Non-classical Analysis
   HOME

TheInfoList



OR:

Analysis is the branch of
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
dealing with
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
s,
limit Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 ...
s, and related theories, such as differentiation,
integration Integration may refer to: Biology *Multisensory integration *Path integration * Pre-integration complex, viral genetic material used to insert a viral genome into a host genome *DNA integration, by means of site-specific recombinase technology, ...
,
measure Measure may refer to: * Measurement, the assignment of a number to a characteristic of an object or event Law * Ballot measure, proposed legislation in the United States * Church of England Measure, legislation of the Church of England * Mea ...
,
infinite sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called t ...
s,
series Series may refer to: People with the name * Caroline Series (born 1951), English mathematician, daughter of George Series * George Series (1920–1995), English physicist Arts, entertainment, and media Music * Series, the ordered sets used in ...
, and
analytic function In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex an ...
s. These theories are usually studied in the context of
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
and
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
numbers and functions. Analysis evolved from
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
; however, it can be applied to any
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
of
mathematical object A mathematical object is an abstract concept arising in mathematics. In the usual language of mathematics, an ''object'' is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical pr ...
s that has a definition of nearness (a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
) or specific distances between objects (a
metric space In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general settin ...
).


History


Ancient

Mathematical analysis formally developed in the 17th century during the
Scientific Revolution The Scientific Revolution was a series of events that marked the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology (including human anatomy) and chemistry transfo ...
, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were implicitly present in the early days of
ancient Greek mathematics Greek mathematics refers to mathematics texts and ideas stemming from the Archaic through the Hellenistic and Roman periods, mostly extant from the 7th century BC to the 4th century AD, around the shores of the Eastern Mediterranean. Greek mathem ...
. For instance, an infinite geometric sum is implicit in Zeno's paradox of the dichotomy. (Strictly speaking, the point of the paradox is to deny that the infinite sum exists.) Later,
Greek mathematicians Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
such as Eudoxus and
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists ...
made more explicit, but informal, use of the concepts of limits and convergence when they used the
method of exhaustion The method of exhaustion (; ) is a method of finding the area of a shape by inscribing inside it a sequence of polygons whose areas converge to the area of the containing shape. If the sequence is correctly constructed, the difference in area bet ...
to compute the area and volume of regions and solids. The explicit use of
infinitesimals In mathematics, an infinitesimal number is a quantity that is closer to zero than any standard real number, but that is not zero. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally refer ...
appears in Archimedes' ''
The Method of Mechanical Theorems ''The Method of Mechanical Theorems'' ( el, Περὶ μηχανικῶν θεωρημάτων πρὸς Ἐρατοσθένη ἔφοδος), also referred to as ''The Method'', is one of the major surviving works of the ancient Greek polymath Ar ...
'', a work rediscovered in the 20th century. In Asia, the Chinese mathematician
Liu Hui Liu Hui () was a Chinese mathematician who published a commentary in 263 CE on ''Jiu Zhang Suan Shu (The Nine Chapters on the Mathematical Art).'' He was a descendant of the Marquis of Zixiang of the Eastern Han dynasty and lived in the state o ...
used the method of exhaustion in the 3rd century AD to find the area of a circle. From Jain literature, it appears that Hindus were in possession of the formulae for the sum of the
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
and
geometric Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ca ...
series as early as the 4th century B.C. Ācārya Bhadrabāhu uses the sum of a geometric series in his Kalpasūtra in 433 B.C. In
Indian mathematics Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupta ...
, particular instances of arithmetic series have been found to implicitly occur in Vedic Literature as early as 2000 B.C.


