In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, an altitude of a
triangle
A triangle is a polygon with three Edge (geometry), edges and three Vertex (geometry), vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, an ...
is a
line segment
In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
through a
vertex
Vertex, vertices or vertexes may refer to:
Science and technology Mathematics and computer science
*Vertex (geometry), a point where two or more curves, lines, or edges meet
*Vertex (computer graphics), a data structure that describes the position ...
and
perpendicular
In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
to (i.e., forming a
right angle
In geometry and trigonometry, a right angle is an angle of exactly 90 Degree (angle), degrees or radians corresponding to a quarter turn (geometry), turn. If a Line (mathematics)#Ray, ray is placed so that its endpoint is on a line and the ad ...
with) a line containing the
base (the side opposite the vertex). This line containing the opposite side is called the ''extended base'' of the altitude. The intersection of the
extended base and the altitude is called the ''foot'' of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as ''dropping the altitude'' at that vertex. It is a special case of
orthogonal projection
In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself (an endomorphism) such that P\circ P=P. That is, whenever P is applied twice to any vector, it gives the same result as if it wer ...
.
Altitudes can be used in the computation of the
area of a triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, any three points, when non-collinear ...
: one half of the product of an altitude's length and its base's length equals the triangle's area. Thus, the longest altitude is perpendicular to the shortest side of the triangle. The altitudes are also related to the sides of the triangle through the
trigonometric functions
In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all ...
.
In an
isosceles triangle
In geometry, an isosceles triangle () is a triangle that has two sides of equal length. Sometimes it is specified as having ''exactly'' two sides of equal length, and sometimes as having ''at least'' two sides of equal length, the latter versio ...
(a triangle with two
congruent
Congruence may refer to:
Mathematics
* Congruence (geometry), being the same size and shape
* Congruence or congruence relation, in abstract algebra, an equivalence relation on an algebraic structure that is compatible with the structure
* In mod ...
sides), the altitude having the incongruent side as its base will have the
midpoint
In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.
Formula
The midpoint of a segment in ''n''-dimens ...
of that side as its foot. Also the altitude having the incongruent side as its base will be the
angle bisector
In geometry, bisection is the division of something into two equal or congruent parts, usually by a line, which is then called a ''bisector''. The most often considered types of bisectors are the ''segment bisector'' (a line that passes through ...
of the vertex angle.
It is common to mark the altitude with the letter (as in ''height''), often subscripted with the name of the side the altitude is drawn to.
In a
right triangle
A right triangle (American English) or right-angled triangle (British), or more formally an orthogonal triangle, formerly called a rectangled triangle ( grc, ὀρθόσγωνία, lit=upright angle), is a triangle in which one angle is a right an ...
, the altitude drawn to the
hypotenuse
In geometry, a hypotenuse is the longest side of a right-angled triangle, the side opposite the right angle. The length of the hypotenuse can be found using the Pythagorean theorem, which states that the square of the length of the hypotenuse equa ...
divides the hypotenuse into two segments of lengths and . If we denote the length of the altitude by , we then have the relation
:
(
Geometric mean theorem
The right triangle altitude theorem or geometric mean theorem is a result in elementary geometry that describes a relation between the altitude on the hypotenuse in a right triangle and the two line segments it creates on the hypotenuse. It states ...
)
For acute triangles the feet of the altitudes all fall on the triangle's sides (not extended). In an obtuse triangle (one with an
obtuse angle
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle.
Angles formed by two rays lie in the plane that contains the rays. Angles are ...
), the foot of the altitude to the obtuse-angled vertex falls in the interior of the opposite side, but the feet of the altitudes to the acute-angled vertices fall on the opposite
extended side
In plane geometry, an extended side or sideline of a polygon is the line that contains one side of the polygon. The extension of a side arises in various contexts.
Triangle
In an obtuse triangle, the altitudes from the acute angled vertices i ...
, exterior to the triangle. This is illustrated in the adjacent diagram: in this obtuse triangle, an altitude dropped perpendicularly from the top vertex, which has an acute angle, intersects the extended horizontal side outside the triangle.
Orthocenter
The three (possibly extended) altitudes intersect in a single point, called the orthocenter of the triangle, usually denoted by .
The orthocenter lies inside the triangle
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bicondi ...
the triangle is acute (i.e. does not have an angle greater than or equal to a right angle). If one angle is a right angle, the orthocenter coincides with the vertex at the right angle.
