Number One Spaceboy (Luther Hargreeves)
   HOME

TheInfoList



OR:

A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
s, called ''numerals''; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number. The most common numeral system is the Hindu–Arabic numeral system, which allows for the representation of any number using a combination of ten fundamental numeric symbols, called
digit Digit may refer to: Mathematics and science * Numerical digit, as used in mathematics or computer science ** Hindu-Arabic numerals, the most common modern representation of numerical digits * Digit (anatomy), the most distal part of a limb, such ...
s. In addition to their use in counting and measuring, numerals are often used for labels (as with telephone numbers), for ordering (as with
serial number A serial number is a unique identifier assigned incrementally or sequentially to an item, to ''uniquely'' identify it. Serial numbers need not be strictly numerical. They may contain letters and other typographical symbols, or may consist enti ...
s), and for codes (as with ISBNs). In common usage, a ''numeral'' is not clearly distinguished from the ''number'' that it represents. In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the notion of a number has been extended over the centuries to include zero (0),
negative number In mathematics, a negative number represents an opposite. In the real number system, a negative number is a number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency. A debt that is owed m ...
s, rational numbers such as
one half One half ( : halves) is the irreducible fraction resulting from dividing one by two or the fraction resulting from dividing any number by its double. Multiplication by one half is equivalent to division by two, or "halving"; conversely, d ...
\left(\tfrac\right), real numbers such as the
square root of 2 The square root of 2 (approximately 1.4142) is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as \sqrt or 2^, and is an algebraic number. Technically, it should be called the princip ...
\left(\sqrt\right) and , and complex numbers which extend the real numbers with a square root of (and its combinations with real numbers by adding or subtracting its multiples).
Calculation A calculation is a deliberate mathematical process that transforms one or more inputs into one or more outputs or ''results''. The term is used in a variety of senses, from the very definite arithmetical calculation of using an algorithm, to th ...
s with numbers are done with arithmetical operations, the most familiar being
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol ) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication and Division (mathematics), division. ...
,
subtraction Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. Subtraction is signified by the minus sign, . For example, in the adjacent picture, there are peaches—meaning 5 peaches with 2 taken ...
,
multiplication Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being additi ...
, division, and exponentiation. Their study or usage is called
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
, a term which may also refer to number theory, the study of the properties of numbers. Besides their practical uses, numbers have cultural significance throughout the world. For example, in Western society, the
number 13 Number 13 can refer to: * 13 (number) * Number 13 (comics) a comic strip in ''The Beano'' * ''Number 13'' (1922 film), a film by Alfred Hitchcock and starring Ernest Thesiger which was shot but never completed and is believed to be lost * "Number ...
is often regarded as
unlucky Luck is the phenomenon and belief that defines the experience of improbable events, especially improbably positive or negative ones. The naturalistic interpretation is that positive and negative events may happen at any time, both due to rand ...
, and " a million" may signify "a lot" rather than an exact quantity. Though it is now regarded as pseudoscience, belief in a mystical significance of numbers, known as
numerology Numerology (also known as arithmancy) is the belief in an occult, divine or mystical relationship between a number and one or more coinciding events. It is also the study of the numerical value, via an alphanumeric system, of the letters in ...
, permeated ancient and medieval thought. Numerology heavily influenced the development of
Greek mathematics Greek mathematics refers to mathematics texts and ideas stemming from the Archaic through the Hellenistic and Roman periods, mostly extant from the 7th century BC to the 4th century AD, around the shores of the Eastern Mediterranean. Greek mathem ...
, stimulating the investigation of many problems in number theory which are still of interest today. During the 19th century, mathematicians began to develop many different abstractions which share certain properties of numbers, and may be seen as extending the concept. Among the first were the hypercomplex numbers, which consist of various extensions or modifications of the complex number system. In modern mathematics, number systems are considered important special examples of more general algebraic structures such as rings and fields, and the application of the term "number" is a matter of convention, without fundamental significance.


History


Numerals

Numbers should be distinguished from numerals, the symbols used to represent numbers. The Egyptians invented the first ciphered numeral system, and the Greeks followed by mapping their counting numbers onto Ionian and Doric alphabets. Roman numerals, a system that used combinations of letters from the Roman alphabet, remained dominant in Europe until the spread of the superior Hindu–Arabic numeral system around the late 14th century, and the Hindu–Arabic numeral system remains the most common system for representing numbers in the world today. The key to the effectiveness of the system was the symbol for zero, which was developed by ancient
Indian mathematicians chronology of Indian mathematicians spans from the Indus Valley civilisation and the Vedas to Modern India. Indian mathematicians have made a number of contributions to mathematics that have significantly influenced scientists and mathematicians ...
around 500 AD.


First use of numbers

Bones and other artifacts have been discovered with marks cut into them that many believe are tally marks. These tally marks may have been used for counting elapsed time, such as numbers of days, lunar cycles or keeping records of quantities, such as of animals. A tallying system has no concept of place value (as in modern
decimal The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral ...
notation), which limits its representation of large numbers. Nonetheless, tallying systems are considered the first kind of abstract numeral system. The first known system with place value was the Mesopotamian base 60 system ( BC) and the earliest known base 10 system dates to 3100 BC in Egypt.


