HOME

TheInfoList



OR:

Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
s that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They are often used in physical and
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
problems and are most useful when it is difficult or impossible to use other approaches. Monte Carlo methods are mainly used in three problem classes: optimization, numerical integration, and generating draws from a probability distribution. In physics-related problems, Monte Carlo methods are useful for simulating systems with many coupled
degrees of freedom Degrees of freedom (often abbreviated df or DOF) refers to the number of independent variables or parameters of a thermodynamic system. In various scientific fields, the word "freedom" is used to describe the limits to which physical movement or ...
, such as fluids, disordered materials, strongly coupled solids, and cellular structures (see cellular Potts model,
interacting particle systems In probability theory, an interacting particle system (IPS) is a stochastic process (X(t))_ on some configuration space \Omega= S^G given by a site space, a countable-infinite graph G and a local state space, a compact metric space S . More ...
, McKean–Vlasov processes, kinetic models of gases). Other examples include modeling phenomena with significant
uncertainty Uncertainty refers to Epistemology, epistemic situations involving imperfect or unknown information. It applies to predictions of future events, to physical measurements that are already made, or to the unknown. Uncertainty arises in partially ...
in inputs such as the calculation of
risk In simple terms, risk is the possibility of something bad happening. Risk involves uncertainty about the effects/implications of an activity with respect to something that humans value (such as health, well-being, wealth, property or the environme ...
in business and, in mathematics, evaluation of multidimensional
definite integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
s with complicated boundary conditions. In application to systems engineering problems (space,
oil exploration Hydrocarbon exploration (or oil and gas exploration) is the search by petroleum geologists and geophysicists for deposits of hydrocarbons, particularly petroleum and natural gas, in the Earth Earth is the third planet from the Sun ...
, aircraft design, etc.), Monte Carlo–based predictions of failure,
cost overrun A cost overrun, also known as a cost increase or budget overrun, involves unexpected incurred costs. When these costs are in excess of budgeted amounts due to a value engineering underestimation of the actual cost during budgeting, they are known ...
s and schedule overruns are routinely better than human intuition or alternative "soft" methods. In principle, Monte Carlo methods can be used to solve any problem having a probabilistic interpretation. By the
law of large numbers In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials sho ...
, integrals described by the
expected value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a ...
of some random variable can be approximated by taking the
empirical mean The sample mean (or "empirical mean") and the sample covariance are statistics computed from a sample of data on one or more random variables. The sample mean is the average value (or mean value) of a sample of numbers taken from a larger pop ...
( the 'sample mean') of independent samples of the variable. When the probability distribution of the variable is parameterized, mathematicians often use a
Markov chain Monte Carlo In statistics, Markov chain Monte Carlo (MCMC) methods comprise a class of algorithms for sampling from a probability distribution. By constructing a Markov chain that has the desired distribution as its equilibrium distribution, one can obtain ...
(MCMC) sampler. The central idea is to design a judicious
Markov chain A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happen ...
model with a prescribed stationary probability distribution. That is, in the limit, the samples being generated by the MCMC method will be samples from the desired (target) distribution. By the ergodic theorem, the stationary distribution is approximated by the empirical measures of the random states of the MCMC sampler. In other problems, the objective is generating draws from a sequence of probability distributions satisfying a nonlinear evolution equation. These flows of probability distributions can always be interpreted as the distributions of the random states of a
Markov process A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happen ...
whose transition probabilities depend on the distributions of the current random states (see McKean–Vlasov processes, nonlinear filtering equation). In other instances we are given a flow of probability distributions with an increasing level of sampling complexity (path spaces models with an increasing time horizon, Boltzmann–Gibbs measures associated with decreasing temperature parameters, and many others). These models can also be seen as the evolution of the law of the random states of a nonlinear Markov chain. A natural way to simulate these sophisticated nonlinear Markov processes is to sample multiple copies of the process, replacing in the evolution equation the unknown distributions of the random states by the sampled empirical measures. In contrast with traditional Monte Carlo and MCMC methodologies, these mean-field particle techniques rely on sequential interacting samples. The terminology ''mean field'' reflects the fact that each of the ''samples'' ( particles, individuals, walkers, agents, creatures, or phenotypes) interacts with the empirical measures of the process. When the size of the system tends to infinity, these random empirical measures converge to the deterministic distribution of the random states of the nonlinear Markov chain, so that the statistical interaction between particles vanishes. Despite its conceptual and algorithmic simplicity, the computational cost associated with a Monte Carlo simulation can be staggeringly high. In general the method requires many samples to get a good approximation, which may incur an arbitrarily large total runtime if the processing time of a single sample is high. Although this is a severe limitation in very complex problems, the
embarrassingly parallel In parallel computing, an embarrassingly parallel workload or problem (also called embarrassingly parallelizable, perfectly parallel, delightfully parallel or pleasingly parallel) is one where little or no effort is needed to separate the problem ...
nature of the algorithm allows this large cost to be reduced (perhaps to a feasible level) through parallel computing strategies in local processors, clusters, cloud computing, GPU, FPGA, etc.


