HOME

TheInfoList



OR:

mRNA display is a display technique used for ''
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in biology an ...
''
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
, and/or
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A ...
evolution to create molecules that can bind to a desired target. The process results in translated
peptides Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A p ...
or
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
that are associated with their
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
progenitor via a
puromycin Puromycin is an antibiotic protein synthesis inhibitor which causes premature chain termination during translation. Inhibition of translation Puromycin is an aminonucleoside antibiotic, derived from the '' Streptomyces alboniger'' bacterium, ...
linkage. The complex then binds to an immobilized target in a selection step (
affinity chromatography Affinity chromatography is a method of separating a biomolecule from a mixture, based on a highly specific macromolecular binding interaction between the biomolecule and another substance. The specific type of binding interaction depends on the ...
). The mRNA-protein fusions that bind well are then reverse transcribed to cDNA and their sequence amplified via a
polymerase chain reaction The polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies (complete or partial) of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it (or a part of it) t ...
. The result is a
nucleotide Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules wi ...
sequence that encodes a peptide with high affinity for the molecule of interest.
Puromycin Puromycin is an antibiotic protein synthesis inhibitor which causes premature chain termination during translation. Inhibition of translation Puromycin is an aminonucleoside antibiotic, derived from the '' Streptomyces alboniger'' bacterium, ...
is an analogue of the 3’ end of a tyrosyl-tRNA with a part of its structure mimics a molecule of
adenosine Adenosine ( symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9-glycosidic bond. Adenosine is one of the four nucleoside building ...
, and the other part mimics a molecule of
tyrosine -Tyrosine or tyrosine (symbol Tyr or Y) or 4-hydroxyphenylalanine is one of the 20 standard amino acids that are used by cells to synthesize proteins. It is a non-essential amino acid with a polar side group. The word "tyrosine" is from the Gr ...
. Compared to the cleavable ester bond in a tyrosyl-tRNA, puromycin has a non-hydrolysable amide bond. As a result, puromycin interferes with translation, and causes premature release of translation products. All mRNA templates used for mRNA display technology have puromycin at their 3’ end. As translation proceeds, ribosome moves along the mRNA template, and once it reaches the 3’ end of the template, the fused puromycin will enter ribosome’s A site and be incorporated into the nascent peptide. The mRNA-polypeptide fusion is then released from the ribosome (Figure 1). To synthesize an mRNA-polypeptide fusion, the fused puromycin is not the only modification to the mRNA template. Oligonucleotides and other spacers need to be recruited along with the puromycin to provide flexibility and proper length for the puromycin to enter the A site. Ideally, the linker between the 3’ end of an mRNA and the puromycin has to be flexible and long enough to allow the puromycin to enter the A site upon translation of the last codon. This enables the efficient production of high-quality, full-length mRNA-polypeptide fusion. Rihe Liu ''et al.'' optimized the 3’-puromycin oligonucleotide spacer. They reported that dA25 in combination with a Spacer 9 (Glen Research), and dAdCdCP at the 5’ terminus worked the best for the fusion reaction. They found that linkers longer than 40 nucleotides and shorter than 16 nucleotides showed greatly reduced efficiency of fusion formation. Also, when the sequence rUrUP presented adjacent to the puromycin, fusion did not form efficiently. In addition to providing flexibility and length, the poly dA portion of the linker also allows further purification of the mRNA-polypeptide fusion due to its high affinity for dT cellulose resin. The mRNA-polypeptide fusions can be selected over immobilized selection targets for several rounds with increasing stringency. After each round of selection, those library members that stay bound to the immobilized target are PCR amplified, and non-binders are washed off.


Method

The synthesis of an mRNA display library starts from the synthesis of a DNA library. A DNA library for any protein or small peptide of interest can be synthesized by solid-phase synthesis followed by PCR amplification. Usually, each member of this DNA library has a T7 RNA polymerase transcription site and a ribosomal binding site at the 5’ end. The T7 promoter region allows large-scale ''in vitro'' T7 transcription to transcribe the DNA library into an mRNA library, which provides templates for the ''in vitro'' translation reaction later. The ribosomal binding site in the 5’-untranslated region (5’ UTR) is designed according to the ''in vitro'' translation system to be used. There are two popular commercially available ''in vitro'' translation systems. One is ''E. Coli'' S30 Extract System (Promega) that requires a Shine-Dalgarno sequence in the 5’ UTR as a ribosomal binding site; the other one is Red Nova Lysate (Novagen), which needs a ΔTMV ribosomal binding site. Once the mRNA library is generated, it will be Urea-PAGE purified and ligated using T4
DNA ligase DNA ligase is a specific type of enzyme, a ligase, () that facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond. It plays a role in repairing single-strand breaks in duplex DNA in living organ ...
to the DNA spacer linker containing puromycin at the 3’ end. In this ligation step, a piece of mRNA is ligated with a single stranded DNA with the help from T4 DNA ligase. This is not a standard T4 DNA ligase ligation reaction, where two pieces of double stranded DNA are ligated together. To increase the yield of this special ligation, a single stranded DNA splint may be used to aid the ligation reaction. The 5’ terminus of the splint is designed to be complementary to the 3’ end of the mRNA, and the 3’ terminus of the splint is designed to be complementary to the 5’ end of the DNA spacer linker, which usually consists of poly dA nucleotides (Figure 2). The ligated mRNA-DNA-puromycin library is translated in Red Nova Lysate (Novagen) or ''E. Coli'' S30 Extract System (Promega), resulting in polypeptides covalently linked ''in cis'' to the encoding mRNA. The ''in vitro'' translation can also be done in a PURE (protein synthesis using recombinant elements) system. PURE system is an ''E. Coli'' cell-free translation system in which only essential translation components are present. Some components, such as amino acids and aminoacyl-tRNA synthases (AARSs) can be omitted from the system. Instead, chemically acylated tRNA can be added into the PURE system. It has been shown that some unnatural amino acids, such as N-methyl-amino acid accylated tRNA can be incorporated into peptides or mRNA-polypeptide fusions in a PURE system. After translation, the single-stranded mRNA portions of the fusions will be converted to heteroduplex of RNA/DNA by
reverse transcriptase A reverse transcriptase (RT) is an enzyme used to generate complementary DNA (cDNA) from an RNA template, a process termed reverse transcription. Reverse transcriptases are used by viruses such as HIV and hepatitis B to replicate their genomes, ...
to eliminate any unwanted RNA secondary structures, and render the nucleic acid portion of the fusion more stable. This step is a standard reverse transcription reaction. For instance, it can be done by using Superscript II (GIBCO-BRL) following the manufacturer’s protocol. The mRNA/DNA-polypeptide fusions can be selected over immobilized selection targets for several rounds (Figure 3). There might be a relatively high background for the first few rounds of selection, and this can be minimized by increasing selection stringency, such as adjusting salt concentration, amount of detergent, and/or temperature during the target/fusion binding period. Following binding selection, those library members that stay bound to the immobilized target are PCR amplified. The PCR amplification step will enrich the population from the mRNA-display library that has higher affinity for the immobilized target. Error-prone PCR can also be done in between each round of selection to further increase the diversity of the mRNA-display library and reduce background in selection. A less time-consuming protocol for mRNA display was recently published.


