Midpoint Of LK City
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the midpoint is the middle
point Point or points may refer to: Places * Point, Lewis, a peninsula in the Outer Hebrides, Scotland * Point, Texas, a city in Rains County, Texas, United States * Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland * Point ...
of a
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
. It is
equidistant A point is said to be equidistant from a set of objects if the distances between that point and each object in the set are equal. In two-dimensional Euclidean geometry, the locus of points equidistant from two given (different) points is the ...
from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.


Formula

The midpoint of a segment in ''n''-dimensional space whose endpoints are A = (a_1, a_2, \dots , a_n) and B = (b_1, b_2, \dots , b_n) is given by :\frac. That is, the ''i''th coordinate of the midpoint (''i'' = 1, 2, ..., ''n'') is :\frac 2.


Construction

Given two points of interest, finding the midpoint of the line segment they determine can be accomplished by a
compass and straightedge construction In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an ideali ...
. The midpoint of a line segment, embedded in a
plane Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * Planes (gen ...
, can be located by first constructing a lens using circular arcs of equal (and large enough) radii centered at the two endpoints, then connecting the cusps of the lens (the two points where the arcs intersect). The point where the line connecting the cusps intersects the segment is then the midpoint of the segment. It is more challenging to locate the midpoint using only a compass, but it is still possible according to the Mohr-Mascheroni theorem.


Geometric properties involving midpoints


Circle

The midpoint of any
diameter In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid for ...
of a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
is the center of the circle. Any line
perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
to any
chord Chord may refer to: * Chord (music), an aggregate of musical pitches sounded simultaneously ** Guitar chord a chord played on a guitar, which has a particular tuning * Chord (geometry), a line segment joining two points on a curve * Chord ( ...
of a circle and passing through its midpoint also passes through the circle's center. The
butterfly theorem The butterfly theorem is a classical result in Euclidean geometry, which can be stated as follows:Johnson, Roger A., ''Advanced Euclidean Geometry'', Dover Publ., 2007 (orig. 1929). Let be the midpoint of a chord of a circle, through which ...
states that, if is the midpoint of a chord of a circle, through which two other chords and are drawn, then and intersect chord at and respectively, such that is the midpoint of .


Ellipse

The midpoint of any segment which is an
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape A shape or figure is a graphics, graphical representation of an obje ...
bisector or perimeter bisector of an
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
is the ellipse's center. The ellipse's center is also the midpoint of a segment connecting the two
foci Focus, or its plural form foci may refer to: Arts * Focus or Focus Festival, former name of the Adelaide Fringe arts festival in South Australia Film *''Focus'', a 1962 TV film starring James Whitmore * ''Focus'' (2001 film), a 2001 film based ...
of the ellipse.


Hyperbola

The midpoint of a segment connecting a
hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, cal ...
's vertices is the center of the hyperbola.


Triangle

The perpendicular bisector of a side of a
triangle A triangle is a polygon with three Edge (geometry), edges and three Vertex (geometry), vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, an ...
is the line that is perpendicular to that side and passes through its midpoint. The three perpendicular bisectors of a triangle's three sides intersect at the circumcenter (the center of the circle through the three vertices). The
median In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value. The basic fe ...
of a triangle's side passes through both the side's midpoint and the triangle's opposite
vertex Vertex, vertices or vertexes may refer to: Science and technology Mathematics and computer science *Vertex (geometry), a point where two or more curves, lines, or edges meet *Vertex (computer graphics), a data structure that describes the position ...
. The three medians of a triangle intersect at the triangle's centroid (the point on which the triangle would balance if it were made of a thin sheet of uniform-density metal). The
nine-point center In geometry, the nine-point center is a triangle center, a point defined from a given triangle in a way that does not depend on the placement or scale of the triangle. It is so called because it is the center of the nine-point circle, a circle t ...
of a triangle lies at the midpoint between the circumcenter and the orthocenter. These points are all on the Euler line. A ''midsegment'' (or ''midline'') of a triangle is a line segment that joins the midpoints of two sides of the triangle. It is parallel to the third side and has a length equal to one half of that third side. The medial triangle of a given triangle has vertices at the midpoints of the given triangle's sides, therefore its sides are the three midsegments of the given triangle. It shares the same centroid and medians with the given triangle. The perimeter of the medial triangle equals the
semiperimeter In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name ...
(half the perimeter) of the original triangle, and its area is one quarter of the area of the original triangle. The orthocenter (intersection of the
altitude Altitude or height (also sometimes known as depth) is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context ...
s) of the medial triangle coincides with the circumcenter (center of the circle through the vertices) of the original triangle. Every triangle has an
inscribed {{unreferenced, date=August 2012 An inscribed triangle of a circle In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figur ...
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
, called its Steiner inellipse, that is internally tangent to the triangle at the midpoints of all its sides. This ellipse is centered at the triangle's centroid, and it has the largest area of any ellipse inscribed in the triangle. In a right triangle, the circumcenter is the midpoint of the hypotenuse. In an
isosceles triangle In geometry, an isosceles triangle () is a triangle that has two sides of equal length. Sometimes it is specified as having ''exactly'' two sides of equal length, and sometimes as having ''at least'' two sides of equal length, the latter versio ...
, the median,
altitude Altitude or height (also sometimes known as depth) is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context ...
, and perpendicular bisector from the base side and the angle bisector of the apex coincide with the Euler line and the
axis of symmetry Axial symmetry is symmetry around an axis; an object is axially symmetric if its appearance is unchanged if rotated around an axis.
, and these coinciding lines go through the midpoint of the base side.