Overview

Monte Carlo methods vary, but tend to follow a particular pattern: # Define a domain of possible inputs # Generate inputs randomly from a probability distribution over the domain # Perform a deterministic computation on the inputs # Aggregate the results For example, consider a quadrant (circular sector) inscribed in a
unit square In mathematics, a unit square is a square whose sides have length . Often, ''the'' unit square refers specifically to the square in the Cartesian plane with corners at the four points ), , , and . Cartesian coordinates In a Cartesian coordina ...
. Given that the ratio of their areas is , the value of can be approximated using a Monte Carlo method: # Draw a square, then inscribe a quadrant within it #
Uniformly Uniform distribution may refer to: * Continuous uniform distribution * Discrete uniform distribution * Uniform distribution (ecology) * Equidistributed sequence In mathematics, a sequence (''s''1, ''s''2, ''s''3, ...) of real numbers is said to be ...
scatter a given number of points over the square # Count the number of points inside the quadrant, i.e. having a distance from the origin of less than 1 # The ratio of the inside-count and the total-sample-count is an estimate of the ratio of the two areas, . Multiply the result by 4 to estimate . In this procedure the domain of inputs is the square that circumscribes the quadrant. We generate random inputs by scattering grains over the square then perform a computation on each input (test whether it falls within the quadrant). Aggregating the results yields our final result, the approximation of . There are two important considerations: # If the points are not uniformly distributed, then the approximation will be poor. # There are many points. The approximation is generally poor if only a few points are randomly placed in the whole square. On average, the approximation improves as more points are placed. Uses of Monte Carlo methods require large amounts of random numbers, and their use benefitted greatly from pseudorandom number generators, which were far quicker to use than the tables of random numbers that had been previously used for statistical sampling.


