genome in drug response. Its name ('' pharmaco-'' + ''genomics'') reflects its combining of pharmacology and genomics. Pharmacogenomics analyzes how the genetic makeup of an individual affects the ...
, which uses an individual's genome to provide a more informed and tailored drug prescription. Often, drugs are prescribed with the idea that it will work relatively the same for everyone, but in the application of drugs, there are a number of factors that must be considered. The detailed account of genetic information from the individual will help prevent adverse events, allow for appropriate dosages, and create maximum efficacy with drug prescriptions. For instance,
warfarin Warfarin, sold under the brand name Coumadin among others, is a medication that is used as an anticoagulant (blood thinner). It is commonly used to prevent blood clots such as deep vein thrombosis and pulmonary embolism, and to prevent strok ...
is the FDA approved oral
anticoagulant Anticoagulants, commonly known as blood thinners, are chemical substances that prevent or reduce coagulation of blood, prolonging the clotting time. Some of them occur naturally in blood-eating animals such as leeches and mosquitoes, where the ...
commonly prescribed to patients with blood clots. Due to
warfarin Warfarin, sold under the brand name Coumadin among others, is a medication that is used as an anticoagulant (blood thinner). It is commonly used to prevent blood clots such as deep vein thrombosis and pulmonary embolism, and to prevent strok ...
's significant interindividual variability in
pharmacokinetics Pharmacokinetics (from Ancient Greek ''pharmakon'' "drug" and ''kinetikos'' "moving, putting in motion"; see chemical kinetics), sometimes abbreviated as PK, is a branch of pharmacology dedicated to determining the fate of substances administered ...
and
pharmacodynamics Pharmacodynamics (PD) is the study of the biochemical and physiologic effects of drugs (especially pharmaceutical drugs). The effects can include those manifested within animals (including humans), microorganisms, or combinations of organisms (fo ...
, its rate of adverse events is among the highest of all commonly prescribed drugs. However, with the discovery of polymorphic variants in CYP2C9 and VKORC1 genotypes, two genes that encode the individual anticoagulant response, physicians can use patients' gene profile to prescribe optimum doses of warfarin to prevent side effects such as major bleeding and to allow sooner and better therapeutic efficacy. The pharmacogenomic process for discovery of genetic variants that predict adverse events to a specific drug has been termed
toxgnostics Toxgnostics is part of personalized medicine as it describes the guiding principles for the discovery of pharmacogenomic biomarker tests, also referred to as companion diagnostic tests, which identify if an individual patient is likely to suffer s ...
. An aspect of a theranostic platform applied to personalized medicine can be the use of
diagnostic tests A medical test is a medical procedure performed to screening (medicine), detect, medical diagnosis, diagnose, or monitoring (medicine), monitor diseases, disease processes, susceptibility, or to determine a course of treatment. Medical tests suc ...
to guide therapy. The tests may involve
medical imaging Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to rev ...
such as
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves ...
contrast agent A contrast agent (or contrast medium) is a substance used to increase the contrast of structures or fluids within the body in medical imaging. Contrast agents absorb or alter external electromagnetism or ultrasound, which is different from radiop ...
s (T1 and T2 agents),
fluorescent marker In molecular biology and biotechnology, a fluorescent tag, also known as a fluorescent label or fluorescent probe, is a molecule that is attached chemically to aid in the detection of a biomolecule such as a protein, antibody, or amino acid. Gener ...
s (
organic dye A dye is a colored substance that chemically bonds to the substrate to which it is being applied. This distinguishes dyes from pigments which do not chemically bind to the material they color. Dye is generally applied in an aqueous solution and ...
s and inorganic
quantum dot Quantum dots (QDs) are semiconductor particles a few nanometres in size, having light, optical and electronics, electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanote ...
s), and nuclear imaging agents (
PET radiotracer PET radiotracer is a type of radioligand that is used for the diagnostic purposes via positron emission tomography imaging technique. Mechanism PET is a functional imaging technique that produces a three-dimensional image of functional proces ...
s or
SPECT Single-photon emission computed tomography (SPECT, or less commonly, SPET) is a nuclear medicine tomographic imaging technique using gamma rays. It is very similar to conventional nuclear medicine planar imaging using a gamma camera (that is, ...
agents). or in vitro lab test including
DNA sequencing DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. Th ...
and often involve
deep learning Deep learning (also known as deep structured learning) is part of a broader family of machine learning methods based on artificial neural networks with representation learning. Learning can be supervised, semi-supervised or unsupervised. De ...
algorithms that weigh the result of testing for several
biomarker In biomedical contexts, a biomarker, or biological marker, is a measurable indicator of some biological state or condition. Biomarkers are often measured and evaluated using blood, urine, or soft tissues to examine normal biological processes, ...
s. In addition to specific treatment, personalised medicine can greatly aid the advancements of preventive care. For instance, many women are already being genotyped for certain mutations in the BRCA1 and BRCA2 gene if they are predisposed because of a family history of breast cancer or ovarian cancer. As more causes of diseases are mapped out according to mutations that exist within a genome, the easier they can be identified in an individual. Measures can then be taken to prevent a disease from developing. Even if mutations were found within a genome, having the details of their DNA can reduce the impact or delay the onset of certain diseases. Having the genetic content of an individual will allow better guided decisions in determining the source of the disease and thus treating it or preventing its progression. This will be extremely useful for diseases like
Alzheimer Alzheimer's disease (AD) is a neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As t ...
's or cancers that are thought to be linked to certain mutations in our DNA. A tool that is being used now to test efficacy and safety of a drug specific to a targeted patient group/sub-group is
companion diagnostic A medical test is a medical procedure performed to detect, diagnose, or monitor diseases, disease processes, susceptibility, or to determine a course of treatment. Medical tests such as, physical and visual exams, diagnostic imaging, genetic te ...
s. This technology is an assay that is developed during or after a drug is made available on the market and is helpful in enhancing the therapeutic treatment available based on the individual. These companion diagnostics have incorporated the pharmacogenomic information related to the drug into their prescription label in an effort to assist in making the most optimal treatment decision possible for the patient.