Zero

The first known documented use of zero dates to AD 628, and appeared in the '' Brāhmasphuṭasiddhānta'', the main work of the Indian mathematician
Brahmagupta Brahmagupta ( – ) was an Indian mathematician and astronomer. He is the author of two early works on mathematics and astronomy: the ''Brāhmasphuṭasiddhānta'' (BSS, "correctly established doctrine of Brahma", dated 628), a theoretical trea ...
. He treated 0 as a number and discussed operations involving it, including division. By this time (the 7th century) the concept had clearly reached Cambodia as Khmer numerals, and documentation shows the idea later spreading to China and the
Islamic world The terms Muslim world and Islamic world commonly refer to the Islamic community, which is also known as the Ummah. This consists of all those who adhere to the religious beliefs and laws of Islam or to societies in which Islam is practiced. In ...
. Brahmagupta's ''Brāhmasphuṭasiddhānta'' is the first book that mentions zero as a number, hence Brahmagupta is usually considered the first to formulate the concept of zero. He gave rules of using zero with negative and positive numbers, such as "zero plus a positive number is a positive number, and a negative number plus zero is the negative number." The ''Brāhmasphuṭasiddhānta'' is the earliest known text to treat zero as a number in its own right, rather than as simply a placeholder digit in representing another number as was done by the Babylonians or as a symbol for a lack of quantity as was done by Ptolemy and the Romans. The use of 0 as a number should be distinguished from its use as a placeholder numeral in place-value systems. Many ancient texts used 0. Babylonian and Egyptian texts used it. Egyptians used the word ''nfr'' to denote zero balance in double entry accounting. Indian texts used a Sanskrit word or to refer to the concept of ''void''. In mathematics texts this word often refers to the number zero. In a similar vein, Pāṇini (5th century BC) used the null (zero) operator in the '' Ashtadhyayi'', an early example of an algebraic grammar for the Sanskrit language (also see Pingala). There are other uses of zero before Brahmagupta, though the documentation is not as complete as it is in the ''Brāhmasphuṭasiddhānta''. Records show that the Ancient Greeks seemed unsure about the status of 0 as a number: they asked themselves "how can 'nothing' be something?" leading to interesting philosophical and, by the Medieval period, religious arguments about the nature and existence of 0 and the vacuum. The paradoxes of Zeno of Elea depend in part on the uncertain interpretation of 0. (The ancient Greeks even questioned whether  was a number.) The late Olmec people of south-central Mexico began to use a symbol for zero, a shell
glyph A glyph () is any kind of purposeful mark. In typography, a glyph is "the specific shape, design, or representation of a character". It is a particular graphical representation, in a particular typeface, of an element of written language. A g ...
, in the New World, possibly by the but certainly by 40 BC, which became an integral part of Maya numerals and the Maya calendar. Maya arithmetic used base 4 and base 5 written as base 20. George I. Sánchez in 1961 reported a base 4, base 5 "finger" abacus. By 130 AD, Ptolemy, influenced by Hipparchus and the Babylonians, was using a symbol for 0 (a small circle with a long overbar) within a sexagesimal numeral system otherwise using alphabetic Greek numerals. Because it was used alone, not as just a placeholder, this Hellenistic zero was the first ''documented'' use of a true zero in the Old World. In later Byzantine manuscripts of his ''Syntaxis Mathematica'' (''Almagest''), the Hellenistic zero had morphed into the Greek letter Omicron (otherwise meaning 70). Another true zero was used in tables alongside
Roman numerals Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, eac ...
by 525 (first known use by Dionysius Exiguus), but as a word, meaning ''nothing'', not as a symbol. When division produced 0 as a remainder, , also meaning ''nothing'', was used. These medieval zeros were used by all future medieval computists (calculators of Easter). An isolated use of their initial, N, was used in a table of Roman numerals by
Bede Bede ( ; ang, Bǣda , ; 672/326 May 735), also known as Saint Bede, The Venerable Bede, and Bede the Venerable ( la, Beda Venerabilis), was an English monk at the monastery of St Peter and its companion monastery of St Paul in the Kingdom o ...
or a colleague about 725, a true zero symbol.