History

Before the Monte Carlo method was developed, simulations tested a previously understood deterministic problem, and statistical sampling was used to estimate uncertainties in the simulations. Monte Carlo simulations invert this approach, solving deterministic problems using
probabilistic Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, ...
metaheuristic In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimizatio ...
s (see
simulated annealing Simulated annealing (SA) is a probabilistic technique for approximating the global optimum of a given function. Specifically, it is a metaheuristic to approximate global optimization in a large search space for an optimization problem. ...
). An early variant of the Monte Carlo method was devised to solve the
Buffon's needle problem In mathematics, Buffon's needle problem is a question first posed in the 18th century by Georges-Louis Leclerc, Comte de Buffon: :Suppose we have a floor made of parallel strips of wood, each the same width, and we drop a needle onto the floo ...
, in which can be estimated by dropping needles on a floor made of parallel equidistant strips. In the 1930s,
Enrico Fermi Enrico Fermi (; 29 September 1901 – 28 November 1954) was an Italian (later naturalized American) physicist and the creator of the world's first nuclear reactor, the Chicago Pile-1. He has been called the "architect of the nuclear age" an ...
first experimented with the Monte Carlo method while studying neutron diffusion, but he did not publish this work. In the late 1940s,
Stanislaw Ulam Stanisław Marcin Ulam (; 13 April 1909 – 13 May 1984) was a Polish-American scientist in the fields of mathematics and nuclear physics. He participated in the Manhattan Project, originated the Teller–Ulam design of thermonuclear weapo ...
invented the modern version of the Markov Chain Monte Carlo method while he was working on nuclear weapons projects at the
Los Alamos National Laboratory Los Alamos National Laboratory (often shortened as Los Alamos and LANL) is one of the sixteen research and development laboratories of the United States Department of Energy (DOE), located a short distance northwest of Santa Fe, New Mexico, i ...
. In 1946, nuclear weapons physicists at Los Alamos were investigating neutron diffusion in the core of a nuclear weapon. Despite having most of the necessary data, such as the average distance a neutron would travel in a substance before it collided with an atomic nucleus and how much energy the neutron was likely to give off following a collision, the Los Alamos physicists were unable to solve the problem using conventional, deterministic mathematical methods. Ulam proposed using random experiments. He recounts his inspiration as follows: Being secret, the work of von Neumann and Ulam required a code name. A colleague of von Neumann and Ulam, Nicholas Metropolis, suggested using the name ''Monte Carlo'', which refers to the Monte Carlo Casino in
Monaco Monaco (; ), officially the Principality of Monaco (french: Principauté de Monaco; Ligurian: ; oc, Principat de Mónegue), is a sovereign ''Sovereign'' is a title which can be applied to the highest leader in various categories. The word ...
where Ulam's uncle would borrow money from relatives to gamble. Monte Carlo methods were central to the
simulation A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the ...
s required for the
Manhattan Project The Manhattan Project was a research and development undertaking during World War II that produced the first nuclear weapons. It was led by the United States with the support of the United Kingdom and Canada. From 1942 to 1946, the project w ...
, though severely limited by the computational tools at the time. Von Neumann, Nicholas Metropolis and others programmed the
ENIAC ENIAC (; Electronic Numerical Integrator and Computer) was the first programmable, electronic, general-purpose digital computer, completed in 1945. There were other computers that had these features, but the ENIAC had all of them in one pac ...
computer to perform the first fully automated Monte Carlo calculations, of a fission weapon core, in the spring of 1948. In the 1950s Monte Carlo methods were used at Los Alamos for the development of the hydrogen bomb, and became popularized in the fields of
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
,
physical chemistry Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical ...
, and
operations research Operations research ( en-GB, operational research) (U.S. Air Force Specialty Code: Operations Analysis), often shortened to the initialism OR, is a discipline that deals with the development and application of analytical methods to improve dec ...
. The
Rand Corporation The RAND Corporation (from the phrase "research and development") is an American nonprofit global policy think tank created in 1948 by Douglas Aircraft Company to offer research and analysis to the United States Armed Forces. It is financ ...
and the U.S. Air Force were two of the major organizations responsible for funding and disseminating information on Monte Carlo methods during this time, and they began to find a wide application in many different fields. The theory of more sophisticated mean-field type particle Monte Carlo methods had certainly started by the mid-1960s, with the work of Henry P. McKean Jr. on Markov interpretations of a class of nonlinear parabolic partial differential equations arising in fluid mechanics. We also quote an earlier pioneering article by Theodore E. Harris and Herman Kahn, published in 1951, using mean-field genetic-type Monte Carlo methods for estimating particle transmission energies. Mean-field genetic type Monte Carlo methodologies are also used as heuristic natural search algorithms (a.k.a.
metaheuristic In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimizatio ...
) in evolutionary computing. The origins of these mean-field computational techniques can be traced to 1950 and 1954 with the work of
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical c ...
on genetic type mutation-selection learning machines and the articles by Nils Aall Barricelli at the
Institute for Advanced Study The Institute for Advanced Study (IAS), located in Princeton, New Jersey, in the United States, is an independent center for theoretical research and intellectual inquiry. It has served as the academic home of internationally preeminent scholar ...
in
Princeton, New Jersey Princeton is a municipality with a borough form of government in Mercer County, in the U.S. state of New Jersey. It was established on January 1, 2013, through the consolidation of the Borough of Princeton and Princeton Township, both of whi ...
. Quantum Monte Carlo, and more specifically diffusion Monte Carlo methods can also be interpreted as a mean-field particle Monte Carlo approximation of
Feynman Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superflu ...
Kac path integrals. The origins of Quantum Monte Carlo methods are often attributed to Enrico Fermi and
Robert Richtmyer Robert Davis Richtmyer (October 10, 1910 – September 24, 2003) was an American physicist, mathematician, educator, author, and musician. Biography Richtmyer was born on October 10, 1910 in Ithaca, New York. His father was physicist Floyd K. Ri ...
who developed in 1948 a mean-field particle interpretation of neutron-chain reactions, but the first heuristic-like and genetic type particle algorithm (a.k.a. Resampled or Reconfiguration Monte Carlo methods) for estimating ground state energies of quantum systems (in reduced matrix models) is due to Jack H. Hetherington in 1984 In molecular chemistry, the use of genetic heuristic-like particle methodologies (a.k.a. pruning and enrichment strategies) can be traced back to 1955 with the seminal work of
Marshall N. Rosenbluth Marshall Nicholas Rosenbluth (5 February 1927 – 28 September 2003) was an Americans, American Plasma Physics, plasma physicist and member of the United States National Academy of Sciences, National Academy of Sciences, and member of the America ...
and Arianna W. Rosenbluth. The use of Sequential Monte Carlo in advanced
signal processing Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing '' signals'', such as sound, images, and scientific measurements. Signal processing techniques are used to optimize transmissions, ...
and Bayesian inference is more recent. It was in 1993, that Gordon et al., published in their seminal work the first application of a Monte Carlo resampling algorithm in Bayesian statistical inference. The authors named their algorithm 'the bootstrap filter', and demonstrated that compared to other filtering methods, their bootstrap algorithm does not require any assumption about that state-space or the noise of the system. We also quote another pioneering article in this field of Genshiro Kitagawa on a related "Monte Carlo filter", and the ones by Pierre Del Moral and Himilcon Carvalho, Pierre Del Moral, André Monin and Gérard Salut on particle filters published in the mid-1990s. Particle filters were also developed in signal processing in 1989–1992 by P. Del Moral, J. C. Noyer, G. Rigal, and G. Salut in the LAAS-CNRS in a series of restricted and classified research reports with STCAN (Service Technique des Constructions et Armes Navales), the IT company DIGILOG, and th
LAAS-CNRS
(the Laboratory for Analysis and Architecture of Systems) on radar/sonar and GPS signal processing problems. These Sequential Monte Carlo methodologies can be interpreted as an acceptance-rejection sampler equipped with an interacting recycling mechanism. From 1950 to 1996, all the publications on Sequential Monte Carlo methodologies, including the pruning and resample Monte Carlo methods introduced in computational physics and molecular chemistry, present natural and heuristic-like algorithms applied to different situations without a single proof of their consistency, nor a discussion on the bias of the estimates and on genealogical and ancestral tree based algorithms. The mathematical foundations and the first rigorous analysis of these particle algorithms were written by Pierre Del Moral in 1996. Branching type particle methodologies with varying population sizes were also developed in the end of the 1990s by Dan Crisan, Jessica Gaines and Terry Lyons, and by Dan Crisan, Pierre Del Moral and Terry Lyons. Further developments in this field were developed in 2000 by P. Del Moral, A. Guionnet and L. Miclo.