Drug development and usage

Having an individual's genomic information can be significant in the process of developing drugs as they await approval from the FDA for public use. Having a detailed account of an individual's genetic make-up can be a major asset in deciding if a patient can be chosen for inclusion or exclusion in the final stages of a clinical trial. Being able to identify patients who will benefit most from a clinical trial will increase the safety of patients from adverse outcomes caused by the product in testing, and will allow smaller and faster trials that lead to lower overall costs. In addition, drugs that are deemed ineffective for the larger population can gain approval by the FDA by using personal genomes to qualify the effectiveness and need for that specific drug or therapy even though it may only be needed by a small percentage of the population., Physicians commonly use a trial and error strategy until they find the treatment therapy that is most effective for their patient. With personalized medicine, these treatments can be more specifically tailored by predicting how an individual's body will respond and if the treatment will work based on their genome. This has been summarized as "therapy with the right drug at the right dose in the right patient." Such an approach would also be more cost-effective and accurate. For instance,
Tamoxifen Tamoxifen, sold under the brand name Nolvadex among others, is a selective estrogen receptor modulator used to prevent breast cancer in women and treat breast cancer in women and men. It is also being studied for other types of cancer. It has b ...
used to be a drug commonly prescribed to women with ER+ breast cancer, but 65% of women initially taking it developed resistance. After research by people such as David Flockhart, it was discovered that women with certain mutation in their
CYP2D6 Cytochrome P450 2D6 (CYP2D6) is an enzyme that in humans is encoded by the ''CYP2D6'' gene. ''CYP2D6'' is primarily expressed in the liver. It is also highly expressed in areas of the central nervous system, including the substantia nigra. CYP2D ...
gene, a gene that encodes the metabolizing enzyme, were not able to efficiently break down Tamoxifen, making it an ineffective treatment for them. Women are now genotyped for these specific mutations to select the most effective treatment. Screening for these mutations is carried out via
high-throughput screening High-throughput screening (HTS) is a method for scientific experimentation especially used in drug discovery and relevant to the fields of biology, materials science and chemistry. Using robotics, data processing/control software, liquid handlin ...
or
phenotypic screening In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological proper ...
. Several
drug discovery In the fields of medicine, biotechnology and pharmacology, drug discovery is the process by which new candidate medications are discovered. Historically, drugs were discovered by identifying the active ingredient from traditional remedies or by ...
and
pharmaceutical A medication (also called medicament, medicine, pharmaceutical drug, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy (pharmacotherapy) is an important part of the medical field and re ...
companies are currently utilizing these technologies to not only advance the study of personalised medicine, but also to amplify
genetic research Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinians, Augustinian fr ...
. Alternative multi-target approaches to the traditional approach of "forward" transfection
library A library is a collection of materials, books or media that are accessible for use and not just for display purposes. A library provides physical (hard copies) or digital access (soft copies) materials, and may be a physical location or a vir ...
screening can entail
reverse transfection Reverse transfection is a technique for the transfer of genetic material into cells. As DNA is printed on a glass slide for the transfection process (the deliberate introduction of nucleic acids into cells) to occur before the addition of adherent ...
or
chemogenomics Chemogenomics, or chemical genomics, is the systematic screening of targeted chemical libraries of small molecules against individual drug target families (e.g., GPCRs, nuclear receptors, kinases, proteases, etc.) with the ultimate goal of identif ...
. Pharmacy
compounding In the field of pharmacy, compounding (performed in compounding pharmacies) is preparation of a custom formulation of a medication to fit a unique need of a patient that cannot be met with commercially available products. This may be done for me ...
is another application of personalised medicine. Though not necessarily using genetic information, the customized production of a drug whose various properties (e.g. dose level, ingredient selection, route of administration, etc.) are selected and crafted for an individual patient is accepted as an area of personalised medicine (in contrast to mass-produced
unit dose Dosage forms (also called unit doses) are pharmaceutical drug products in the form in which they are marketed for use, with a specific mixture of active ingredients and inactive components (excipients), in a particular configuration (such as a cap ...
s or fixed-dose combinations). Computational and mathematical approaches for predicting
drug interaction Drug interactions occur when a drug's mechanism of action is disturbed by the concomitant administration of substances such as foods, beverages, or other drugs. The cause is often the inhibition of the specific receptors available to the drug, ...
s are also being developed. For example, phenotypic response surfaces model the relationships between drugs, their interactions, and an individual's biomarkers. One active area of research is efficiently delivering personalized drugs generated from pharmacy compounding to the disease sites of the body. For instance, researchers are trying to engineer nanocarriers that can precisely target the specific site by using real-time imaging and analyzing the
pharmacodynamics Pharmacodynamics (PD) is the study of the biochemical and physiologic effects of drugs (especially pharmaceutical drugs). The effects can include those manifested within animals (including humans), microorganisms, or combinations of organisms (fo ...
of the
drug delivery Drug delivery refers to approaches, formulations, manufacturing techniques, storage systems, and technologies involved in transporting a pharmaceutical compound to its target site to achieve a desired therapeutic effect. Principles related to d ...
. Several candidate nanocarriers are being investigated, such as
iron oxide nanoparticle Iron oxide nanoparticles are iron oxide particles with diameters between about 1 and 100 nanometers. The two main forms are magnetite () and its oxidized form maghemite (γ-). They have attracted extensive interest due to their superparamagnetic pr ...
s,
quantum dots Quantum dots (QDs) are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanotechnology. When the ...
,
carbon nanotube A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
s,
gold nanoparticles Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is usually either wine-red coloured (for spherical particles less than 100  nm) or blue/purple (for larger spherical particle ...
, and silica nanoparticles. Alteration of surface chemistry allows these nanoparticles to be loaded with drugs, as well as to avoid the body's immune response, making nanoparticle-based theranostics possible. Nanocarriers' targeting strategies are varied according to the disease. For example, if the disease is cancer, a common approach is to identify the biomarker expressed on the surface of cancer cells and to load its associated targeting vector onto nanocarrier to achieve recognition and binding; the size scale of the nanocarriers will also be engineered to reach the
enhanced permeability and retention effect The enhanced permeability and retention (EPR) effect is a controversial concept by which molecules of certain sizes (typically liposomes, nanoparticles, and macromolecular drugs) tend to accumulate in tumor tissue much more than they do in normal t ...
(EPR) in tumor targeting. If the disease is localized in the specific organ, such as the kidney, the surface of the nanocarriers can be coated with a certain
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electr ...
that binds to the receptors inside that organ to achieve organ-targeting drug delivery and avoid non-specific uptake. Despite the great potential of this nanoparticle-based drug delivery system, the significant progress in the field is yet to be made, and the nanocarriers are still being investigated and modified to meet clinical standards.