Let denote the vertices and also the angles of the triangle, and let be the side lengths. The orthocenter has
trilinear coordinates
In geometry, the trilinear coordinates of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio is t ...
[Clark Kimberling's Encyclopedia of Triangle Centers ]
and
barycentric coordinates
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
:
::
Since barycentric coordinates are all positive for a point in a triangle's interior but at least one is negative for a point in the exterior, and two of the barycentric coordinates are zero for a vertex point, the barycentric coordinates given for the orthocenter show that the orthocenter is in an
acute triangle's interior, on the right-angled vertex of a
right triangle
A right triangle (American English) or right-angled triangle (British), or more formally an orthogonal triangle, formerly called a rectangled triangle ( grc, ὀρθόσγωνία, lit=upright angle), is a triangle in which one angle is a right an ...
, and exterior to an
obtuse triangle
An acute triangle (or acute-angled triangle) is a triangle with three acute angles (less than 90°). An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle's ang ...
.
In the
complex plane
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
, let the points and represent the
numbers
A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
,
and, respectively,
and assume that the
circumcenter
In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.
Not every polyg ...
of triangle is located at the origin of the plane. Then, the complex number
:
is represented by the point , namely the orthocenter of triangle .
[Andreescu, Titu; Andrica, Dorin, "Complex numbers from A to...Z". Birkhäuser, Boston, 2006, , page 90, Proposition 3] From this, the following characterizations of the orthocenter by means of
free vectors can be established straightforwardly:
:
The first of the previous vector identities is also known as the ''problem of Sylvester'', proposed by
James Joseph Sylvester
James Joseph Sylvester (3 September 1814 – 15 March 1897) was an English mathematician. He made fundamental contributions to matrix theory, invariant theory, number theory, partition theory, and combinatorics. He played a leadership ro ...
.
[Dörrie, Heinrich, "100 Great Problems of Elementary Mathematics. Their History and Solution". Dover Publications, Inc., New York, 1965, , page 142]
Properties
Let , and denote the feet of the altitudes from , and respectively. Then:
*The product of the lengths of the segments that the orthocenter divides an altitude into is the same for all three altitudes:
:
:The circle centered at having radius the square root of this constant is the triangle's
polar circle
A polar circle is a geographic term for a conditional circular line (arc) referring either to the Arctic Circle or the Antarctic Circle. These are two of the keynote circles of latitude (parallels). On Earth, the Arctic Circle is currently ...
.
*The sum of the ratios on the three altitudes of the distance of the orthocenter from the base to the length of the altitude is 1:
[Panapoi,Ronnachai, "Some properties of the orthocenter of a triangle"]
University of Georgia
, mottoeng = "To teach, to serve, and to inquire into the nature of things.""To serve" was later added to the motto without changing the seal; the Latin motto directly translates as "To teach and to inquire into the nature of things."
, establ ...
. (This property and the next one are applications of a
more general property of any interior point and the three
cevian
In geometry, a cevian is a line that intersects both a triangle's vertex, and also the side that is opposite to that vertex. Medians and angle bisectors are special cases of cevians. The name "cevian" comes from the Italian mathematician Giovann ...
s through it.)
:
*The sum of the ratios on the three altitudes of the distance of the orthocenter from the vertex to the length of the altitude is 2:
[
:
*The ]isogonal conjugate __notoc__
In geometry, the isogonal conjugate of a point with respect to a triangle is constructed by reflecting the lines about the angle bisectors of respectively. These three reflected lines concur at the isogonal conjugate of . (This ...
of the orthocenter is the circumcenter
In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.
Not every polyg ...
of the triangle.
*The isotomic conjugate
In geometry, the isotomic conjugate of a point with respect to a triangle is another point, defined in a specific way from and : If the base points of the lines on the sides opposite are reflected about the midpoints of their respective sid ...
of the orthocenter is the symmedian point
In geometry, symmedians are three particular lines associated with every triangle. They are constructed by taking a median of the triangle (a line connecting a vertex with the midpoint of the opposite side), and reflecting the line over the corr ...
of the anticomplementary triangle
In Euclidean geometry, the medial triangle or midpoint triangle of a triangle is the triangle with vertices at the midpoints of the triangle's sides . It is the case of the midpoint polygon of a polygon with sides. The medial triangle is not ...
.
*Four points in the plane, such that one of them is the orthocenter of the triangle formed by the other three, is called an orthocentric system
In geometry, an orthocentric system is a set of four points on a plane, one of which is the orthocenter of the triangle formed by the other three. Equivalently, the lines passing through disjoint pairs among the points are perpendicular, and t ...
or orthocentric quadrangle.