Definitions

There is no consensus on how ''Monte Carlo'' should be defined. For example, Ripley defines most probabilistic modeling as '' stochastic simulation'', with ''Monte Carlo'' being reserved for Monte Carlo integration and Monte Carlo statistical tests. Sawilowsky distinguishes between a
simulation A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the ...
, a Monte Carlo method, and a Monte Carlo simulation: a simulation is a fictitious representation of reality, a Monte Carlo method is a technique that can be used to solve a mathematical or statistical problem, and a Monte Carlo simulation uses repeated sampling to obtain the statistical properties of some phenomenon (or behavior). Examples: *Simulation: Drawing ''one'' pseudo-random uniform variable from the interval ,1can be used to simulate the tossing of a coin: If the value is less than or equal to 0.50 designate the outcome as heads, but if the value is greater than 0.50 designate the outcome as tails. This is a simulation, but not a Monte Carlo simulation. *Monte Carlo method: Pouring out a box of coins on a table, and then computing the ratio of coins that land heads versus tails is a Monte Carlo method of determining the behavior of repeated coin tosses, but it is not a simulation. *Monte Carlo simulation: Drawing ''a large number'' of pseudo-random uniform variables from the interval ,1at one time, or once at many different times, and assigning values less than or equal to 0.50 as heads and greater than 0.50 as tails, is a ''Monte Carlo simulation'' of the behavior of repeatedly tossing a coin. Kalos and Whitlock point out that such distinctions are not always easy to maintain. For example, the emission of radiation from atoms is a natural stochastic process. It can be simulated directly, or its average behavior can be described by stochastic equations that can themselves be solved using Monte Carlo methods. "Indeed, the same computer code can be viewed simultaneously as a 'natural simulation' or as a solution of the equations by natural sampling."


Monte Carlo and random numbers

The main idea behind this method is that the results are computed based on repeated random sampling and statistical analysis. The Monte Carlo simulation is, in fact, random experimentations, in the case that, the results of these experiments are not well known. Monte Carlo simulations are typically characterized by many unknown parameters, many of which are difficult to obtain experimentally. Monte Carlo simulation methods do not always require truly random numbers to be useful (although, for some applications such as
primality testing A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating wheth ...
, unpredictability is vital). Many of the most useful techniques use deterministic,
pseudorandom A pseudorandom sequence of numbers is one that appears to be statistically random, despite having been produced by a completely deterministic and repeatable process. Background The generation of random numbers has many uses, such as for random ...
sequences, making it easy to test and re-run simulations. The only quality usually necessary to make good
simulation A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the ...
s is for the pseudo-random sequence to appear "random enough" in a certain sense. What this means depends on the application, but typically they should pass a series of statistical tests. Testing that the numbers are uniformly distributed or follow another desired distribution when a large enough number of elements of the sequence are considered is one of the simplest and most common ones. Weak correlations between successive samples are also often desirable/necessary. Sawilowsky lists the characteristics of a high-quality Monte Carlo simulation: *the (pseudo-random) number generator has certain characteristics (e.g. a long "period" before the sequence repeats) *the (pseudo-random) number generator produces values that pass tests for randomness *there are enough samples to ensure accurate results *the proper sampling technique is used *the algorithm used is valid for what is being modeled *it simulates the phenomenon in question. Pseudo-random number sampling algorithms are used to transform uniformly distributed pseudo-random numbers into numbers that are distributed according to a given probability distribution. Low-discrepancy sequences are often used instead of random sampling from a space as they ensure even coverage and normally have a faster order of convergence than Monte Carlo simulations using random or pseudorandom sequences. Methods based on their use are called
quasi-Monte Carlo method In numerical analysis, the quasi-Monte Carlo method is a method for numerical integration and solving some other problems using low-discrepancy sequences (also called quasi-random sequences or sub-random sequences). This is in contrast to the regu ...
s. In an effort to assess the impact of random number quality on Monte Carlo simulation outcomes, astrophysical researchers tested cryptographically-secure pseudorandom numbers generated via Intel's RDRAND instruction set, as compared to those derived from algorithms, like the Mersenne Twister, in Monte Carlo simulations of radio flares from brown dwarfs. RDRAND is the closest pseudorandom number generator to a true random number generator. No statistically significant difference was found between models generated with typical pseudorandom number generators and RDRAND for trials consisting of the generation of 107 random numbers.


Monte Carlo simulation versus "what if" scenarios

There are ways of using probabilities that are definitely not Monte Carlo simulations – for example, deterministic modeling using single-point estimates. Each uncertain variable within a model is assigned a "best guess" estimate. Scenarios (such as best, worst, or most likely case) for each input variable are chosen and the results recorded. By contrast, Monte Carlo simulations sample from a probability distribution for each variable to produce hundreds or thousands of possible outcomes. The results are analyzed to get probabilities of different outcomes occurring. For example, a comparison of a spreadsheet cost construction model run using traditional "what if" scenarios, and then running the comparison again with Monte Carlo simulation and triangular probability distributions shows that the Monte Carlo analysis has a narrower range than the "what if" analysis. This is because the "what if" analysis gives equal weight to all scenarios (see quantifying uncertainty in corporate finance), while the Monte Carlo method hardly samples in the very low probability regions. The samples in such regions are called "rare events".


Applications

Monte Carlo methods are especially useful for simulating phenomena with significant
uncertainty Uncertainty refers to Epistemology, epistemic situations involving imperfect or unknown information. It applies to predictions of future events, to physical measurements that are already made, or to the unknown. Uncertainty arises in partially ...
in inputs and systems with many coupled degrees of freedom. Areas of application include:


Physical sciences

Monte Carlo methods are very important in computational physics,
physical chemistry Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical ...
, and related applied fields, and have diverse applications from complicated
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a ty ...
calculations to designing heat shields and
aerodynamic Aerodynamics, from grc, ἀήρ ''aero'' (air) + grc, δυναμική (dynamics), is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dyn ...
forms as well as in modeling radiation transport for radiation dosimetry calculations. In
statistical physics Statistical physics is a branch of physics that evolved from a foundation of statistical mechanics, which uses methods of probability theory and statistics, and particularly the mathematical tools for dealing with large populations and approxi ...
, Monte Carlo molecular modeling is an alternative to computational
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of th ...
, and Monte Carlo methods are used to compute
statistical field theories Statistics (from German: '' Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industr ...
of simple particle and polymer systems. Quantum Monte Carlo methods solve the many-body problem for quantum systems. In radiation materials science, the binary collision approximation for simulating
ion implantation Ion implantation is a low-temperature process by which ions of one element are accelerated into a solid target, thereby changing the physical, chemical, or electrical properties of the target. Ion implantation is used in semiconductor device fa ...
is usually based on a Monte Carlo approach to select the next colliding atom. In experimental
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and ...
, Monte Carlo methods are used for designing detectors, understanding their behavior and comparing experimental data to theory. In
astrophysics Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the he ...
, they are used in such diverse manners as to model both
galaxy A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar Sys ...
evolution and microwave radiation transmission through a rough planetary surface. Monte Carlo methods are also used in the ensemble models that form the basis of modern
weather forecasting Weather forecasting is the application of science and technology to predict the conditions of the atmosphere for a given location and time. People have attempted to predict the weather informally for millennia and formally since the 19th centu ...
.


Engineering

Monte Carlo methods are widely used in engineering for sensitivity analysis and quantitative
probabilistic Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, ...
analysis in process design. The need arises from the interactive, co-linear and non-linear behavior of typical process simulations. For example, * In microelectronics engineering, Monte Carlo methods are applied to analyze correlated and uncorrelated variations in
analog Analog or analogue may refer to: Computing and electronics * Analog signal, in which information is encoded in a continuous variable ** Analog device, an apparatus that operates on analog signals *** Analog electronics, circuits which use analo ...
and digital
integrated circuits An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Transistor count, Large ...
. * In
geostatistics Geostatistics is a branch of statistics focusing on spatial or spatiotemporal datasets. Developed originally to predict probability distributions of ore grades for mining operations, it is currently applied in diverse disciplines including pet ...
and geometallurgy, Monte Carlo methods underpin the design of
mineral processing In the field of extractive metallurgy, mineral processing, also known as ore dressing, is the process of separating commercially valuable minerals from their ores. History Before the advent of heavy machinery the raw ore was broken up using ...
flowsheets and contribute to quantitative risk analysis. * In
fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including '' aerodynamics'' (the study of air and other gases in motion) ...
, in particular rarefied gas dynamics, where the Boltzmann equation is solved for finite
Knudsen number The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale could be, for example, the radius of a body in a fluid. The number is na ...
fluid flows using the direct simulation Monte Carlo method in combination with highly efficient computational algorithms. * In
autonomous robotics An autonomous robot is a robot that acts without recourse to human control. The first autonomous robots environment were known as Elmer and Elsie, which were constructed in the late 1940s by W. Grey Walter. They were the first robots in history th ...
,
Monte Carlo localization Monte Carlo localization (MCL), also known as particle filter localization,Ioannis M. Rekleitis.A Particle Filter Tutorial for Mobile Robot Localization" ''Centre for Intelligent Machines, McGill University, Tech. Rep. TR-CIM-04-02'' (2004). is an a ...
can determine the position of a robot. It is often applied to stochastic filters such as the
Kalman filter For statistics and control theory, Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of measurements observed over time, including statistical noise and other inaccuracies, and produces estima ...
or
particle filter Particle filters, or sequential Monte Carlo methods, are a set of Monte Carlo algorithms used to solve filtering problems arising in signal processing and Bayesian statistical inference. The filtering problem consists of estimating the int ...
that forms the heart of the SLAM (simultaneous localization and mapping) algorithm. * In
telecommunications Telecommunication is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than tha ...
, when planning a wireless network, design must be proved to work for a wide variety of scenarios that depend mainly on the number of users, their locations and the services they want to use. Monte Carlo methods are typically used to generate these users and their states. The network performance is then evaluated and, if results are not satisfactory, the network design goes through an optimization process. * In
reliability engineering Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability describes the ability of a system or component to function under stated conditions for a specifi ...
, Monte Carlo simulation is used to compute system-level response given the component-level response. * In
signal processing Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing '' signals'', such as sound, images, and scientific measurements. Signal processing techniques are used to optimize transmissions, ...
and Bayesian inference,
particle filter Particle filters, or sequential Monte Carlo methods, are a set of Monte Carlo algorithms used to solve filtering problems arising in signal processing and Bayesian statistical inference. The filtering problem consists of estimating the int ...
s and sequential Monte Carlo techniques are a class of mean-field particle methods for sampling and computing the posterior distribution of a signal process given some noisy and partial observations using interacting empirical measures.


Climate change and radiative forcing

The
Intergovernmental Panel on Climate Change The Intergovernmental Panel on Climate Change (IPCC) is an intergovernmental body of the United Nations. Its job is to advance scientific knowledge about climate change caused by human activities. The World Meteorological Organization (WMO) a ...
relies on Monte Carlo methods in
probability density function In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) c ...
analysis of
radiative forcing Radiative forcing (or climate forcing) is the change in energy flux in the atmosphere caused by natural or anthropogenic factors of climate change as measured by watts / metre2. It is a scientific concept used to quantify and compare the exter ...
.