Theranostics

Theranostics is a personalized approach in
nuclear medicine Nuclear medicine or nucleology is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear imaging, in a sense, is "radiology done inside out" because it records radiation emitting ...
, using similar
molecules A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
for both imaging (diagnosis) and therapy. The term is a
portmanteau A portmanteau word, or portmanteau (, ) is a blend of wordstherapeutics A therapy or medical treatment (often abbreviated tx, Tx, or Tx) is the attempted remediation of a health problem, usually following a medical diagnosis. As a rule, each therapy has indications and contraindications. There are many different ...
" and "
diagnostics Diagnosis is the identification of the nature and cause of a certain phenomenon. Diagnosis is used in many different disciplines, with variations in the use of logic, analytics, and experience, to determine "cause and effect". In systems engineer ...
". Its most common applications are attaching
radionuclide A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transfer ...
s (either gamma or positron emitters) to molecules for
SPECT Single-photon emission computed tomography (SPECT, or less commonly, SPET) is a nuclear medicine tomographic imaging technique using gamma rays. It is very similar to conventional nuclear medicine planar imaging using a gamma camera (that is, ...
or
PET A pet, or companion animal, is an animal kept primarily for a person's company or entertainment rather than as a working animal, livestock, or a laboratory animal. Popular pets are often considered to have attractive appearances, intelligence, ...
imaging, or electron emitters for
radiotherapy Radiation therapy or radiotherapy, often abbreviated RT, RTx, or XRT, is a therapy using ionizing radiation, generally provided as part of cancer treatment to control or kill malignant cells and normally delivered by a linear accelerator. Radia ...
. One of the earliest examples is the use of
radioactive iodine There are 37 known isotopes of iodine (53I) from 108I to 144I; all undergo radioactive decay except 127I, which is stable. Iodine is thus a monoisotopic element. Its longest-lived radioactive isotope, 129I, has a half-life of 15.7 million year ...
for treatment of people with
thyroid cancer Thyroid cancer is cancer that develops from the tissues of the thyroid gland. It is a disease in which cells grow abnormally and have the potential to spread to other parts of the body. Symptoms can include swelling or a lump in the neck. C ...
. Other examples include radio-labelled anti-
CD20 B-lymphocyte antigen CD20 or CD20 is expressed on the surface of all B-cells beginning at the pro-B phase (CD45R+, CD117+) and progressively increasing in concentration until maturity. In humans CD20 is encoded by the ''MS4A1'' gene. This gene e ...
antibodies (e.g.
Bexxar Tositumomab is a murine monoclonal antibody which targets the CD20 antigen produced in mammalian cell. It was combined with iodine-131 to produce a radiopharmaceutical for unsealed source radiotherapy, Iodine-131 Tositumomab (branded as Bexxar), fo ...
) for treating
lymphoma Lymphoma is a group of blood and lymph tumors that develop from lymphocytes (a type of white blood cell). In current usage the name usually refers to just the cancerous versions rather than all such tumours. Signs and symptoms may include enlar ...
,
Radium-223 Radium-223 (223Ra, Ra-223) is an Isotopes of radium#Radium-223, isotope of radium with an 11.4-day half-life. It was discovered in 1905 by T. Godlewski, a Polish chemist from Kraków, and was historically known as Decay chain#Actinium series, ac ...
for treating
bone metastases Bone metastasis, or osseous metastatic disease, is a category of cancer metastases that results from primary tumor invasion to bone. Bone-originating primary tumors such as osteosarcoma, chondrosarcoma, and Ewing's sarcoma are rare; the most common ...
, Lutetium-177 DOTATATE for treating
neuroendocrine tumors Neuroendocrine tumors (NETs) are neoplasms that arise from cells of the endocrine (hormonal) and nervous systems. They most commonly occur in the intestine, where they are often called carcinoid tumors, but they are also found in the pancreas, lung ...
and Lutetium-177 PSMA for treating
prostate cancer Prostate cancer is cancer of the prostate. Prostate cancer is the second most common cancerous tumor worldwide and is the fifth leading cause of cancer-related mortality among men. The prostate is a gland in the male reproductive system that sur ...
. A commonly used
reagent In chemistry, a reagent ( ) or analytical reagent is a substance or compound added to a system to cause a chemical reaction, or test if one occurs. The terms ''reactant'' and ''reagent'' are often used interchangeably, but reactant specifies a ...
is
fluorodeoxyglucose 18F.html" ;"title="sup>18F">sup>18Fluorodeoxyglucose (INN), or fluorodeoxyglucose F 18 (USAN and USP), also commonly called fluorodeoxyglucose and abbreviated 18F.html" ;"title="sup>18F">sup>18FDG, 2- 18F.html" ;"title="sup>18F">sup>18FDG or F ...
, using the isotope
fluorine-18 Fluorine-18 (18F) is a fluorine radioisotope which is an important source of positrons. It has a mass of 18.0009380(6) u and its half-life is 109.771(20) minutes. It decays by positron emission 96% of the time and electron capture 4% of the time ...
.


Respiratory proteomics

Respiratory diseases affect humanity globally, with chronic lung diseases (e.g., asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, among others) and lung cancer causing extensive morbidity and mortality. These conditions are highly heterogeneous and require an early diagnosis. However, initial symptoms are nonspecific, and the clinical diagnosis is made late frequently. Over the last few years, personalized medicine has emerged as a medical care approach that uses novel technology aiming to personalize treatments according to the particular patient's medical needs. In specific,
proteomics Proteomics is the large-scale study of proteins. Proteins are vital parts of living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replication of DNA. In ...
is used to analyze a series of protein expressions, instead of a single
biomarker In biomedical contexts, a biomarker, or biological marker, is a measurable indicator of some biological state or condition. Biomarkers are often measured and evaluated using blood, urine, or soft tissues to examine normal biological processes, ...
. Proteins control the body's biological activities including health and disease, so proteomics is helpful in early diagnosis. In the case of respiratory disease, proteomics analyzes several biological samples including serum, blood cells,
bronchoalveolar lavage fluid Bronchoalveolar lavage (BAL) (also known as bronchoalveolar washing) is a diagnostic method of the lower respiratory system in which a bronchoscope is passed through the mouth or nose into an appropriate airway in the lungs, with a measured amoun ...
s (BAL), nasal lavage fluids (NLF), sputum, among others. The identification and quantification of complete protein expression from these biological samples are conducted by
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is use ...
and advanced analytical techniques. Respiratory proteomics has made significant progress in the development of personalized medicine for supporting health care in recent years. For example, in a study conducted by Lazzari et al. in 2012, the proteomics-based approach has made substantial improvement in identifying multiple biomarkers of lung cancer that can be used in tailoring personalized treatments for individual patients. More and more studies have demonstrated the usefulness of proteomics to provide targeted therapies for respiratory disease.


Cancer genomics

Over recent decades
cancer research Cancer research is research into cancer to identify causes and develop strategies for prevention, diagnosis, treatment, and cure. Cancer research ranges from epidemiology, molecular bioscience to the performance of clinical trials to evaluate and ...
has discovered a great deal about the genetic variety of types of cancer that appear the same in traditional
pathology Pathology is the study of the causes and effects of disease or injury. The word ''pathology'' also refers to the study of disease in general, incorporating a wide range of biology research fields and medical practices. However, when used in ...
. There has also been increasing awareness of tumor heterogeneity, or genetic diversity within a single tumor. Among other prospects, these discoveries raise the possibility of finding that drugs that have not given good results applied to a general population of cases may yet be successful for a proportion of cases with particular genetic profiles. Personalized oncogenomics is the application of personalized medicine to cancer genomics. High-throughput
sequencing In genetics and biochemistry, sequencing means to determine the primary structure (sometimes incorrectly called the primary sequence) of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a sequence which succ ...
methods are used to characterize
genes In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
associated with cancer to better understand disease
pathology Pathology is the study of the causes and effects of disease or injury. The word ''pathology'' also refers to the study of disease in general, incorporating a wide range of biology research fields and medical practices. However, when used in ...
and improve
drug development Drug development is the process of bringing a new pharmaceutical drug to the market once a lead compound has been identified through the process of drug discovery. It includes preclinical research on microorganisms and animals, filing for re ...
. Oncogenomics is one of the most promising branches of
genomics Genomics is an interdisciplinary field of biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, three-dim ...
, particularly because of its implications in drug therapy. Examples of this include: *
Trastuzumab Trastuzumab, sold under the brand name Herceptin among others, is a monoclonal antibody used to treat breast cancer and stomach cancer. It is specifically used for cancer that is HER2 receptor positive. It may be used by itself or together wit ...
(trade names Herclon, Herceptin) is a
monoclonal antibody A monoclonal antibody (mAb, more rarely called moAb) is an antibody produced from a cell Lineage made by cloning a unique white blood cell. All subsequent antibodies derived this way trace back to a unique parent cell. Monoclonal antibodies ca ...
drug that interferes with the
HER2/neu Receptor tyrosine-protein kinase erbB-2 is a protein that in humans is encoded by the ''ERBB2'' gene. ERBB is abbreviated from erythroblastic oncogene B, a gene originally isolated from the avian genome. The human protein is also frequently refer ...
receptor Receptor may refer to: * Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a ...
. Its main use is to treat certain breast cancers. This drug is only used if a patient's cancer is tested for over-expression of the HER2/neu receptor. Two tissue-typing tests are used to screen patients for possible benefit from Herceptin treatment. The tissue tests are
immunohistochemistry Immunohistochemistry (IHC) is the most common application of immunostaining. It involves the process of selectively identifying antigens (proteins) in cells of a tissue section by exploiting the principle of antibodies binding specifically to an ...
(IHC) and
Fluorescence In Situ Hybridization Fluorescence ''in situ'' hybridization (FISH) is a molecular cytogenetic technique that uses fluorescent probes that bind to only particular parts of a nucleic acid sequence with a high degree of sequence complementarity. It was developed b ...
(FISH) Only Her2+ patients will be treated with Herceptin therapy (trastuzumab) *
Tyrosine kinase A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to the tyrosine residues of specific proteins inside a cell. It functions as an "on" or "off" switch in many cellular functions. Tyrosine kinases belong to a larger cla ...
inhibitors such as
imatinib Imatinib, sold under the brand names Gleevec and Glivec (both marketed worldwide by Novartis) among others, is an oral chemotherapy medication used to treat cancer. Imatinib is a small molecule inhibitor targeting multiple receptor tyrosine kin ...
(marketed as Gleevec) have been developed to treat
chronic myeloid leukemia Chronic myelogenous leukemia (CML), also known as chronic myeloid leukemia, is a cancer of the white blood cells. It is a form of leukemia characterized by the increased and unregulated growth of myeloid cells in the bone marrow and the accumulat ...
(CML), in which the
BCR-ABL The Philadelphia chromosome or Philadelphia translocation (Ph) is a specific genetic abnormality in chromosome 22 of leukemia cancer cells (particularly chronic myeloid leukemia (CML) cells). This chromosome is defective and unusually short becaus ...
fusion gene A fusion gene is a hybrid gene formed from two previously independent genes. It can occur as a result of translocation, interstitial deletion, or chromosomal inversion. Fusion genes have been found to be prevalent in all main types of human neopla ...
(the product of a
reciprocal translocation In genetics, chromosome translocation is a phenomenon that results in unusual rearrangement of chromosomes. This includes balanced and unbalanced translocation, with two main types: reciprocal-, and Robertsonian translocation. Reciprocal translo ...
between chromosome 9 and chromosome 22) is present in >95% of cases and produces hyperactivated abl-driven protein signaling. These medications specifically inhibit the Ableson tyrosine kinase (ABL) protein and are thus a prime example of "rational drug design" based on knowledge of disease pathophysiology. * The FoundationOne CDx report produced by
Foundation Medicine Foundation Medicine, Inc. is an American company based in Cambridge, Massachusetts, which develops, manufactures, and sells genomic profiling assays based on next-generation sequencing technology for solid tumors, hematologic malignancies, and sa ...
, which looks at genes in individual patients' tumor biopsies and recommends specific drugs * High mutation burden is indicative of response to immunotherapy, and also specific patterns of mutations have been associated with previous exposure to cytotoxic cancer drugs.


Population screening

Through the use of genomics (
microarray A microarray is a multiplex lab-on-a-chip. Its purpose is to simultaneously detect the expression of thousands of genes from a sample (e.g. from a tissue). It is a two-dimensional array on a solid substrate—usually a glass slide or silicon t ...
),
proteomics Proteomics is the large-scale study of proteins. Proteins are vital parts of living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replication of DNA. In ...
(tissue array), and imaging (
fMRI Functional magnetic resonance imaging or functional MRI (fMRI) measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area o ...
,
micro-CT X-ray microtomography, like tomography and X-ray computed tomography, uses X-rays to create cross-sections of a physical object that can be used to recreate a virtual model (3D model) without destroying the original object. The prefix ''micro-'' ...
) technologies, molecular-scale information about patients can be easily obtained. These so-called molecular biomarkers have proven powerful in disease prognosis, such as with cancer. The main three areas of cancer prediction fall under cancer recurrence, cancer susceptibility and cancer survivability. Combining molecular scale information with macro-scale clinical data, such as patients' tumor type and other risk factors, significantly improves prognosis. Consequently, given the use of molecular biomarkers, especially genomics, cancer prognosis or prediction has become very effective, especially when screening a large population. Essentially, population genomics screening can be used to identify people at risk for disease, which can assist in preventative efforts. Genetic data can be used to construct
polygenic score In genetics, a polygenic score (PGS), also called a polygenic risk score (PRS), polygenic index (PGI), genetic risk score, or genome-wide score, is a number that summarizes the estimated effect of many genetic variants on an individual's phenotyp ...
s, which estimate traits such as disease risk by summing the estimated effects of individual variants discovered through a GWAS. These have been used for a wide variety of conditions, such as cancer, diabetes, and coronary artery disease. Many genetic variants are associated with ancestry, and it remains a challenge to both generate accurate estimates and to decouple biologically relevant variants from those that are coincidentally associated. Estimates generated from one population do not usually transfer well to others, requiring sophisticated methods and more diverse and global data. Most studies have used data from those with European ancestry, leading to calls for more equitable genomics practices to reduce health disparities. Additionally, while polygenic scores have some predictive accuracy, their interpretations are limited to estimating an individual's
percentile In statistics, a ''k''-th percentile (percentile score or centile) is a score ''below which'' a given percentage ''k'' of scores in its frequency distribution falls (exclusive definition) or a score ''at or below which'' a given percentage falls ...
and
translational research Translational research (also called translation research, translational science, or, when the context is clear, simply translation) is research aimed at translating (converting) results in basic research into results that directly benefit humans. ...
is needed for clinical use.