Negative numbers

The abstract concept of negative numbers was recognized as early as 100–50 BC in China. '' The Nine Chapters on the Mathematical Art'' contains methods for finding the areas of figures; red rods were used to denote positive
coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves var ...
s, black for negative. The first reference in a Western work was in the 3rd century AD in Greece.
Diophantus Diophantus of Alexandria ( grc, Διόφαντος ὁ Ἀλεξανδρεύς; born probably sometime between AD 200 and 214; died around the age of 84, probably sometime between AD 284 and 298) was an Alexandrian mathematician, who was the aut ...
referred to the equation equivalent to (the solution is negative) in ''
Arithmetica ''Arithmetica'' ( grc-gre, Ἀριθμητικά) is an Ancient Greek text on mathematics written by the mathematician Diophantus () in the 3rd century AD. It is a collection of 130 algebraic problems giving numerical solutions of determinate e ...
'', saying that the equation gave an absurd result. During the 600s, negative numbers were in use in India to represent debts. Diophantus' previous reference was discussed more explicitly by Indian mathematician
Brahmagupta Brahmagupta ( – ) was an Indian mathematician and astronomer. He is the author of two early works on mathematics and astronomy: the ''Brāhmasphuṭasiddhānta'' (BSS, "correctly established doctrine of Brahma", dated 628), a theoretical trea ...
, in '' Brāhmasphuṭasiddhānta'' in 628, who used negative numbers to produce the general form quadratic formula that remains in use today. However, in the 12th century in India, Bhaskara gives negative roots for quadratic equations but says the negative value "is in this case not to be taken, for it is inadequate; people do not approve of negative roots". European mathematicians, for the most part, resisted the concept of negative numbers until the 17th century, although Fibonacci allowed negative solutions in financial problems where they could be interpreted as debts (chapter 13 of '' Liber Abaci'', 1202) and later as losses (in ). René Descartes called them false roots as they cropped up in algebraic polynomials yet he found a way to swap true roots and false roots as well. At the same time, the Chinese were indicating negative numbers by drawing a diagonal stroke through the right-most non-zero digit of the corresponding positive number's numeral. The first use of negative numbers in a European work was by Nicolas Chuquet during the 15th century. He used them as
exponent Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to re ...
s, but referred to them as "absurd numbers". As recently as the 18th century, it was common practice to ignore any negative results returned by equations on the assumption that they were meaningless.


Rational numbers

It is likely that the concept of fractional numbers dates to prehistoric times. The Ancient Egyptians used their
Egyptian fraction An Egyptian fraction is a finite sum of distinct unit fractions, such as \frac+\frac+\frac. That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each ...
notation for rational numbers in mathematical texts such as the
Rhind Mathematical Papyrus The Rhind Mathematical Papyrus (RMP; also designated as papyrus British Museum 10057 and pBM 10058) is one of the best known examples of ancient Egyptian mathematics. It is named after Alexander Henry Rhind, a Scottish antiquarian, who purchased ...
and the Kahun Papyrus. Classical Greek and Indian mathematicians made studies of the theory of rational numbers, as part of the general study of number theory. The best known of these is Euclid's ''Elements'', dating to roughly 300 BC. Of the Indian texts, the most relevant is the Sthananga Sutra, which also covers number theory as part of a general study of mathematics. The concept of decimal fractions is closely linked with decimal place-value notation; the two seem to have developed in tandem. For example, it is common for the Jain math
sutra ''Sutra'' ( sa, सूत्र, translit=sūtra, translit-std=IAST, translation=string, thread)Monier Williams, ''Sanskrit English Dictionary'', Oxford University Press, Entry fo''sutra'' page 1241 in Indian literary traditions refers to an aph ...
to include calculations of decimal-fraction approximations to pi or the
square root of 2 The square root of 2 (approximately 1.4142) is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as \sqrt or 2^, and is an algebraic number. Technically, it should be called the princip ...
. Similarly, Babylonian math texts used sexagesimal (base 60) fractions with great frequency.


Irrational numbers

The earliest known use of irrational numbers was in the Indian Sulba Sutras composed between 800 and 500 BC. The first existence proofs of irrational numbers is usually attributed to Pythagoras, more specifically to the Pythagorean Hippasus of Metapontum, who produced a (most likely geometrical) proof of the irrationality of the
square root of 2 The square root of 2 (approximately 1.4142) is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as \sqrt or 2^, and is an algebraic number. Technically, it should be called the princip ...
. The story goes that Hippasus discovered irrational numbers when trying to represent the square root of 2 as a fraction. However, Pythagoras believed in the absoluteness of numbers, and could not accept the existence of irrational numbers. He could not disprove their existence through logic, but he could not accept irrational numbers, and so, allegedly and frequently reported, he sentenced Hippasus to death by drowning, to impede spreading of this disconcerting news. The 16th century brought final European acceptance of negative integral and fractional numbers. By the 17th  century, mathematicians generally used decimal fractions with modern notation. It was not, however, until the 19th century that mathematicians separated irrationals into algebraic and transcendental parts, and once more undertook the scientific study of irrationals. It had remained almost dormant since Euclid. In 1872, the publication of the theories of Karl Weierstrass (by his pupil E. Kossak), Eduard Heine, Georg Cantor, and
Richard Dedekind Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His ...
was brought about. In 1869, Charles Méray had taken the same point of departure as Heine, but the theory is generally referred to the year 1872. Weierstrass's method was completely set forth by Salvatore Pincherle (1880), and Dedekind's has received additional prominence through the author's later work (1888) and endorsement by Paul Tannery (1894). Weierstrass, Cantor, and Heine base their theories on infinite series, while Dedekind founds his on the idea of a cut (Schnitt) in the system of real numbers, separating all rational numbers into two groups having certain characteristic properties. The subject has received later contributions at the hands of Weierstrass, Kronecker, and Méray. The search for roots of quintic and higher degree equations was an important development, the Abel–Ruffini theorem ( Ruffini 1799, Abel 1824) showed that they could not be solved by
radicals Radical may refer to: Politics and ideology Politics *Radical politics, the political intent of fundamental societal change *Radicalism (historical), the Radical Movement that began in late 18th century Britain and spread to continental Europe and ...
(formulas involving only arithmetical operations and roots). Hence it was necessary to consider the wider set of algebraic numbers (all solutions to polynomial equations). Galois (1832) linked polynomial equations to group theory giving rise to the field of Galois theory. Continued fractions, closely related to irrational numbers (and due to Cataldi, 1613), received attention at the hands of
Euler Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
, and at the opening of the 19th century were brought into prominence through the writings of Joseph Louis Lagrange. Other noteworthy contributions have been made by Druckenmüller (1837), Kunze (1857), Lemke (1870), and Günther (1872). Ramus first connected the subject with determinants, resulting, with the subsequent contributions of Heine, Möbius, and Günther, in the theory of .


Transcendental numbers and reals

The existence of transcendental numbers was first established by Liouville (1844, 1851). Hermite proved in 1873 that ''e'' is transcendental and
Lindemann Lindemann is a German surname. Persons Notable people with the surname include: Arts and entertainment * Elisabeth Lindemann, German textile designer and weaver * Jens Lindemann, trumpet player * Julie Lindemann, American photographer * Maggie ...
proved in 1882 that π is transcendental. Finally, Cantor showed that the set of all real numbers is uncountably infinite but the set of all
algebraic number An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the po ...
s is
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
, so there is an uncountably infinite number of transcendental numbers.


Infinity and infinitesimals

The earliest known conception of mathematical
infinity Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions amo ...
appears in the Yajur Veda, an ancient Indian script, which at one point states, "If you remove a part from infinity or add a part to infinity, still what remains is infinity." Infinity was a popular topic of philosophical study among the Jain mathematicians c. 400 BC. They distinguished between five types of infinity: infinite in one and two directions, infinite in area, infinite everywhere, and infinite perpetually. The symbol \text is often used to represent an infinite quantity. Aristotle defined the traditional Western notion of mathematical infinity. He distinguished between actual infinity and potential infinity—the general consensus being that only the latter had true value. Galileo Galilei's '' Two New Sciences'' discussed the idea of one-to-one correspondences between infinite sets. But the next major advance in the theory was made by Georg Cantor; in 1895 he published a book about his new set theory, introducing, among other things, transfinite numbers and formulating the continuum hypothesis. In the 1960s, Abraham Robinson showed how infinitely large and infinitesimal numbers can be rigorously defined and used to develop the field of nonstandard analysis. The system of hyperreal numbers represents a rigorous method of treating the ideas about infinite and
infinitesimal In mathematics, an infinitesimal number is a quantity that is closer to zero than any standard real number, but that is not zero. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referr ...
numbers that had been used casually by mathematicians, scientists, and engineers ever since the invention of
infinitesimal calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
by
Newton Newton most commonly refers to: * Isaac Newton (1642–1726/1727), English scientist * Newton (unit), SI unit of force named after Isaac Newton Newton may also refer to: Arts and entertainment * ''Newton'' (film), a 2017 Indian film * Newton ( ...
and Leibniz. A modern geometrical version of infinity is given by projective geometry, which introduces "ideal points at infinity", one for each spatial direction. Each family of parallel lines in a given direction is postulated to converge to the corresponding ideal point. This is closely related to the idea of vanishing points in perspective drawing.


Complex numbers

The earliest fleeting reference to square roots of negative numbers occurred in the work of the mathematician and inventor Heron of Alexandria in the , when he considered the volume of an impossible frustum of a pyramid. They became more prominent when in the 16th century closed formulas for the roots of third and fourth degree polynomials were discovered by Italian mathematicians such as Niccolò Fontana Tartaglia and Gerolamo Cardano. It was soon realized that these formulas, even if one was only interested in real solutions, sometimes required the manipulation of square roots of negative numbers. This was doubly unsettling since they did not even consider negative numbers to be on firm ground at the time. When René Descartes coined the term "imaginary" for these quantities in 1637, he intended it as derogatory. (See
imaginary number An imaginary number is a real number multiplied by the imaginary unit , is usually used in engineering contexts where has other meanings (such as electrical current) which is defined by its property . The square of an imaginary number is . Fo ...
for a discussion of the "reality" of complex numbers.) A further source of confusion was that the equation :\left ( \sqrt\right )^2 =\sqrt\sqrt=-1 seemed capriciously inconsistent with the algebraic identity :\sqrt\sqrt=\sqrt, which is valid for positive real numbers ''a'' and ''b'', and was also used in complex number calculations with one of ''a'', ''b'' positive and the other negative. The incorrect use of this identity, and the related identity :\frac=\sqrt in the case when both ''a'' and ''b'' are negative even bedeviled
Euler Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
. This difficulty eventually led him to the convention of using the special symbol ''i'' in place of \sqrt to guard against this mistake. The 18th century saw the work of Abraham de Moivre and Leonhard Euler. De Moivre's formula (1730) states: :(\cos \theta + i\sin \theta)^ = \cos n \theta + i\sin n \theta while Euler's formula of
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
(1748) gave us: :\cos \theta + i\sin \theta = e ^. The existence of complex numbers was not completely accepted until Caspar Wessel described the geometrical interpretation in 1799. Carl Friedrich Gauss rediscovered and popularized it several years later, and as a result the theory of complex numbers received a notable expansion. The idea of the graphic representation of complex numbers had appeared, however, as early as 1685, in Wallis's ''De algebra tractatus''. Also in 1799, Gauss provided the first generally accepted proof of the fundamental theorem of algebra, showing that every polynomial over the complex numbers has a full set of solutions in that realm. The general acceptance of the theory of complex numbers is due to the labors of Augustin Louis Cauchy and Niels Henrik Abel, and especially the latter, who was the first to boldly use complex numbers with a success that is well known. Gauss studied complex numbers of the form , where ''a'' and ''b'' are integral, or rational (and ''i'' is one of the two roots of ). His student, Gotthold Eisenstein, studied the type , where ''ω'' is a complex root of Other such classes (called cyclotomic fields) of complex numbers derive from the roots of unity for higher values of ''k''. This generalization is largely due to Ernst Kummer, who also invented ideal numbers, which were expressed as geometrical entities by Felix Klein in 1893. In 1850 Victor Alexandre Puiseux took the key step of distinguishing between poles and branch points, and introduced the concept of essential singular points. This eventually led to the concept of the extended complex plane.