Medieval

Zu Chongzhi Zu Chongzhi (; 429–500 AD), courtesy name Wenyuan (), was a Chinese astronomer, mathematician, politician, inventor, and writer during the Liu Song and Southern Qi dynasties. He was most notable for calculating pi as between 3.1415926 and 3 ...
established a method that would later be called
Cavalieri's principle In geometry, Cavalieri's principle, a modern implementation of the method of indivisibles, named after Bonaventura Cavalieri, is as follows: * 2-dimensional case: Suppose two regions in a plane are included between two parallel lines in that pl ...
to find the volume of a
sphere A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
in the 5th century. In the 12th century, the
Indian mathematician Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupta ...
Bhāskara II Bhāskara II (c. 1114–1185), also known as Bhāskarāchārya ("Bhāskara, the teacher"), and as Bhāskara II to avoid confusion with Bhāskara I, was an Indian mathematician and astronomer. From verses, in his main work, Siddhānta Shiroman ...
gave examples of
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. F ...
s and used what is now known as
Rolle's theorem In calculus, Rolle's theorem or Rolle's lemma essentially states that any real-valued differentiable function that attains equal values at two distinct points must have at least one stationary point somewhere between them—that is, a point wher ...
. In the 14th century,
Madhava of Sangamagrama Iriññāttappiḷḷi Mādhavan known as Mādhava of Sangamagrāma () was an Indian mathematician and astronomer from the town believed to be present-day Kallettumkara, Aloor Panchayath, Irinjalakuda in Thrissur District, Kerala, India. He is ...
developed
infinite series In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, math ...
expansions, now called
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor serie ...
, of functions such as
sine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is oppo ...
, cosine,
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More ...
and
arctangent In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions) are the inverse functions of the trigonometric functions (with suitably restricted domains). Spec ...
. Alongside his development of Taylor series of
trigonometric functions In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all ...
, he also estimated the magnitude of the error terms resulting of truncating these series, and gave a rational approximation of some infinite series. His followers at the
Kerala School of Astronomy and Mathematics The Kerala school of astronomy and mathematics or the Kerala school was a school of Indian mathematics, mathematics and Indian astronomy, astronomy founded by Madhava of Sangamagrama in Kingdom of Tanur, Tirur, Malappuram district, Malappuram, K ...
further expanded his works, up to the 16th century.


Modern


Foundations

The modern foundations of mathematical analysis were established in 17th century Europe. This began when
Fermat Pierre de Fermat (; between 31 October and 6 December 1607 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he i ...
and Descartes developed
analytic geometry In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineerin ...
, which is the precursor to modern calculus. Fermat's method of
adequality Adequality is a technique developed by Pierre de Fermat in his treatise ''Methodus ad disquirendam maximam et minimam''
allowed him to determine the maxima and minima of functions and the tangents of curves. Descartes's publication of ''
La Géométrie ''La Géométrie'' was published in 1637 as an appendix to ''Discours de la méthode'' (''Discourse on the Method''), written by René Descartes. In the ''Discourse'', he presents his method for obtaining clarity on any subject. ''La Géométrie ...
'' in 1637, which introduced the
Cartesian coordinate system A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
, is considered to be the establishment of mathematical analysis. It would be a few decades later that
Newton Newton most commonly refers to: * Isaac Newton (1642–1726/1727), English scientist * Newton (unit), SI unit of force named after Isaac Newton Newton may also refer to: Arts and entertainment * ''Newton'' (film), a 2017 Indian film * Newton ( ...
and
Leibniz Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of mathema ...
independently developed
infinitesimal calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
, which grew, with the stimulus of applied work that continued through the 18th century, into analysis topics such as the
calculus of variations The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions t ...
, ordinary and
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be sol ...
s,
Fourier analysis In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Josep ...
, and
generating function In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary seri ...
s. During this period, calculus techniques were applied to approximate discrete problems by continuous ones.