Challenges

As personalised medicine is practiced more widely, a number of challenges arise. The current approaches to intellectual property rights, reimbursement policies, patient privacy, data biases and confidentiality as well as regulatory oversight will have to be redefined and restructured to accommodate the changes personalised medicine will bring to healthcare. For instance, a survey performed in the UK concluded that 63% of UK adults are not comfortable with their personal data being used for the sake of utilizing AI in the medical field. Furthermore, the analysis of acquired diagnostic
data In the pursuit of knowledge, data (; ) is a collection of discrete values that convey information, describing quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted ...
is a recent challenge of personalized medicine and its implementation. For example, genetic data obtained from
next-generation sequencing Massive parallel sequencing or massively parallel sequencing is any of several high-throughput approaches to DNA sequencing using the concept of massively parallel processing; it is also called next-generation sequencing (NGS) or second-generation s ...
requires computer-intensive
data processing Data processing is the collection and manipulation of digital data to produce meaningful information. Data processing is a form of ''information processing'', which is the modification (processing) of information in any manner detectable by an ...
prior to its analysis. In the future, adequate tools will be required to accelerate the adoption of personalised medicine to further fields of medicine, which requires the interdisciplinary cooperation of experts from specific fields of research, such as
medicine Medicine is the science and practice of caring for a patient, managing the diagnosis, prognosis, prevention, treatment, palliation of their injury or disease, and promoting their health. Medicine encompasses a variety of health care pract ...
, clinical
oncology Oncology is a branch of medicine that deals with the study, treatment, diagnosis and prevention of cancer. A medical professional who practices oncology is an ''oncologist''. The name's etymological origin is the Greek word ὄγκος (''ó ...
,
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
, and
artificial intelligence Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by animals and humans. Example tasks in which this is done include speech re ...
.


Regulatory oversight

The
U.S. Food and Drug Administration The United States Food and Drug Administration (FDA or US FDA) is a federal agency of the Department of Health and Human Services. The FDA is responsible for protecting and promoting public health through the control and supervision of food s ...
(FDA) has started taking initiatives to integrate personalised medicine into their regulatory policies. In October 2013, the agency published a report entitled "''Paving the Way for Personalized Medicine: FDA's role in a New Era of Medical Product Development''," in which they outlined steps they would have to take to integrate genetic and biomarker information for clinical use and drug development. These included developing specific regulatory standards,
research methods Research is "creativity, creative and systematic work undertaken to increase the stock of knowledge". It involves the collection, organization and analysis of evidence to increase understanding of a topic, characterized by a particular att ...
and reference materials. An example of the latter category they were working on is a "genomic reference library", aimed at improving quality and reliability of different
sequencing In genetics and biochemistry, sequencing means to determine the primary structure (sometimes incorrectly called the primary sequence) of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a sequence which succ ...
platforms. A major challenge for those regulating personalized medicine is a way to demonstrate its
effectiveness Effectiveness is the capability of producing a desired result or the ability to produce desired output. When something is deemed effective, it means it has an intended or expected outcome, or produces a deep, vivid impression. Etymology The ori ...
relative to the current
standard of care In tort law, the standard of care is the only degree of prudence and caution required of an individual who is under a duty of care. The requirements of the standard are closely dependent on circumstances. Whether the standard of care has been b ...
. The new technology must be assessed for both clinical and cost effectiveness, and , regulatory agencies had no standardized method.


Intellectual property rights

As with any innovation in medicine, investment and interest in personalised medicine is influenced by intellectual property rights. There has been a lot of controversy regarding patent protection for diagnostic tools, genes, and biomarkers. In June 2013, the U.S. Supreme Court ruled that natural occurring genes cannot be patented, while "synthetic DNA" that is edited or artificially- created can still be patented. The Patent Office is currently reviewing a number of issues related to patent laws for personalised medicine, such as whether "confirmatory" secondary genetic tests post initial diagnosis, can have full immunity from patent laws. Those who oppose patents argue that patents on DNA sequences are an impediment to ongoing research while proponents point to
research exemption In patent law, the research exemption or safe harbor exemption is an exemption to the rights conferred by patents, which is especially relevant to drugs. According to this exemption, despite the patent rights, performing research and tests for prepa ...
and stress that patents are necessary to entice and protect the financial investments required for commercial research and the development and advancement of services offered.


Reimbursement policies

Reimbursement policies will have to be redefined to fit the changes that personalised medicine will bring to the healthcare system. Some of the factors that should be considered are the level of efficacy of various genetic tests in the general population, cost-effectiveness relative to benefits, how to deal with payment systems for extremely rare conditions, and how to redefine the insurance concept of "shared risk" to incorporate the effect of the newer concept of "individual risk factors". The study, ''Barriers to the Use of Personalized Medicine in Breast Cancer'', took two different diagnostic tests which are BRACAnalysis and Oncotype DX. These tests have over ten-day turnaround times which results in the tests failing and delays in treatments. Patients are not being reimbursed for these delays which results in tests not being ordered. Ultimately, this leads to patients having to pay out-of-pocket for treatments because insurance companies do not want to accept the risks involved.