Prime numbers

Prime numbers have been studied throughout recorded history. Euclid devoted one book of the ''Elements'' to the theory of primes; in it he proved the infinitude of the primes and the fundamental theorem of arithmetic, and presented the
Euclidean algorithm In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is an effi ...
for finding the greatest common divisor of two numbers. In 240 BC,
Eratosthenes Eratosthenes of Cyrene (; grc-gre, Ἐρατοσθένης ;  – ) was a Greek polymath: a mathematician, geographer, poet, astronomer, and music theorist. He was a man of learning, becoming the chief librarian at the Library of Alexandria ...
used the
Sieve of Eratosthenes In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit. It does so by iteratively marking as composite (i.e., not prime) the multiples of each prime, starting with the first prime n ...
to quickly isolate prime numbers. But most further development of the theory of primes in Europe dates to the Renaissance and later eras. In 1796, Adrien-Marie Legendre conjectured the
prime number theorem In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying ...
, describing the asymptotic distribution of primes. Other results concerning the distribution of the primes include Euler's proof that the sum of the reciprocals of the primes diverges, and the
Goldbach conjecture Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers. The conjecture has been shown to hold ...
, which claims that any sufficiently large even number is the sum of two primes. Yet another conjecture related to the distribution of prime numbers is the
Riemann hypothesis In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in ...
, formulated by
Bernhard Riemann Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rig ...
in 1859. The
prime number theorem In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying ...
was finally proved by Jacques Hadamard and
Charles de la Vallée-Poussin Charles is a masculine given name predominantly found in English and French speaking countries. It is from the French form ''Charles'' of the Proto-Germanic name (in runic alphabet) or ''*karilaz'' (in Latin alphabet), whose meaning was " ...
in 1896. Goldbach and Riemann's conjectures remain unproven and unrefuted.


Main classification

Numbers can be classified into sets, called number sets or number systems, such as the
natural numbers In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
and the
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
. The main number systems are as follows: Each of these number system is a
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
of the next one. So, for example, a rational number is also a real number, and every real number is also a complex number. This can be expressed symbolically as :\mathbb \subset \mathbb \subset \mathbb \subset \mathbb \subset \mathbb. A more complete list of number sets appears in the following diagram.


Natural numbers

The most familiar numbers are the natural numbers (sometimes called whole numbers or counting numbers): 1, 2, 3, and so on. Traditionally, the sequence of natural numbers started with 1 (0 was not even considered a number for the Ancient Greeks.) However, in the 19th century, set theorists and other mathematicians started including 0 (
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
of the
empty set In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
, i.e. 0 elements, where 0 is thus the smallest cardinal number) in the set of natural numbers. Today, different mathematicians use the term to describe both sets, including 0 or not. The mathematical symbol for the set of all natural numbers is N, also written \mathbb, and sometimes \mathbb_0 or \mathbb_1 when it is necessary to indicate whether the set should start with 0 or 1, respectively. In the base 10 numeral system, in almost universal use today for mathematical operations, the symbols for natural numbers are written using ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The radix or base is the number of unique numerical digits, including zero, that a numeral system uses to represent numbers (for the decimal system, the radix is 10). In this base 10 system, the rightmost digit of a natural number has a place value of 1, and every other digit has a place value ten times that of the place value of the digit to its right. In set theory, which is capable of acting as an axiomatic foundation for modern mathematics, natural numbers can be represented by classes of equivalent sets. For instance, the number 3 can be represented as the class of all sets that have exactly three elements. Alternatively, in
Peano Arithmetic In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly u ...
, the number 3 is represented as sss0, where s is the "successor" function (i.e., 3 is the third successor of 0). Many different representations are possible; all that is needed to formally represent 3 is to inscribe a certain symbol or pattern of symbols three times.