Relation with circles and conics
Denote the circumradius
In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.
Not every polyg ...
of the triangle by . Then
:
In addition, denoting as the radius of the triangle's incircle
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter.
...
, , and as the radii of its excircle
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter.
...
s, and again as the radius of its circumcircle, the following relations hold regarding the distances of the orthocenter from the vertices:
:
:
If any altitude, for example, , is extended to intersect the circumcircle at , so that is a chord of the circumcircle, then the foot bisects segment :[
:
The directrices of all ]parabola
In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.
One descript ...
s that are externally tangent to one side of a triangle and tangent to the extensions of the other sides pass through the orthocenter.
A circumconic
In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle.Weisstein, Eric W. "Inconic." From MathWorld ...
passing through the orthocenter of a triangle is a rectangular hyperbola
In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, cal ...
.
Relation to other centers, the nine-point circle
The orthocenter , the centroid
In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any ob ...
, the circumcenter
In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.
Not every polyg ...
, and the center of the nine-point circle
In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are:
* The midpoint of eac ...
all lie on a single line, known as the Euler line
In geometry, the Euler line, named after Leonhard Euler (), is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, inclu ...
. The center of the nine-point circle lies at the midpoint
In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.
Formula
The midpoint of a segment in ''n''-dimens ...
of the Euler line, between the orthocenter and the circumcenter, and the distance between the centroid and the circumcenter is half of that between the centroid and the orthocenter:
:
:
The orthocenter is closer to the incenter
In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisec ...
than it is to the centroid, and the orthocenter is farther than the incenter is from the centroid:
:
:
In terms of the sides , inradius
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter.
...
and circumradius
In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.
Not every polyg ...
,
:[Smith, Geoff, and Leversha, Gerry, "Euler and triangle geometry", ''Mathematical Gazette'' 91, November 2007, 436–452.]
:
Orthic triangle
If the triangle is oblique
Oblique may refer to:
* an alternative name for the character usually called a slash (punctuation) ( / )
* Oblique angle, in geometry
*Oblique triangle, in geometry
*Oblique lattice, in geometry
* Oblique leaf base, a characteristic shape of the b ...
(does not contain a right-angle), the pedal triangle
In geometry, a pedal triangle is obtained by projecting a point onto the sides of a triangle.
More specifically, consider a triangle ''ABC'', and a point ''P'' that is not one of the vertices ''A, B, C''. Drop perpendiculars from ''P'' to the thr ...
of the orthocenter of the original triangle is called the orthic triangle or altitude triangle. That is, the feet of the altitudes of an oblique triangle form the orthic triangle, . Also, the incenter (the center of the inscribed circle) of the orthic triangle is the orthocenter of the original triangle .[
See also: Corollary 5.5, p. 318.
]
Trilinear coordinates
In geometry, the trilinear coordinates of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio is t ...
for the vertices of the orthic triangle are given by
*
*
* .
The extended side
In plane geometry, an extended side or sideline of a polygon is the line that contains one side of the polygon. The extension of a side arises in various contexts.
Triangle
In an obtuse triangle, the altitudes from the acute angled vertices i ...
s of the orthic triangle meet the opposite extended sides of its reference triangle at three collinear points
In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned ...
.
In any acute triangle
An acute triangle (or acute-angled triangle) is a triangle with three acute angles (less than 90°). An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle's ang ...
, the inscribed triangle with the smallest perimeter is the orthic triangle. This is the solution to Fagnano's problem
In geometry, Fagnano's problem is an optimization problem that was first stated by Giovanni Fagnano in 1775:
The solution is the orthic triangle, with vertices at the base points of the altitudes of the given triangle.
Solution
The orthic tria ...
, posed in 1775. The sides of the orthic triangle are parallel to the tangents to the circumcircle at the original triangle's vertices.
The orthic triangle of an acute triangle gives a triangular light route.
The tangent lines of the nine-point circle at the midpoints of the sides of are parallel to the sides of the orthic triangle, forming a triangle similar to the orthic triangle.
The orthic triangle is closely related to the tangential triangle
In geometry, the tangential triangle of a reference triangle (other than a right triangle) is the triangle whose sides are on the tangent lines to the reference triangle's circumcircle at the reference triangle's vertices. Thus the incircle of the ...
, constructed as follows: let be the line tangent to the circumcircle of triangle at vertex , and define and analogously. Let , , . The tangential triangle is , whose sides are the tangents to triangle 's circumcircle at its vertices; it is homothetic to the orthic triangle. The circumcenter of the tangential triangle, and the center of similitude
In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another. If the center is ''extern ...
of the orthic and tangential triangles, are on the Euler line
In geometry, the Euler line, named after Leonhard Euler (), is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, inclu ...
.
Trilinear coordinates for the vertices of the tangential triangle are given by
*
*
* .
The reference triangle and its orthic triangle are orthologic triangles
In geometry, two triangles are said to be orthologic if the perpendiculars from the vertices of one of them to the corresponding sides of the other are concurrent (i.e., they intersect at a single point). This is a symmetric property; that is, ...
.
For more information on the orthic triangle, see here
Here is an adverb that means "in, on, or at this place". It may also refer to:
Software
* Here Technologies, a mapping company
* Here WeGo (formerly Here Maps), a mobile app and map website by Here
Television
* Here TV (formerly "here!"), a TV ...
.
Some additional altitude theorems
Altitude in terms of the sides
For any triangle with sides and semiperimeter , the altitude from side is given by
:
This follows from combining Heron's formula
In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . If s = \tfrac12(a + b + c) is the semiperimeter of the triangle, the area is,
:A = \sqrt.
It is named after first-century ...
for the area of a triangle in terms of the sides with the area formula (1/2)×base×height, where the base is taken as side and the height is the altitude from .
Inradius theorems
Consider an arbitrary triangle with sides and with corresponding
altitudes , and . The altitudes and the incircle
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter.
...
radius are related by
:
Circumradius theorem
Denoting the altitude from one side of a triangle as , the other two sides as and , and the triangle's circumradius
In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.
Not every polyg ...
(radius of the triangle's circumscribed circle) as , the altitude is given by
:
Interior point
If , and are the perpendicular distances from any point to the sides, and , and are the altitudes to the respective sides, then
:
Area theorem
Denoting the altitudes of any triangle from sides , and respectively as , , and , and denoting the semi-sum of the reciprocals of the altitudes as we have
:
General point on an altitude
If is any point on an altitude of any triangle , then[ Alfred S. Posamentier and Charles T. Salkind, ''Challenging Problems in Geometry'', Dover Publishing Co., second revised edition, 1996.]
:
Special case triangles
Equilateral triangle
For any point within an equilateral triangle
In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each othe ...
, the sum of the perpendiculars to the three sides is equal to the altitude of the triangle. This is Viviani's theorem
Viviani's theorem, named after Vincenzo Viviani, states that the sum of the distances from ''any'' interior point to the sides of an equilateral triangle equals the length of the triangle's altitude. It is a theorem commonly employed in various ma ...
.
Right triangle
In a right triangle the three altitudes , and (the first two of which equal the leg lengths and respectively) are related according to
:
This is also known as the inverse Pythagorean theorem
In geometry, the inverse Pythagorean theorem (also known as the reciprocal Pythagorean theorem or the upside down Pythagorean theorem) is as follows:
:Let ''A'', ''B'' be the endpoints of the hypotenuse of a right triangle ''ABC''. Let ''D'' be t ...
.
History
The theorem that the three altitudes of a triangle meet in a single point, the orthocenter, was first proved in a 1749 publication by William Chapple.[Footnote on pp. 207–208]
Quoted by
See also
*Triangle center
In geometry, a triangle center (or triangle centre) is a point in the plane that is in some sense a center of a triangle akin to the centers of squares and circles, that is, a point that is in the middle of the figure by some measure. For example ...
*Median (geometry)
In geometry, a median of a triangle is a line segment joining a vertex (geometry), vertex to the midpoint of the opposite side, thus bisecting that side. Every triangle has exactly three medians, one from each vertex, and they all intersect each ...
Notes
References
*
*
*
*
External links
* {{MathWorld, title=Altitude, urlname=Altitude
Orthocenter of a triangle
With interactive animation
Compass and straightedge.
Fagnano's Problem
by Jay Warendorff, Wolfram Demonstrations Project
The Wolfram Demonstrations Project is an organized, open-source collection of small (or medium-size) interactive programs called Demonstrations, which are meant to visually and interactively represent ideas from a range of fields. It is hos ...
.
Straight lines defined for a triangle
de:Höhe (Geometrie)
he:גובה (גאומטריה)