Computational biology

Monte Carlo methods are used in various fields of
computational biology Computational biology refers to the use of data analysis, mathematical modeling and computational simulations to understand biological systems and relationships. An intersection of computer science, biology, and big data, the field also has fo ...
, for example for Bayesian inference in phylogeny, or for studying biological systems such as genomes, proteins, or membranes. The systems can be studied in the coarse-grained or ''ab initio'' frameworks depending on the desired accuracy. Computer simulations allow us to monitor the local environment of a particular
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
to see if some
chemical reaction A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and break ...
is happening for instance. In cases where it is not feasible to conduct a physical experiment,
thought experiment A thought experiment is a hypothetical situation in which a hypothesis, theory, or principle is laid out for the purpose of thinking through its consequences. History The ancient Greek ''deiknymi'' (), or thought experiment, "was the most anci ...
s can be conducted (for instance: breaking bonds, introducing impurities at specific sites, changing the local/global structure, or introducing external fields).


Computer graphics

Path tracing Path tracing is a computer graphics Monte Carlo method of rendering images of three-dimensional scenes such that the global illumination is faithful to reality. Fundamentally, the algorithm is integrating over all the illuminance arriving t ...
, occasionally referred to as Monte Carlo ray tracing, renders a 3D scene by randomly tracing samples of possible light paths. Repeated sampling of any given pixel will eventually cause the average of the samples to converge on the correct solution of the
rendering equation In computer graphics, the rendering equation is an integral equation in which the equilibrium radiance leaving a point is given as the sum of emitted plus reflected radiance under a geometric optics approximation. It was simultaneously introduc ...
, making it one of the most physically accurate 3D graphics rendering methods in existence.


Applied statistics

The standards for Monte Carlo experiments in statistics were set by Sawilowsky. In applied statistics, Monte Carlo methods may be used for at least four purposes: #To compare competing statistics for small samples under realistic data conditions. Although
type I error In statistical hypothesis testing, a type I error is the mistaken rejection of an actually true null hypothesis (also known as a "false positive" finding or conclusion; example: "an innocent person is convicted"), while a type II error is the f ...
and power properties of statistics can be calculated for data drawn from classical theoretical distributions (''e.g.'', normal curve,
Cauchy distribution The Cauchy distribution, named after Augustin Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution (after Hendrik Lorentz), Cauchy–Lorentz distribution, Lorentz(ian) fu ...
) for
asymptotic In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates tends to infinity. In projective geometry and related contexts, ...
conditions (''i. e'', infinite sample size and infinitesimally small treatment effect), real data often do not have such distributions. #To provide implementations of hypothesis tests that are more efficient than exact tests such as permutation tests (which are often impossible to compute) while being more accurate than critical values for asymptotic distributions. #To provide a random sample from the posterior distribution in Bayesian inference. This sample then approximates and summarizes all the essential features of the posterior. #To provide efficient random estimates of the Hessian matrix of the negative log-likelihood function that may be averaged to form an estimate of the
Fisher information In mathematical statistics, the Fisher information (sometimes simply called information) is a way of measuring the amount of information that an observable random variable ''X'' carries about an unknown parameter ''θ'' of a distribution that model ...
matrix. Monte Carlo methods are also a compromise between approximate randomization and permutation tests. An approximate randomization test is based on a specified subset of all permutations (which entails potentially enormous housekeeping of which permutations have been considered). The Monte Carlo approach is based on a specified number of randomly drawn permutations (exchanging a minor loss in precision if a permutation is drawn twice—or more frequently—for the efficiency of not having to track which permutations have already been selected).


Artificial intelligence for games

Monte Carlo methods have been developed into a technique called Monte-Carlo tree search that is useful for searching for the best move in a game. Possible moves are organized in a
search tree In computer science, a search tree is a tree data structure used for locating specific keys from within a set. In order for a tree to function as a search tree, the key for each node must be greater than any keys in subtrees on the left, and les ...
and many random simulations are used to estimate the long-term potential of each move. A black box simulator represents the opponent's moves. The Monte Carlo tree search (MCTS) method has four steps: #Starting at root node of the tree, select optimal child nodes until a leaf node is reached. #Expand the leaf node and choose one of its children. #Play a simulated game starting with that node. #Use the results of that simulated game to update the node and its ancestors. The net effect, over the course of many simulated games, is that the value of a node representing a move will go up or down, hopefully corresponding to whether or not that node represents a good move. Monte Carlo Tree Search has been used successfully to play games such as Go, Tantrix, Battleship, Havannah, and Arimaa.


Design and visuals

Monte Carlo methods are also efficient in solving coupled integral differential equations of radiation fields and energy transport, and thus these methods have been used in global illumination computations that produce photo-realistic images of virtual 3D models, with applications in
video game Video games, also known as computer games, are electronic games that involves interaction with a user interface or input device such as a joystick, game controller, controller, computer keyboard, keyboard, or motion sensing device to gener ...
s,
architecture Architecture is the art and technique of designing and building, as distinguished from the skills associated with construction. It is both the process and the product of sketching, conceiving, planning, designing, and constructing buildings ...
,
design A design is a plan or specification for the construction of an object or system or for the implementation of an activity or process or the result of that plan or specification in the form of a prototype, product, or process. The verb ''to design'' ...
, computer generated films, and cinematic special effects.


Search and rescue

The
US Coast Guard The United States Coast Guard (USCG) is the maritime security, search and rescue, and law enforcement service branch of the United States Armed Forces and one of the country's eight uniformed services. The service is a maritime, military, mu ...
utilizes Monte Carlo methods within its computer modeling software
SAROPS SAROPS output Search and Rescue Optimal Planning System (SAROPS) is a comprehensive search and rescue (SAR) planning system used by the United States Coast Guard in the planning and execution of almost all SAR cases in and around the United States ...
in order to calculate the probable locations of vessels during
search and rescue Search and rescue (SAR) is the search for and provision of aid to people who are in distress or imminent danger. The general field of search and rescue includes many specialty sub-fields, typically determined by the type of terrain the search ...
operations. Each simulation can generate as many as ten thousand data points that are randomly distributed based upon provided variables. Search patterns are then generated based upon extrapolations of these data in order to optimize the probability of containment (POC) and the probability of detection (POD), which together will equal an overall probability of success (POS). Ultimately this serves as a practical application of probability distribution in order to provide the swiftest and most expedient method of rescue, saving both lives and resources.