Advantages

Although there are many other molecular display technologies, such as
phage display Phage display is a laboratory technique for the study of protein–protein, protein–peptide, and protein– DNA interactions that uses bacteriophages (viruses that infect bacteria) to connect proteins with the genetic information that encodes ...
,
bacterial display Bacterial display (or bacteria display or bacterial surface display) is a protein engineering technique used for in vitro protein evolution. Libraries of polypeptides displayed on the surface of bacteria can be screened using flow cytometry or iter ...
,
yeast display Yeast display (or yeast surface display) is a protein engineering technique that uses the expression of recombinant proteins incorporated into the cell wall of yeast for isolating and engineering antibodies. Development The yeast display technique ...
, and
ribosome display Ribosome display is a technique used to perform ''in vitro'' protein evolution to create proteins that can bind to a desired ligand. The process results in translated proteins that are associated with their mRNA progenitor which is used, as a compl ...
, mRNA display technology has many advantages over the others. The first three biological display libraries listed have polypeptides or proteins expressed on the respective microorganism’s surface and the accompanying coding information for each polypeptide or protein is retrievable from the microorganism’s genome. However, the library size for these three ''in vivo'' display systems is limited by the transformation efficiency of each organism. For example, the library size for phage and bacterial display is limited to 1-10 × 10^9 different members. The library size for yeast display is even smaller. Moreover, these cell-based display system only allow the screening and enrichment of peptides/proteins containing natural amino acids. In contrast, mRNA display and ribosome display are ''in vitro'' selection methods. They allow a library size as large as 10^15 different members. The large library size increases the probability to select very rare sequences, and also improves the diversity of the selected sequences. In addition, ''in vitro'' selection methods remove unwanted selection pressure, such as poor protein expression, and rapid protein degradation, which may reduce the diversity of the selected sequences. Finally, ''in vitro'' selection methods allow the application of ''in vitro'' mutagenesis and recombination techniques throughout the selection process. Although both ribosome display and mRNA display are ''in vitro'' selection methods, mRNA display has some advantage over the ribosome display technology. mRNA display utilizes covalent mRNA-polypeptide complexes linked through puromycin; whereas, ribosome display utilizes stalled, noncovalent ribosome-mRNA-polypeptide complexes. For ribosome display, selection stringency is limited to keep ribosome-mRNA-polypeptide in a complex because of the noncovalent ribosome-mRNA-polypeptide complexes. This may cause difficulties in reducing background binding during the selection cycle. Also, the polypeptides under selection in a ribosome display system are attached to an enormous rRNA-protein complex, a ribosome, which has a molecular weight of more than 2,000,000 Da. There might be some unpredictable interaction between the selection target and the ribosome, and this may lead to a loss of potential binders during the selection cycle. In contrast, the puromycin DNA spacer linker used in mRNA display technology is much smaller comparing to a ribosome. This linker may have less chance to interact with an immobilized selection target. Thus, mRNA display technology is more likely to give less biased results.


Application

In 1997, Roberts and Szostak showed that fusions between a synthetic mRNA and its encoded ''myc'' epitope could be enriched from a pool of random sequence mRNA-polypeptide fusions by immunoprecipitation. Nine years later, Fukuda and colleagues chose mRNA display method for ''in vitro'' evolution of single-chain Fv (scFv) antibody fragments. They selected six different scFv mutants with five consensus mutations. However, kinetic analysis of these mutants showed that their antigen-specificity remained similar to that of the wild type. However, they have demonstrated that two of the five consensus mutations were within the
complementarity determining regions Complementarity-determining regions (CDRs) are part of the variable chains in immunoglobulins (antibodies) and T cell receptors, generated by B-cells and T-cells respectively, where these molecules bind to their specific antigen. A set of CDRs co ...
(CDRs). And they concluded that mRNA display has the potential for rapid artificial evolution of high-affinity diagnostic and therapeutic antibodies by optimizing their CDRs. Roberts and coworkers have demonstrated that unnatural peptide oligomers consisting of an N-substituted amino acid can be synthesized as mRNA-polypeptide fusions. N-substituted amino acid-containing peptides have been associated with good proteolytic stability and improved pharmacokinetic properties. This work indicates that mRNA display technology has the potential for selecting drug-like peptides for therapeutic usage resistant to proteolysis.


See also

*
Ribosome display Ribosome display is a technique used to perform ''in vitro'' protein evolution to create proteins that can bind to a desired ligand. The process results in translated proteins that are associated with their mRNA progenitor which is used, as a compl ...
*
Protein engineering Protein engineering is the process of developing useful or valuable proteins. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. It has been used to imp ...
* Protein–protein interaction screening


References

{{Protein methods Molecular biology Display techniques