Modernization

In the 18th century,
Euler Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
introduced the notion of
mathematical function In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the functi ...
. Real analysis began to emerge as an independent subject when
Bernard Bolzano Bernard Bolzano (, ; ; ; born Bernardus Placidus Johann Gonzal Nepomuk Bolzano; 5 October 1781 – 18 December 1848) was a Bohemian mathematician, logician, philosopher, theologian and Catholic priest of Italian extraction, also known for his liber ...
introduced the modern definition of continuity in 1816, but Bolzano's work did not become widely known until the 1870s. In 1821,
Cauchy Baron Augustin-Louis Cauchy (, ; ; 21 August 178923 May 1857) was a French mathematician, engineer, and physicist who made pioneering contributions to several branches of mathematics, including mathematical analysis and continuum mechanics. He w ...
began to put calculus on a firm logical foundation by rejecting the principle of the
generality of algebra In the history of mathematics, the generality of algebra was a phrase used by Augustin-Louis Cauchy to describe a method of argument that was used in the 18th century by mathematicians such as Leonhard Euler and Joseph-Louis Lagrange,. particularl ...
widely used in earlier work, particularly by Euler. Instead, Cauchy formulated calculus in terms of geometric ideas and
infinitesimal In mathematics, an infinitesimal number is a quantity that is closer to zero than any standard real number, but that is not zero. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referr ...
s. Thus, his definition of continuity required an infinitesimal change in ''x'' to correspond to an infinitesimal change in ''y''. He also introduced the concept of the
Cauchy sequence In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in m ...
, and started the formal theory of
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
. Poisson,
Liouville Joseph Liouville (; ; 24 March 1809 – 8 September 1882) was a French mathematician and engineer. Life and work He was born in Saint-Omer in France on 24 March 1809. His parents were Claude-Joseph Liouville (an army officer) and Thérèse ...
, Fourier and others studied partial differential equations and
harmonic analysis Harmonic analysis is a branch of mathematics concerned with the representation of Function (mathematics), functions or signals as the Superposition principle, superposition of basic waves, and the study of and generalization of the notions of Fo ...
. The contributions of these mathematicians and others, such as
Weierstrass Karl Theodor Wilhelm Weierstrass (german: link=no, Weierstraß ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the "father of modern mathematical analysis, analysis". Despite leaving university without a degree, ...
, developed the (ε, δ)-definition of limit approach, thus founding the modern field of mathematical analysis. Around the same time,
Riemann Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rig ...
introduced his theory of
integration Integration may refer to: Biology *Multisensory integration *Path integration * Pre-integration complex, viral genetic material used to insert a viral genome into a host genome *DNA integration, by means of site-specific recombinase technology, ...
, and made significant advances in complex analysis. Towards the end of the 19th century, mathematicians started worrying that they were assuming the existence of a
continuum Continuum may refer to: * Continuum (measurement), theories or models that explain gradual transitions from one condition to another without abrupt changes Mathematics * Continuum (set theory), the real line or the corresponding cardinal number ...
of
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
s without proof.
Dedekind Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His ...
then constructed the real numbers by
Dedekind cut In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind but previously considered by Joseph Bertrand, are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of the rat ...
s, in which irrational numbers are formally defined, which serve to fill the "gaps" between rational numbers, thereby creating a
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
set: the continuum of real numbers, which had already been developed by
Simon Stevin Simon Stevin (; 1548–1620), sometimes called Stevinus, was a Flemish mathematician, scientist and music theorist. He made various contributions in many areas of science and engineering, both theoretical and practical. He also translated vario ...
in terms of
decimal expansion A decimal representation of a non-negative real number is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: r = b_k b_\ldots b_0.a_1a_2\ldots Here is the decimal separator, i ...
s. Around that time, the attempts to refine the
theorem In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of th ...
s of
Riemann integration In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Göt ...
led to the study of the "size" of the set of discontinuities of real functions. Also, various pathological objects, (such as
nowhere continuous function In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain. If ''f'' is a function from real numbers to real numbers, then ''f'' is nowhere conti ...
s, continuous but nowhere differentiable functions, and
space-filling curve In mathematical analysis, a space-filling curve is a curve whose range contains the entire 2-dimensional unit square (or more generally an ''n''-dimensional unit hypercube). Because Giuseppe Peano (1858–1932) was the first to discover one, space ...
s), commonly known as "monsters", began to be investigated. In this context,
Jordan Jordan ( ar, الأردن; tr. ' ), officially the Hashemite Kingdom of Jordan,; tr. ' is a country in Western Asia. It is situated at the crossroads of Asia, Africa, and Europe, within the Levant region, on the East Bank of the Jordan Rive ...
developed his theory of
measure Measure may refer to: * Measurement, the assignment of a number to a characteristic of an object or event Law * Ballot measure, proposed legislation in the United States * Church of England Measure, legislation of the Church of England * Mea ...
,
Cantor A cantor or chanter is a person who leads people in singing or sometimes in prayer. In formal Jewish worship, a cantor is a person who sings solo verses or passages to which the choir or congregation responds. In Judaism, a cantor sings and lead ...
developed what is now called
naive set theory Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. Unlike Set theory#Axiomatic set theory, axiomatic set theories, which are defined using Mathematical_logic#Formal_logical_systems, forma ...
, and Baire proved the
Baire category theorem The Baire category theorem (BCT) is an important result in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space (a topological space such that the ...
. In the early 20th century, calculus was formalized using an axiomatic
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
.
Lebesgue Henri Léon Lebesgue (; June 28, 1875 – July 26, 1941) was a French mathematician known for his theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an axis and the curve of ...
greatly improved measure theory, and introduced his own theory of integration, now known as
Lebesgue integration In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the -axis. The Lebesgue integral, named after French mathematician Henri Leb ...
, which proved to be a big improvement over Riemann's.
Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many ...
introduced
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
s to solve
integral equation In mathematics, integral equations are equations in which an unknown Function (mathematics), function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: f(x_1,x_2,x_3,...,x_n ; ...
s. The idea of
normed vector space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" i ...
was in the air, and in the 1920s Banach created
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Defini ...
.


Important concepts


Metric spaces

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a metric space is a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
where a notion of
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
(called a
metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathem ...
) between elements of the set is defined. Much of analysis happens in some metric space; the most commonly used are the
real line In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
, the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
,
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
, other
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
s, and the
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s. Examples of analysis without a metric include
measure theory In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many simil ...
(which describes size rather than distance) and
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Defini ...
(which studies
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
s that need not have any sense of distance). Formally, a metric space is an
ordered pair In mathematics, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In con ...
(M,d) where M is a set and d is a
metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathem ...
on M, i.e., a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
:d \colon M \times M \rightarrow \mathbb such that for any x, y, z \in M, the following holds: # d(x,y) \geq 0, with equality
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bicondi ...
x = y    (''
identity of indiscernibles The identity of indiscernibles is an ontological principle that states that there cannot be separate objects or entities that have all their properties in common. That is, entities ''x'' and ''y'' are identical if every predicate possessed by ''x'' ...
''), # d(x,y) = d(y,x)    (''symmetry''), and # d(x,z) \le d(x,y) + d(y,z)    (''
triangle inequality In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, but ...
''). By taking the third property and letting z=x, it can be shown that d(x,y) \ge 0     (''non-negative'').


Sequences and limits

A sequence is an ordered list. Like a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
, it contains
members Member may refer to: * Military jury, referred to as "Members" in military jargon * Element (mathematics), an object that belongs to a mathematical set * In object-oriented programming, a member of a class ** Field (computer science), entries in ...
(also called ''elements'', or ''terms''). Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Most precisely, a sequence can be defined as a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
whose domain is a
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
totally ordered In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive) ...
set, such as the
natural numbers In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
. One of the most important properties of a sequence is ''convergence''. Informally, a sequence converges if it has a ''limit''. Continuing informally, a (#Finite and infinite, singly-infinite) sequence has a limit if it approaches some point ''x'', called the limit, as ''n'' becomes very large. That is, for an abstract sequence (''a''''n'') (with ''n'' running from 1 to infinity understood) the distance between ''a''''n'' and ''x'' approaches 0 as ''n'' → ∞, denoted :\lim_ a_n = x.


Main branches


Real analysis

Real analysis (traditionally, the theory of functions of a real variable) is a branch of mathematical analysis dealing with the
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
s and real-valued functions of a real variable. In particular, it deals with the analytic properties of real function (mathematics), functions and sequences, including Limit of a sequence, convergence and limit of a function, limits of sequences of real numbers, the
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
of the real numbers, and continuous function, continuity, smooth function, smoothness and related properties of real-valued functions.


Complex analysis

Complex analysis (traditionally known as the theory of functions of a complex variable) is the branch of mathematical analysis that investigates functions of complex numbers. It is useful in many branches of mathematics, including algebraic geometry, number theory, applied mathematics; as well as in physics, including hydrodynamics, thermodynamics, mechanical engineering, electrical engineering, and particularly, quantum field theory. Complex analysis is particularly concerned with the
analytic function In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex an ...
s of complex variables (or, more generally, meromorphic functions). Because the separate real number, real and imaginary number, imaginary parts of any analytic function must satisfy Laplace's equation, complex analysis is widely applicable to two-dimensional problems in physics.


Functional analysis

Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
s endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definitions, topology, etc.) and the linear transformation, linear operators acting upon these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations.


Harmonic analysis

Harmonic analysis is a branch of mathematical analysis concerned with the representation of
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
s and signals as the superposition of basic waves. This includes the study of the notions of Fourier series and Fourier transforms (
Fourier analysis In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Josep ...
), and of their generalizations. Harmonic analysis has applications in areas as diverse as music theory, number theory, representation theory, signal processing, quantum mechanics, tidal analysis, and neuroscience.


Differential equations

A differential equation is a mathematics, mathematical equation for an unknown
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
of one or several Variable (mathematics), variables that relates the values of the function itself and its
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. F ...
s of various Derivative#Higher derivatives, orders. Differential equations play a prominent role in engineering, physics, economics, biology, and other disciplines. Differential equations arise in many areas of science and technology, specifically whenever a Deterministic system (mathematics), deterministic relation involving some continuously varying quantities (modeled by functions) and their rates of change in space or time (expressed as derivatives) is known or postulated. This is illustrated in classical mechanics, where the motion of a body is described by its position and velocity as the time value varies. Newton's laws of motion, Newton's laws allow one (given the position, velocity, acceleration and various forces acting on the body) to express these variables dynamically as a differential equation for the unknown position of the body as a function of time. In some cases, this differential equation (called an equations of motion, equation of motion) may be solved explicitly.


Measure theory

A measure on a set (mathematics), set is a systematic way to assign a number to each suitable subset of that set, intuitively interpreted as its size. In this sense, a measure is a generalization of the concepts of length, area, and volume. A particularly important example is the Lebesgue measure on a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
, which assigns the conventional length, area, and volume of Euclidean geometry to suitable subsets of the n-dimensional Euclidean space \mathbb^n. For instance, the Lebesgue measure of the Interval (mathematics), interval \left[0, 1\right] in the real line, real numbers is its length in the everyday sense of the word – specifically, 1. Technically, a measure is a function that assigns a non-negative real number or Extended real number line, +∞ to (certain) subsets of a set X. It must assign 0 to the empty set and be (countably) additive: the measure of a 'large' subset that can be decomposed into a finite (or countable) number of 'smaller' disjoint subsets, is the sum of the measures of the "smaller" subsets. In general, if one wants to associate a ''consistent'' size to ''each'' subset of a given set while satisfying the other axioms of a measure, one only finds trivial examples like the counting measure. This problem was resolved by defining measure only on a sub-collection of all subsets; the so-called ''measurable'' subsets, which are required to form a Sigma-algebra, \sigma-algebra. This means that countable union (set theory), unions, countable intersection (set theory), intersections and complement (set theory), complements of measurable subsets are measurable. Non-measurable sets in a Euclidean space, on which the Lebesgue measure cannot be defined consistently, are necessarily complicated in the sense of being badly mixed up with their complement. Indeed, their existence is a non-trivial consequence of the axiom of choice.


Numerical analysis

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to general symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). Modern numerical analysis does not seek exact answers, because exact answers are often impossible to obtain in practice. Instead, much of numerical analysis is concerned with obtaining approximate solutions while maintaining reasonable bounds on errors. Numerical analysis naturally finds applications in all fields of engineering and the physical sciences, but in the 21st century, the life sciences and even the arts have adopted elements of scientific computations. Ordinary differential equations appear in celestial mechanics (planets, stars and galaxies); numerical linear algebra is important for data analysis; stochastic differential equations and Markov chains are essential in simulating living cells for medicine and biology.


Vector analysis

Vector analysis is a branch of mathematical analysis dealing with values which have both magnitude and direction. Some examples of vectors include velocity, force, and displacement. Vectors are commonly associated with scalars, values which describe magnitude.


Scalar analysis

Scalar analysis is a branch of mathematical analysis dealing with values related to scale as opposed to direction. Values such as temperature are scalar because they describe the magnitude of a value without regard to direction, force, or displacement that value may or may not have.


Tensor analysis


Other topics

* Calculus of variations deals with extremizing functional (mathematics), functionals, as opposed to ordinary
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
which deals with function (mathematics), functions. * Harmonic analysis deals with the representation of function (mathematics), functions or signals as the superposition principle, superposition of basic waves. * Geometric analysis involves the use of geometrical methods in the study of
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be sol ...
s and the application of the theory of partial differential equations to geometry. * Clifford analysis, the study of Clifford valued functions that are annihilated by Dirac or Dirac-like operators, termed in general as monogenic or Clifford analytic functions. * p-adic analysis, ''p''-adic analysis, the study of analysis within the context of p-adic number, ''p''-adic numbers, which differs in some interesting and surprising ways from its real and complex counterparts. * Non-standard analysis, which investigates the hyperreal numbers and their functions and gives a rigour#Mathematical rigour, rigorous treatment of
infinitesimal In mathematics, an infinitesimal number is a quantity that is closer to zero than any standard real number, but that is not zero. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referr ...
s and infinitely large numbers. * Computable analysis, the study of which parts of analysis can be carried out in a computability theory, computable manner. * Stochastic calculus – analytical notions developed for stochastic processes. * Set-valued analysis – applies ideas from analysis and topology to set-valued functions. * Convex analysis, the study of convex sets and functions. * Idempotent analysis – analysis in the context of an idempotent semiring, where the lack of an additive inverse is compensated somewhat by the idempotent rule A + A = A. ** Tropical analysis – analysis of the idempotent semiring called the tropical semiring (or max-plus algebra/min-plus algebra). *Constructive analysis, which is built upon a foundation of constructive logic, constructive, rather than classical, logic and set theory. *Intuitionistic analysis, which is developed from constructive logic like constructive analysis but also incorporates choice sequences. *Paraconsistent analysis, which is built upon a foundation of paraconsistent logic, paraconsistent, rather than classical, logic and set theory. *Smooth infinitesimal analysis, which is developed in a smooth topos.