Finance and business

Monte Carlo simulation is commonly used to evaluate the risk and uncertainty that would affect the outcome of different decision options. Monte Carlo simulation allows the business risk analyst to incorporate the total effects of uncertainty in variables like sales volume, commodity and labour prices, interest and exchange rates, as well as the effect of distinct risk events like the cancellation of a contract or the change of a tax law. Monte Carlo methods in finance are often used to evaluate investments in projects at a business unit or corporate level, or other financial valuations. They can be used to model project schedules, where simulations aggregate estimates for worst-case, best-case, and most likely durations for each task to determine outcomes for the overall projec

Monte Carlo methods are also used in option pricing, default risk analysis. Additionally, they can be used to estimate the financial impact of medical interventions.


Law

A Monte Carlo approach was used for evaluating the potential value of a proposed program to help female petitioners in Wisconsin be successful in their applications for Harassment Restraining Order, harassment and domestic abuse restraining orders. It was proposed to help women succeed in their petitions by providing them with greater advocacy thereby potentially reducing the risk of
rape Rape is a type of sexual assault usually involving sexual intercourse or other forms of sexual penetration carried out against a person without their consent. The act may be carried out by physical force, coercion, abuse of authority, or ...
and physical assault. However, there were many variables in play that could not be estimated perfectly, including the effectiveness of restraining orders, the success rate of petitioners both with and without advocacy, and many others. The study ran trials that varied these variables to come up with an overall estimate of the success level of the proposed program as a whole.


Library science

Monte Carlo approach had also been used to simulate the number of book publications based on book
genre Genre () is any form or type of communication in any mode (written, spoken, digital, artistic, etc.) with socially-agreed-upon conventions developed over time. In popular usage, it normally describes a category of literature, music, or other ...
in Malaysia. The Monte Carlo simulation utilized previous published National Book publication data and book's price according to book genre in the local market. The Monte Carlo results were used to determine what kind of book genre that Malaysians are fond of and was used to compare book publications between
Malaysia Malaysia ( ; ) is a country in Southeast Asia. The federation, federal constitutional monarchy consists of States and federal territories of Malaysia, thirteen states and three federal territories, separated by the South China Sea into two r ...
and Japan.


Use in mathematics

In general, the Monte Carlo methods are used in mathematics to solve various problems by generating suitable random numbers (see also Random number generation) and observing that fraction of the numbers that obeys some property or properties. The method is useful for obtaining numerical solutions to problems too complicated to solve analytically. The most common application of the Monte Carlo method is Monte Carlo integration.


Integration

Deterministic numerical integration algorithms work well in a small number of dimensions, but encounter two problems when the functions have many variables. First, the number of function evaluations needed increases rapidly with the number of dimensions. For example, if 10 evaluations provide adequate accuracy in one dimension, then 10100 points are needed for 100 dimensions—far too many to be computed. This is called the curse of dimensionality. Second, the boundary of a multidimensional region may be very complicated, so it may not be feasible to reduce the problem to an iterated integral. 100
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
s is by no means unusual, since in many physical problems, a "dimension" is equivalent to a degree of freedom. Monte Carlo methods provide a way out of this exponential increase in computation time. As long as the function in question is reasonably
well-behaved In mathematics, when a mathematical phenomenon runs counter to some intuition, then the phenomenon is sometimes called pathological. On the other hand, if a phenomenon does not run counter to intuition, it is sometimes called well-behaved. T ...
, it can be estimated by randomly selecting points in 100-dimensional space, and taking some kind of average of the function values at these points. By the
central limit theorem In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables thems ...
, this method displays \scriptstyle 1/\sqrt convergence—i.e., quadrupling the number of sampled points halves the error, regardless of the number of dimensions. A refinement of this method, known as importance sampling in statistics, involves sampling the points randomly, but more frequently where the integrand is large. To do this precisely one would have to already know the integral, but one can approximate the integral by an integral of a similar function or use adaptive routines such as stratified sampling, recursive stratified sampling, adaptive umbrella sampling or the VEGAS algorithm. A similar approach, the
quasi-Monte Carlo method In numerical analysis, the quasi-Monte Carlo method is a method for numerical integration and solving some other problems using low-discrepancy sequences (also called quasi-random sequences or sub-random sequences). This is in contrast to the regu ...
, uses
low-discrepancy sequence In mathematics, a low-discrepancy sequence is a sequence with the property that for all values of ''N'', its subsequence ''x''1, ..., ''x'N'' has a low discrepancy. Roughly speaking, the discrepancy of a sequence is low if the proportion of poi ...
s. These sequences "fill" the area better and sample the most important points more frequently, so quasi-Monte Carlo methods can often converge on the integral more quickly. Another class of methods for sampling points in a volume is to simulate random walks over it (
Markov chain Monte Carlo In statistics, Markov chain Monte Carlo (MCMC) methods comprise a class of algorithms for sampling from a probability distribution. By constructing a Markov chain that has the desired distribution as its equilibrium distribution, one can obtain ...
). Such methods include the
Metropolis–Hastings algorithm In statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult. This seq ...
,
Gibbs sampling In statistics, Gibbs sampling or a Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which are approximated from a specified multivariate probability distribution, when direct sampling is diff ...
, Wang and Landau algorithm, and interacting type MCMC methodologies such as the sequential Monte Carlo samplers.