Integers

The negative of a positive integer is defined as a number that produces 0 when it is added to the corresponding positive integer. Negative numbers are usually written with a negative sign (a minus sign). As an example, the negative of 7 is written −7, and . When the set of negative numbers is combined with the set of natural numbers (including 0), the result is defined as the set of integers, Z also written \mathbb. Here the letter Z comes . The set of integers forms a ring with the operations addition and multiplication. The natural numbers form a
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
of the integers. As there is no common standard for the inclusion or not of zero in the natural numbers, the natural numbers without zero are commonly referred to as positive integers, and the natural numbers with zero are referred to as non-negative integers.


Rational numbers

A rational number is a number that can be expressed as a
fraction A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
with an integer numerator and a positive integer denominator. Negative denominators are allowed, but are commonly avoided, as every rational number is equal to a fraction with positive denominator. Fractions are written as two integers, the numerator and the denominator, with a dividing bar between them. The fraction represents ''m'' parts of a whole divided into ''n'' equal parts. Two different fractions may correspond to the same rational number; for example and are equal, that is: : = . In general, : = if and only if = . If the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
of ''m'' is greater than ''n'' (supposed to be positive), then the absolute value of the fraction is greater than 1. Fractions can be greater than, less than, or equal to 1 and can also be positive, negative, or 0. The set of all rational numbers includes the integers since every integer can be written as a fraction with denominator 1. For example −7 can be written . The symbol for the rational numbers is Q (for '' quotient''), also written \mathbb.


Real numbers

The symbol for the real numbers is R, also written as \mathbb. They include all the measuring numbers. Every real number corresponds to a point on the number line. The following paragraph will focus primarily on positive real numbers. The treatment of negative real numbers is according to the general rules of arithmetic and their denotation is simply prefixing the corresponding positive numeral by a minus sign, e.g. −123.456. Most real numbers can only be ''approximated'' by
decimal The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral ...
numerals, in which a decimal point is placed to the right of the digit with place value 1. Each digit to the right of the decimal point has a place value one-tenth of the place value of the digit to its left. For example, 123.456 represents , or, in words, one hundred, two tens, three ones, four tenths, five hundredths, and six thousandths. A real number can be expressed by a finite number of decimal digits only if it is rational and its
fractional part The fractional part or decimal part of a non‐negative real number x is the excess beyond that number's integer part. If the latter is defined as the largest integer not greater than , called floor of or \lfloor x\rfloor, its fractional part can ...
has a denominator whose prime factors are 2 or 5 or both, because these are the prime factors of 10, the base of the decimal system. Thus, for example, one half is 0.5, one fifth is 0.2, one-tenth is 0.1, and one fiftieth is 0.02. Representing other real numbers as decimals would require an infinite sequence of digits to the right of the decimal point. If this infinite sequence of digits follows a pattern, it can be written with an ellipsis or another notation that indicates the repeating pattern. Such a decimal is called a repeating decimal. Thus can be written as 0.333..., with an ellipsis to indicate that the pattern continues. Forever repeating 3s are also written as 0.. It turns out that these repeating decimals (including the repetition of zeroes) denote exactly the rational numbers, i.e., all rational numbers are also real numbers, but it is not the case that every real number is rational. A real number that is not rational is called irrational. A famous irrational real number is the , the ratio of the circumference of any circle to its diameter. When pi is written as :\pi = 3.14159265358979\dots, as it sometimes is, the ellipsis does not mean that the decimals repeat (they do not), but rather that there is no end to them. It has been proved that is irrational. Another well-known number, proven to be an irrational real number, is :\sqrt = 1.41421356237\dots, the
square root of 2 The square root of 2 (approximately 1.4142) is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as \sqrt or 2^, and is an algebraic number. Technically, it should be called the princip ...
, that is, the unique positive real number whose square is 2. Both these numbers have been approximated (by computer) to trillions of digits. Not only these prominent examples but
almost all In mathematics, the term "almost all" means "all but a negligible amount". More precisely, if X is a set, "almost all elements of X" means "all elements of X but those in a negligible subset of X". The meaning of "negligible" depends on the math ...
real numbers are irrational and therefore have no repeating patterns and hence no corresponding decimal numeral. They can only be approximated by decimal numerals, denoting
rounded Round or rounds may refer to: Mathematics and science * The contour of a closed curve or surface with no sharp corners, such as an ellipse, circle, rounded rectangle, cant, or sphere * Rounding, the shortening of a number to reduce the num ...
or truncated real numbers. Any rounded or truncated number is necessarily a rational number, of which there are only
countably many In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbe ...
. All measurements are, by their nature, approximations, and always have a margin of error. Thus 123.456 is considered an approximation of any real number greater or equal to and strictly less than (rounding to 3 decimals), or of any real number greater or equal to and strictly less than (truncation after the 3. decimal). Digits that suggest a greater accuracy than the measurement itself does, should be removed. The remaining digits are then called significant digits. For example, measurements with a ruler can seldom be made without a margin of error of at least 0.001 m. If the sides of a
rectangle In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containi ...
are measured as 1.23 m and 4.56 m, then multiplication gives an area for the rectangle between and . Since not even the second digit after the decimal place is preserved, the following digits are not ''significant''. Therefore, the result is usually rounded to 5.61. Just as the same fraction can be written in more than one way, the same real number may have more than one decimal representation. For example, 0.999..., 1.0, 1.00, 1.000, ..., all represent the natural number 1. A given real number has only the following decimal representations: an approximation to some finite number of decimal places, an approximation in which a pattern is established that continues for an unlimited number of decimal places or an exact value with only finitely many decimal places. In this last case, the last non-zero digit may be replaced by the digit one smaller followed by an unlimited number of 9's, or the last non-zero digit may be followed by an unlimited number of zeros. Thus the exact real number 3.74 can also be written 3.7399999999... and 3.74000000000.... Similarly, a decimal numeral with an unlimited number of 0's can be rewritten by dropping the 0's to the right of the rightmost nonzero digit, and a decimal numeral with an unlimited number of 9's can be rewritten by increasing by one the rightmost digit less than 9, and changing all the 9's to the right of that digit to 0's. Finally, an unlimited sequence of 0's to the right of a decimal place can be dropped. For example, 6.849999999999... = 6.85 and 6.850000000000... = 6.85. Finally, if all of the digits in a numeral are 0, the number is 0, and if all of the digits in a numeral are an unending string of 9's, you can drop the nines to the right of the decimal place, and add one to the string of 9s to the left of the decimal place. For example, 99.999... = 100. The real numbers also have an important but highly technical property called the least upper bound property. It can be shown that any ordered field, which is also complete, is isomorphic to the real numbers. The real numbers are not, however, an
algebraically closed field In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because ...
, because they do not include a solution (often called a
square root of minus one The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition an ...
) to the algebraic equation x^2+1=0.


Complex numbers

Moving to a greater level of abstraction, the real numbers can be extended to the complex numbers. This set of numbers arose historically from trying to find closed formulas for the roots of
cubic Cubic may refer to: Science and mathematics * Cube (algebra), "cubic" measurement * Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex ** Cubic crystal system, a crystal system w ...
and quadratic polynomials. This led to expressions involving the square roots of negative numbers, and eventually to the definition of a new number: a square root of −1, denoted by '' i'', a symbol assigned by Leonhard Euler, and called the imaginary unit. The complex numbers consist of all numbers of the form :\,a + b i where ''a'' and ''b'' are real numbers. Because of this, complex numbers correspond to points on the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
, a vector space of two real dimensions. In the expression , the real number ''a'' is called the real part and ''b'' is called the imaginary part. If the real part of a complex number is 0, then the number is called an
imaginary number An imaginary number is a real number multiplied by the imaginary unit , is usually used in engineering contexts where has other meanings (such as electrical current) which is defined by its property . The square of an imaginary number is . Fo ...
or is referred to as ''purely imaginary''; if the imaginary part is 0, then the number is a real number. Thus the real numbers are a
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
of the complex numbers. If the real and imaginary parts of a complex number are both integers, then the number is called a Gaussian integer. The symbol for the complex numbers is C or \mathbb. The fundamental theorem of algebra asserts that the complex numbers form an
algebraically closed field In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because ...
, meaning that every polynomial with complex coefficients has a root in the complex numbers. Like the reals, the complex numbers form a field, which is complete, but unlike the real numbers, it is not ordered. That is, there is no consistent meaning assignable to saying that ''i'' is greater than 1, nor is there any meaning in saying that ''i'' is less than 1. In technical terms, the complex numbers lack a total order that is compatible with field operations.


Subclasses of the integers


Even and odd numbers

An even number is an integer that is "evenly divisible" by two, that is divisible by two without remainder; an odd number is an integer that is not even. (The old-fashioned term "evenly divisible" is now almost always shortened to " divisible".) Any odd number ''n'' may be constructed by the formula for a suitable integer ''k''. Starting with the first non-negative odd numbers are . Any even number ''m'' has the form where ''k'' is again an integer. Similarly, the first non-negative even numbers are .


Prime numbers

A prime number, often shortened to just prime, is an integer greater than 1 that is not the product of two smaller positive integers. The first few prime numbers are 2, 3, 5, 7, and 11. There is no such simple formula as for odd and even numbers to generate the prime numbers. The primes have been widely studied for more than 2000 years and have led to many questions, only some of which have been answered. The study of these questions belongs to number theory.
Goldbach's conjecture Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers. The conjecture has been shown to hold ...
is an example of a still unanswered question: "Is every even number the sum of two primes?" One answered question, as to whether every integer greater than one is a product of primes in only one way, except for a rearrangement of the primes, was confirmed; this proven claim is called the fundamental theorem of arithmetic. A proof appears in Euclid's Elements.


Other classes of integers

Many subsets of the natural numbers have been the subject of specific studies and have been named, often after the first mathematician that has studied them. Example of such sets of integers are Fibonacci numbers and perfect numbers. For more examples, see Integer sequence.


Subclasses of the complex numbers


Algebraic, irrational and transcendental numbers

Algebraic number An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the po ...
s are those that are a solution to a polynomial equation with integer coefficients. Real numbers that are not rational numbers are called irrational numbers. Complex numbers which are not algebraic are called transcendental numbers. The algebraic numbers that are solutions of a monic polynomial equation with integer coefficients are called algebraic integers.


Constructible numbers

Motivated by the classical problems of constructions with straightedge and compass, the constructible numbers are those complex numbers whose real and imaginary parts can be constructed using straightedge and compass, starting from a given segment of unit length, in a finite number of steps.


Computable numbers

A computable number, also known as ''recursive number'', is a real number such that there exists an algorithm which, given a positive number ''n'' as input, produces the first ''n'' digits of the computable number's decimal representation. Equivalent definitions can be given using μ-recursive functions, Turing machines or λ-calculus. The computable numbers are stable for all usual arithmetic operations, including the computation of the roots of a polynomial, and thus form a real closed field that contains the real
algebraic number An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the po ...
s. The computable numbers may be viewed as the real numbers that may be exactly represented in a computer: a computable number is exactly represented by its first digits and a program for computing further digits. However, the computable numbers are rarely used in practice. One reason is that there is no algorithm for testing the equality of two computable numbers. More precisely, there cannot exist any algorithm which takes any computable number as an input, and decides in every case if this number is equal to zero or not. The set of computable numbers has the same cardinality as the natural numbers. Therefore,
almost all In mathematics, the term "almost all" means "all but a negligible amount". More precisely, if X is a set, "almost all elements of X" means "all elements of X but those in a negligible subset of X". The meaning of "negligible" depends on the math ...
real numbers are non-computable. However, it is very difficult to produce explicitly a real number that is not computable.


Extensions of the concept


''p''-adic numbers

The ''p''-adic numbers may have infinitely long expansions to the left of the decimal point, in the same way that real numbers may have infinitely long expansions to the right. The number system that results depends on what base is used for the digits: any base is possible, but a prime number base provides the best mathematical properties. The set of the ''p''-adic numbers contains the rational numbers, but is not contained in the complex numbers. The elements of an algebraic function field over a finite field and algebraic numbers have many similar properties (see Function field analogy). Therefore, they are often regarded as numbers by number theorists. The ''p''-adic numbers play an important role in this analogy.


Hypercomplex numbers

Some number systems that are not included in the complex numbers may be constructed from the real numbers in a way that generalize the construction of the complex numbers. They are sometimes called hypercomplex numbers. They include the
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
s H, introduced by Sir William Rowan Hamilton, in which multiplication is not commutative, the octonions, in which multiplication is not
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement f ...
in addition to not being commutative, and the sedenions, in which multiplication is not alternative, neither associative nor commutative.


Transfinite numbers

For dealing with infinite sets, the natural numbers have been generalized to the
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least n ...
s and to the cardinal numbers. The former gives the ordering of the set, while the latter gives its size. For finite sets, both ordinal and cardinal numbers are identified with the natural numbers. In the infinite case, many ordinal numbers correspond to the same cardinal number.


Nonstandard numbers

Hyperreal numbers are used in non-standard analysis. The hyperreals, or nonstandard reals (usually denoted as *R), denote an ordered field that is a proper extension of the ordered field of real numbers R and satisfies the transfer principle. This principle allows true first-order statements about R to be reinterpreted as true first-order statements about *R. Superreal and surreal numbers extend the real numbers by adding infinitesimally small numbers and infinitely large numbers, but still form fields.


See also

*
Concrete number A concrete number or ''numerus numeratus'' is a number associated with the things being counted, in contrast to an abstract number or ''numerus numerans'' which is a number as a single entity. For example, "five apples" and "half of a pie" are con ...
* List of numbers * List of types of numbers * * Complex numbers * Numerical cognition * Orders of magnitude * * * * * *
Subitizing and counting Subitizing is the rapid, accurate, and confident judgments of numbers performed for small numbers of items. The term was coined in 1949 by E. L. Kaufman et al., and is derived from the Latin adjective '' subitus'' (meaning "sudden") and captures ...


Notes


References

* Tobias Dantzig, ''Number, the language of science; a critical survey written for the cultured non-mathematician'', New York, The Macmillan Company, 1930. * Erich Friedman,
What's special about this number?
'' * Steven Galovich, ''Introduction to Mathematical Structures'', Harcourt Brace Javanovich, 1989, . * Paul Halmos, ''Naive Set Theory'', Springer, 1974, . * Morris Kline, ''Mathematical Thought from Ancient to Modern Times'', Oxford University Press, 1990. *
Alfred North Whitehead Alfred North Whitehead (15 February 1861 – 30 December 1947) was an English mathematician and philosopher. He is best known as the defining figure of the philosophical school known as process philosophy, which today has found applicat ...
and Bertrand Russell, '' Principia Mathematica'' to *56, Cambridge University Press, 1910. * Leo Cory, ''A Brief History of Numbers'', Oxford University Press, 2015, .


External links

* * * * *;
Online Encyclopedia of Integer Sequences
{{Authority control Group theory Mathematical objects