Quadrilateral

The two
bimedians of a convex quadrilateral are the line segments that connect the midpoints of opposite sides, hence each bisecting two sides. The two bimedians and the line segment joining the midpoints of the diagonals are
concurrent Concurrent means happening at the same time. Concurrency, concurrent, or concurrence may refer to: Law * Concurrence, in jurisprudence, the need to prove both ''actus reus'' and ''mens rea'' * Concurring opinion (also called a "concurrence"), a ...
at (all intersect at)a point called the "vertex centroid", which is the midpoint of all three of these segments.Altshiller-Court, Nathan, ''College Geometry'', Dover Publ., 2007. The four "maltitudes" of a convex quadrilateral are the perpendiculars to a side through the midpoint of the opposite side, hence bisecting the latter side. If the quadrilateral is
cyclic Cycle, cycles, or cyclic may refer to: Anthropology and social sciences * Cyclic history, a theory of history * Cyclical theory, a theory of American political history associated with Arthur Schlesinger, Sr. * Social cycle, various cycles in soc ...
(inscribed in a circle), these maltitudes all meet at a common point called the "anticenter". Brahmagupta's theorem states that if a cyclic quadrilateral is
orthodiagonal In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicu ...
(that is, has
perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
diagonals In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek δΠ...
), then the perpendicular to a side from the point of intersection of the diagonals always goes through the midpoint of the opposite side. Varignon's theorem states that the midpoints of the sides of an arbitrary quadrilateral form the vertices of a
parallelogram In Euclidean geometry, a parallelogram is a simple (non- self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equa ...
, and if the quadrilateral is not self-intersecting then the area of the parallelogram is half the area of the quadrilateral. The
Newton line In Euclidean geometry the Newton line is the line that connects the midpoints of the two diagonals in a convex quadrilateral with at most two parallel sides.Claudi Alsina, Roger B. Nelsen: ''Charming Proofs: A Journey Into Elegant Mathematics''. ...
is the line that connects the midpoints of the two diagonals in a convex quadrilateral that is not a parallelogram. The line segments connecting the midpoints of opposite sides of a convex quadrilateral intersect in a point that lies on the Newton line.


General polygons

A regular polygon has an
inscribed circle In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. ...
which is
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More ...
to each side of the polygon at its midpoint. In a regular polygon with an even number of sides, the midpoint of a diagonal between opposite vertices is the polygon's center. The
midpoint-stretching polygon In geometry, the midpoint-stretching polygon of a cyclic polygon is another cyclic polygon inscribed in the same circle, the polygon whose vertices are the midpoints of the circular arcs between the vertices of .. It may be derived from the midp ...
of a cyclic polygon (a
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two toge ...
whose vertices all fall on the same circle) is another cyclic polygon inscribed in the same circle, the polygon whose vertices are the midpoints of the circular arcs between the vertices of .. Iterating the midpoint-stretching operation on an arbitrary initial polygon results in a sequence of polygons whose shapes converge to that of a regular polygon.


Generalizations

The abovementioned formulas for the midpoint of a segment implicitly use the lengths of segments. However, in the generalization to affine geometry, where segment lengths are not defined, the midpoint can still be defined since it is an affine
invariant Invariant and invariance may refer to: Computer science * Invariant (computer science), an expression whose value doesn't change during program execution ** Loop invariant, a property of a program loop that is true before (and after) each iteratio ...
. The
synthetic Synthetic things are composed of multiple parts, often with the implication that they are artificial. In particular, 'synthetic' may refer to: Science * Synthetic chemical or compound, produced by the process of chemical synthesis * Synthetic o ...
affine definition of the midpoint of a segment is the
projective harmonic conjugate In projective geometry, the harmonic conjugate point of an ordered triple of points on the real projective line is defined by the following construction: :Given three collinear points , let be a point not lying on their join and let any line t ...
of the
point at infinity In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. Adj ...
, , of the line . That is, the point such that . When coordinates can be introduced in an affine geometry, the two definitions of midpoint will coincide. The midpoint is not naturally defined in projective geometry since there is no distinguished point to play the role of the point at infinity (any point in a
projective range In mathematics, a projective range is a set of points in projective geometry considered in a unified fashion. A projective range may be a projective line or a conic. A projective range is the dual of a pencil of lines on a given point. For instanc ...
may be projectively mapped to any other point in (the same or some other) projective range). However, fixing a point at infinity defines an affine structure on the projective line in question and the above definition can be applied. The definition of the midpoint of a segment may be extended to
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
arcs on a
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
. Note that, unlike in the affine case, the ''midpoint'' between two points may not be uniquely determined.


See also

* *
Midpoint polygon In geometry, the midpoint polygon of a polygon is the polygon whose vertices are the midpoints of the edges of . It is sometimes called the Kasner polygon after Edward Kasner, who termed it the ''inscribed polygon'' "for brevity". Examples Tr ...
* *


References

{{Reflist


External links


Animation
– showing the characteristics of the midpoint of a line segment Elementary geometry Affine geometry Analytic geometry