Computable Analysis
In mathematics and computer science, computable analysis is the study of mathematical analysis from the perspective of computability theory. It is concerned with the parts of real analysis and functional analysis that can be carried out in a computable manner. The field is closely related to constructive analysis and numerical analysis. A notable result is that integration (in the sense of the Riemann integral) is computable. This might be considered surprising as an integral is (loosely speaking) an infinite sum. While this result could be explained by the fact that every computable function from \mathbb ,1/math> to \mathbb R is uniformly continuous, the notable thing is that the modulus of continuity can always be computed without being explicitly given. A similarly surprising fact is that differentiation of complex functions is also computable, while the same result is ''false'' for real functions; see . The above motivating results have no counterpart in Bishop's co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Turing Machine
A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm. The machine operates on an infinite memory tape divided into discrete mathematics, discrete cells, each of which can hold a single symbol drawn from a finite set of symbols called the Alphabet (formal languages), alphabet of the machine. It has a "head" that, at any point in the machine's operation, is positioned over one of these cells, and a "state" selected from a finite set of states. At each step of its operation, the head reads the symbol in its cell. Then, based on the symbol and the machine's own present state, the machine writes a symbol into the same cell, and moves the head one step to the left or the right, or halts the computation. The choice of which replacement symbol to write, which direction to move the head, and whet ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Continuous Function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the most general continuous functions, and their d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Existence Property
In mathematical logic, the disjunction and existence properties are the "hallmarks" of constructive theories such as Heyting arithmetic and constructive set theories (Rathjen 2005). Definitions * The disjunction property is satisfied by a theory if, whenever a sentence ''A'' ∨ ''B'' is a theorem, then either ''A'' is a theorem, or ''B'' is a theorem. * The existence property or witness property is satisfied by a theory if, whenever a sentence is a theorem, where ''A''(''x'') has no other free variables, then there is some term ''t'' such that the theory proves . Related properties Rathjen (2005) lists five properties that a theory may possess. These include the disjunction property (DP), the existence property (EP), and three additional properties: * The numerical existence property (NEP) states that if the theory proves (\exists x \in \mathbb)\varphi(x), where ''φ'' has no other free variables, then the theory proves \varphi(\bar) for some n \in \mathbb\text ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Stephen Cole Kleene
Stephen Cole Kleene ( ; January 5, 1909 – January 25, 1994) was an American mathematician. One of the students of Alonzo Church, Kleene, along with Rózsa Péter, Alan Turing, Emil Post, and others, is best known as a founder of the branch of mathematical logic known as recursion theory, which subsequently helped to provide the foundations of theoretical computer science. Kleene's work grounds the study of computable functions. A number of mathematical concepts are named after him: Kleene hierarchy, Kleene algebra, the Kleene star (Kleene closure), Kleene's recursion theorem and the Kleene fixed-point theorem. He also invented regular expressions in 1951 to describe McCulloch-Pitts neural networks, and made significant contributions to the foundations of mathematical intuitionism. Biography Kleene was awarded a bachelor's degree from Amherst College in 1930. He was awarded a Ph.D. in mathematics from Princeton University in 1934, where his thesis, entitled ''A Theory of Po ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Topos
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally, on a site). Topoi behave much like the category of sets and possess a notion of localization. The Grothendieck topoi find applications in algebraic geometry, and more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory. Grothendieck topos (topos in geometry) Since the introduction of sheaves into mathematics in the 1940s, a major theme has been to study a space by studying sheaves on a space. This idea was expounded by Alexander Grothendieck by introducing the notion of a "topos". The main utility of this notion is in the abundance of situations in mathematics where topological heuristics are very effective, but an honest topological space is lacking; it is sometimes possible to find a topos formalizing the heuristic. An important example of this progra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Extreme Value Theorem