Simulation and optimization

Another powerful and very popular application for random numbers in numerical simulation is in
numerical optimization Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfi ...
. The problem is to minimize (or maximize) functions of some vector that often has many dimensions. Many problems can be phrased in this way: for example, a computer chess program could be seen as trying to find the set of, say, 10 moves that produces the best evaluation function at the end. In the
traveling salesman problem The travelling salesman problem (also called the travelling salesperson problem or TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each cit ...
the goal is to minimize distance traveled. There are also applications to engineering design, such as multidisciplinary design optimization. It has been applied with quasi-one-dimensional models to solve particle dynamics problems by efficiently exploring large configuration space. Reference is a comprehensive review of many issues related to simulation and optimization. The
traveling salesman problem The travelling salesman problem (also called the travelling salesperson problem or TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each cit ...
is what is called a conventional optimization problem. That is, all the facts (distances between each destination point) needed to determine the optimal path to follow are known with certainty and the goal is to run through the possible travel choices to come up with the one with the lowest total distance. However, let's assume that instead of wanting to minimize the total distance traveled to visit each desired destination, we wanted to minimize the total time needed to reach each destination. This goes beyond conventional optimization since travel time is inherently uncertain (traffic jams, time of day, etc.). As a result, to determine our optimal path we would want to use simulation - optimization to first understand the range of potential times it could take to go from one point to another (represented by a probability distribution in this case rather than a specific distance) and then optimize our travel decisions to identify the best path to follow taking that uncertainty into account.


Inverse problems

Probabilistic formulation of
inverse problem An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, source reconstruction in acoustics, or calculating th ...
s leads to the definition of a probability distribution in the model space. This probability distribution combines prior information with new information obtained by measuring some observable parameters (data). As, in the general case, the theory linking data with model parameters is nonlinear, the posterior probability in the model space may not be easy to describe (it may be multimodal, some moments may not be defined, etc.). When analyzing an inverse problem, obtaining a maximum likelihood model is usually not sufficient, as we normally also wish to have information on the resolution power of the data. In the general case we may have many model parameters, and an inspection of the marginal probability densities of interest may be impractical, or even useless. But it is possible to pseudorandomly generate a large collection of models according to the
posterior probability distribution The posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule. From an epistemological perspective, the posterior p ...
and to analyze and display the models in such a way that information on the relative likelihoods of model properties is conveyed to the spectator. This can be accomplished by means of an efficient Monte Carlo method, even in cases where no explicit formula for the ''a priori'' distribution is available. The best-known importance sampling method, the Metropolis algorithm, can be generalized, and this gives a method that allows analysis of (possibly highly nonlinear) inverse problems with complex ''a priori'' information and data with an arbitrary noise distribution.


Philosophy

Popular exposition of the Monte Carlo Method was conducted by McCracken. Method's general philosophy was discussed by Elishakoff and Grüne-Yanoff and Weirich.Grüne-Yanoff, T., & Weirich, P. (2010). The philosophy and epistemology of simulation: A review, Simulation & Gaming, 41(1), pp. 20-50


See also

* Auxiliary field Monte Carlo * Biology Monte Carlo method * Direct simulation Monte Carlo *
Dynamic Monte Carlo method In chemistry, dynamic Monte Carlo (DMC) is a Monte Carlo method for modeling the dynamic behaviors of molecules by comparing the rates of individual steps with random numbers. It is essentially the same as Kinetic Monte Carlo. Unlike the Metrop ...
*
Ergodicity In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies t ...
* Genetic algorithms * Kinetic Monte Carlo * List of software for Monte Carlo molecular modeling * Mean-field particle methods * Monte Carlo method for photon transport * Monte Carlo methods for electron transport *
Monte Carlo N-Particle Transport Code Monte Carlo N-Particle Transport (MCNP) is a general-purpose, continuous-energy, generalized-geometry, time-dependent, Monte Carlo radiation transport code designed to track many particle types over broad ranges of energies and is developed by Lo ...
*
Morris method In applied statistics, the Morris method for global sensitivity analysis is a so-called one-step-at-a-time method (OAT), meaning that in each run only one input parameter is given a new value. It facilitates a global sensitivity analysis by making ...
*
Multilevel Monte Carlo method Multilevel Monte Carlo (MLMC) methods in numerical analysis are algorithms for computing expectations that arise in stochastic simulations. Just as Monte Carlo methods, they rely on repeated random sampling, but these samples are taken on different ...
*
Quasi-Monte Carlo method In numerical analysis, the quasi-Monte Carlo method is a method for numerical integration and solving some other problems using low-discrepancy sequences (also called quasi-random sequences or sub-random sequences). This is in contrast to the regu ...
* Sobol sequence *
Temporal difference learning Temporal difference (TD) learning refers to a class of model-free reinforcement learning methods which learn by bootstrapping from the current estimate of the value function. These methods sample from the environment, like Monte Carlo methods, ...


References


Citations


Sources

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *


External links

* {{Authority control Numerical analysis Statistical mechanics Computational physics Sampling techniques Statistical approximations Stochastic simulation Randomized algorithms Risk analysis methodologies