Applications

Techniques from analysis are also found in other areas such as:


Physical sciences

The vast majority of classical mechanics, Theory of relativity, relativity, and quantum mechanics is based on applied analysis, and differential equations in particular. Examples of important differential equations include Newton's second law, the Schrödinger equation, and the Einstein field equations. Functional analysis is also a major factor in quantum mechanics.


Signal processing

When processing signals, such as Sound, audio, radio waves, light waves, seismic waves, and even images, Fourier analysis can isolate individual components of a compound waveform, concentrating them for easier detection or removal. A large family of signal processing techniques consist of Fourier-transforming a signal, manipulating the Fourier-transformed data in a simple way, and reversing the transformation.


Other areas of mathematics

Techniques from analysis are used in many areas of mathematics, including: * Analytic number theory * Analytic combinatorics * Continuous probability * Differential entropy in information theory * Differential games * Differential geometry, the application of calculus to specific mathematical spaces known as manifolds that possess a complicated internal structure but behave in a simple manner locally. * Differentiable manifolds * Differential topology * Partial differential equations


Famous Textbooks

* Foundation of Analysis: The Arithmetic of Whole Rational, Irrational and Complex Numbers, by Edmund Landau * Introductory Real Analysis, by Andrey Kolmogorov, Sergei Fomin * Differential and Integral Calculus (3 volumes), by Grigorii Fichtenholz * The Fundamentals of Mathematical Analysis (2 volumes), by Grigorii Fichtenholz * A Course Of Mathematical Analysis (2 volumes), by Sergey Nikolsky * Mathematical Analysis (2 volumes), by Vladimir A. Zorich, Vladimir Zorich * A Course of Higher Mathematics (5 volumes, 6 parts), by Vladimir Smirnov (mathematician), Vladimir Smirnov * Differential And Integral Calculus, by Nikolai Piskunov * A Course of Mathematical Analysis, by Aleksandr Khinchin * Mathematical Analysis: A Special Course, by Georgiy Shilov * Theory of Functions of a Real Variable (2 volumes), by Isidor Natanson * Problems in Mathematical Analysis, by Boris Demidovich * Problems and Theorems in Analysis (2 volumes), by George Pólya, George Polya, Gábor Szegő, Gabor Szegö * Mathematical Analysis: A Modern Approach to Advanced Calculus, by Tom M. Apostol, Tom Apostol * Principles of Mathematical Analysis, by Walter Rudin * Real Analysis: Measure Theory, Integration, and Hilbert Spaces, by Elias M. Stein, Elias Stein * Complex Analysis, by Elias M. Stein, Elias Stein * Functional Analysis: Introduction to Further Topics in Analysis, by Elias M. Stein, Elias Stein * Analysis (2 volumes), by Terence Tao * Analysis (3 volumes), by Herbert Amann, Joachim Escher * Real and Functional Analysis, by Vladimir Bogachev, Oleg Smolyanov * Real and Functional Analysis, by Serge Lang


See also

* Constructive analysis * History of calculus * Hypercomplex analysis * Multivariable calculus * Paraconsistent logic * Smooth infinitesimal analysis * Timeline of calculus and mathematical analysis


References


Further reading

*

(NB. 3 softcover volumes in slipcase. Original Russian title in March 1956: Математика, ее содержание, методы и значени

https://www.mathedu.ru/text/matematika_ee_soderzhanie_metody_i_znachenie_t2_1956

First English edition in 6 volumes by AMS in 1962/1963, revised English edition in 3 volumes by MIT Press in August 1964

2nd printing by MIT Press in April 1965. First MIT paperback edition in March 1969. Reprinted in one volume by Dover.) * * * * * * * * * (vi+608 pages) (reprinted: 1935, 1940, 1946, 1950, 1952, 1958, 1962, 1963, 1992) *


External links


Earliest Known Uses of Some of the Words of Mathematics: Calculus & Analysis

Basic Analysis: Introduction to Real Analysis
by Jiri Lebl (Creative Commons, Creative Commons BY-NC-SA)
Mathematical Analysis-Encyclopædia Britannica


{{Authority control Mathematical analysis,