Patient privacy and confidentiality

Perhaps the most critical issue with the commercialization of personalised medicine is the protection of patients. One of the largest issues is the fear and potential consequences for patients who are predisposed after
genetic testing Genetic testing, also known as DNA testing, is used to identify changes in DNA sequence or chromosome structure. Genetic testing can also include measuring the results of genetic changes, such as RNA analysis as an output of gene expression, or ...
or found to be non-responsive towards certain treatments. This includes the psychological effects on patients due to genetic testing results. The right of family members who do not directly consent is another issue, considering that genetic predispositions and risks are inheritable. The implications for certain ethnic groups and presence of a common allele would also have to be considered. Moreover, we could refer to the privacy issue at all layers of personalized medicine from discovery to treatment. One of the leading issues is the consent of the patients to have their information used in genetic testing algorithms primarily AI algorithms. The consent of the institution who is providing the data to be used is of prominent concern as well. In 2008, the Genetic Information Nondiscrimination Act (GINA) was passed in an effort to minimize the fear of patients participating in genetic research by ensuring that their genetic information will not be misused by employers or insurers. On February 19, 2015, FDA issued a press release titled: "FDA permits marketing of first direct-to-consumer genetic carrier test for Bloom syndrome.


Data biases

Data biases also play an integral role in personalized medicine. It is important to ensure that the sample of genes being tested come from different populations. This is to ensure that the samples do not exhibit the same human biases we use in decision making. Consequently, if the designed algorithms for personalized medicine are biased, then the outcome of the algorithm will also be biased because of the lack of genetic testing in certain populations. For instance, the results from the Framingham Heart Study have led to biased outcomes of predicting the risk of cardiovascular disease. This is because the sample was tested only on white people and when applied to the non-white population, the results were biased with overestimation and underestimation risks of cardiovascular disease.


Implementation

Several issues must be addressed before personalized medicine can be implemented. Very little of the human genome has been analyzed, and even if healthcare providers had access to a patient's full genetic information, very little of it could be effectively leveraged into treatment. Challenges also arise when processing such large amounts of genetic data. Even with error rates as low as 1 per 100 kilobases, processing a human genome could have roughly 30,000 errors. This many errors, especially when trying to identify specific markers, can make discoveries and verifiability difficult. There are methods to overcome this, but they are computationally taxing and expensive. There are also issues from an effectiveness standpoint, as after the genome has been processed, function in the variations among genomes must be analyzed using genome-wide studies. While the impact of the SNPs discovered in these kinds of studies can be predicted, more work must be done to control for the vast amounts of variation that can occur because of the size of the genome being studied. In order to effectively move forward in this area, steps must be taken to ensure the data being analyzed is good, and a wider view must be taken in terms of analyzing multiple SNPs for a phenotype. The most pressing issue that the implementation of personalized medicine is to apply the results of genetic mapping to improve the healthcare system. This is not only due to the infrastructure and technology required for a centralized database of genome data, but also the physicians that would have access to these tools would likely be unable to fully take advantage of them. In order to truly implement a personalized medicine healthcare system, there must be an end-to-end change. The
Copenhagen Institute for Futures Studies The Copenhagen Institute for Futures Studies (Danish: ''Instituttet for Fremtidsforskning'') is a Danish not-for-profit, independent futures think tank founded in 1969 by Thorkil Kristensen, former OECD Secretary-General for the betterment of our ...
and
Roche F. Hoffmann-La Roche AG, commonly known as Roche, is a Swiss multinational healthcare company that operates worldwide under two divisions: Pharmaceuticals and Diagnostics. Its holding company, Roche Holding AG, has shares listed on the SIX S ...
set up FutureProofing Healthcare which produces a Personalised Health Index, rating different countries performance against 27 different indicators of personalised health across four categories called 'Vital Signs'. They have run conferences in many countries to examine their findings.


See also

*
Personal genomics Personal genomics or consumer genetics is the branch of genomics concerned with the sequencing, analysis and interpretation of the genome of an individual. The genotyping stage employs different techniques, including single-nucleotide polymorphi ...
*
Phenotypic screening In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological proper ...


References


External links


2023 Watch List: Top 10 Precision Medicine Technologies and Issues
Canadian Drug Agency, 2024 {{Authority control Biomarkers Biotechnology Chemical pathology Medical signs Medical models Personalized medicine