In calculus, the extreme value theorem states that if a real-valued function f is continuous on the closed and bounded interval ,b/math>, then f must attain a maximum and a minimum, each at least once. That is, there exist numbers c and d in ,b/math> such that: f(c) \leq f(x) \leq f(d)\quad \forall x\in ,b The extreme value theorem is more specific than the related boundedness theorem, which states merely that a continuous function f on the closed interval ,b/math> is bounded on that interval; that is, there exist real numbers m and M such that: m \le f(x) \le M\quad \forall x \in , b This does not say that M and m are necessarily the maximum and minimum values of f on the interval ,b which is what the extreme value theorem stipulates must also be the case. The extreme value theorem is used to prove Rolle's theorem. In a formulation due to Karl Weierstrass, this theorem states that a continuous function from a non-empty compact space to a subset of the real n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Computable Numbers
In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers, computable reals, or recursive reals. The concept of a computable real number was introduced by Émile Borel in 1912, using the intuitive notion of computability available at the time. Equivalent definitions can be given using μ-recursive functions, Turing machines, or λ-calculus as the formal representation of algorithms. The computable numbers form a real closed field and can be used in the place of real numbers for many, but not all, mathematical purposes. Informal definition In the following, Marvin Minsky defines the numbers to be computed in a manner similar to those defined by Alan Turing in 1936; i.e., as "sequences of digits interpreted as decimal fractions" between 0 and 1: The key notions in the definition are (1) that some ''n'' is specified at the start, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Computable Analysis
In mathematics and computer science, computable analysis is the study of mathematical analysis from the perspective of computability theory. It is concerned with the parts of real analysis and functional analysis that can be carried out in a computable manner. The field is closely related to constructive analysis and numerical analysis. A notable result is that integration (in the sense of the Riemann integral) is computable. This might be considered surprising as an integral is (loosely speaking) an infinite sum. While this result could be explained by the fact that every computable function from \mathbb ,1/math> to \mathbb R is uniformly continuous, the notable thing is that the modulus of continuity can always be computed without being explicitly given. A similarly surprising fact is that differentiation of complex functions is also computable, while the same result is ''false'' for real functions; see . The above motivating results have no counterpart in Bishop's co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Topological Space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a topological space is a Set (mathematics), set whose elements are called Point (geometry), points, along with an additional structure called a topology, which can be defined as a set of Neighbourhood (mathematics), neighbourhoods for each point that satisfy some Axiom#Non-logical axioms, axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a space (mathematics), mathematical space that allows for the definition of Limit (mathematics), limits, Continuous function (topology), continuity, and Connected space, connectedness. Common types ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Partial Function
In mathematics, a partial function from a set to a set is a function from a subset of (possibly the whole itself) to . The subset , that is, the '' domain'' of viewed as a function, is called the domain of definition or natural domain of . If equals , that is, if is defined on every element in , then is said to be a total function. In other words, a partial function is a binary relation over two sets that associates to every element of the first set ''at most'' one element of the second set; it is thus a univalent relation. This generalizes the concept of a (total) function by not requiring ''every'' element of the first set to be associated to an element of the second set. A partial function is often used when its exact domain of definition is not known, or is difficult to specify. However, even when the exact domain of definition is known, partial functions are often used for simplicity or brevity. This is the case in calculus, where, for example, the quotien ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Total Function
In mathematics, a partial function from a set to a set is a function from a subset of (possibly the whole itself) to . The subset , that is, the '' domain'' of viewed as a function, is called the domain of definition or natural domain of . If equals , that is, if is defined on every element in , then is said to be a total function. In other words, a partial function is a binary relation over two sets that associates to every element of the first set ''at most'' one element of the second set; it is thus a univalent relation. This generalizes the concept of a (total) function by not requiring ''every'' element of the first set to be associated to an element of the second set. A partial function is often used when its exact domain of definition is not known, or is difficult to specify. However, even when the exact domain of definition is known, partial functions are often used for simplicity or brevity. This is the case in calculus, where, for example, the quotient ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |