Microbial Metabolism
   HOME

TheInfoList



OR:

Microbial metabolism is the means by which a
microbe A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in olde ...
obtains the energy and nutrients (e.g.
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
) it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's
ecological niche In ecology, a niche is the match of a species to a specific environmental condition. Three variants of ecological niche are described by It describes how an organism or population responds to the distribution of resources and competitors (for ...
, and often allow for that microbe to be useful in
industrial processes Industrial processes are procedures involving chemical, physical, electrical or mechanical steps to aid in the manufacturing of an item or items, usually carried out on a very large scale. Industrial processes are the key components of heavy ind ...
or responsible for
biogeochemical Biogeochemistry is the scientific discipline that involves the study of the chemical, physical, geological, and biological processes and reactions that govern the composition of the natural environment (including the biosphere, the cryosphere, th ...
cycles.


Types

All microbial metabolisms can be arranged according to three principles: 1. How the organism obtains carbon for synthesizing cell mass:Morris, J. et al. (2019). "Biology: How Life Works", 3rd edition, W. H. Freeman. *
autotroph An autotroph or primary producer is an organism that produces complex organic compounds (such as carbohydrates, fats, and proteins) using carbon from simple substances such as carbon dioxide,Morris, J. et al. (2019). "Biology: How Life Wo ...
ic – carbon is obtained from
carbon dioxide Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
() *
heterotroph A heterotroph (; ) is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but ...
ic – carbon is obtained from
organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. The ...
s *
mixotroph A mixotroph is an organism that can use a mix of different sources of energy and carbon, instead of having a single trophic mode on the continuum from complete autotrophy at one end to heterotrophy at the other. It is estimated that mixotrophs comp ...
ic – carbon is obtained from both organic compounds and by fixing carbon dioxide 2. How the organism obtains
reducing equivalent Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
s (hydrogen atoms or electrons) used either in energy conservation or in biosynthetic reactions: *
lithotroph Lithotrophs are a diverse group of organisms using an inorganic substrate (usually of mineral origin) to obtain reducing equivalents for use in biosynthesis (e.g., carbon dioxide fixation) or energy conservation (i.e., ATP production) via aerobi ...
ic – reducing equivalents are obtained from inorganic compounds *
organotroph An organotroph is an organism that obtains hydrogen or electrons from organic substrates. This term is used in microbiology to classify and describe organisms based on how they obtain electrons for their respiration processes. Some organotrophs su ...
ic – reducing equivalents are obtained from organic compounds 3. How the organism obtains energy for living and growing: *
phototroph Phototrophs () are organisms that carry out photon capture to produce complex organic compounds (e.g. carbohydrates) and acquire energy. They use the energy from light to carry out various cellular metabolic processes. It is a common misconcep ...
ic – energy is obtained from lightTang, K.-H., Tang, Y. J., Blankenship, R. E. (2011). "Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications" ''Frontiers in Microbiology'' 2: Atc. 165. http://dx.doi.org/10.3389/micb.2011.00165 *
chemotroph A Chemotroph is an organism that obtains energy by the oxidation of electron donors in their environments. These molecules can be organic (chemoorganotrophs) or inorganic ( chemolithotrophs). The chemotroph designation is in contrast to phototr ...
ic – energy is obtained from external
chemical compound A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
s In practice, these terms are almost freely combined. Typical examples are as follows: * chemolithoautotrophs obtain energy from the oxidation of inorganic compounds and carbon from the fixation of carbon dioxide. Examples:
Nitrifying bacteria Nitrifying bacteria are chemolithotrophic organisms that include species of genera such as '' Nitrosomonas'', ''Nitrosococcus'', '' Nitrobacter'', '' Nitrospina'', '' Nitrospira'' and '' Nitrococcus''. These bacteria get their energy from the oxidat ...
, sulfur-oxidizing bacteria,
iron-oxidizing bacteria Iron-oxidizing bacteria are chemotrophic bacteria that derive energy by oxidizing dissolved ferrous iron. They are known to grow and proliferate in waters containing iron concentrations as low as 0.1 mg/L. However, at least 0.3 ppm of dissolved ox ...
,
Knallgas-bacteria Hydrogen-oxidizing bacteria are a group of facultative autotrophs that can use hydrogen as an electron donor. They can be divided into aerobes and anaerobes. The former use hydrogen as an electron donor and oxygen as an acceptor while the latter ...
* photolithoautotrophs obtain energy from light and carbon from the fixation of carbon dioxide, using reducing equivalents from inorganic compounds. Examples:
Cyanobacteria Cyanobacteria (), also known as Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name ''cyanobacteria'' refers to their color (), which similarly forms the basis of cyanobacteria's common name, blu ...
(water () as reducing equivalent = hydrogen donor), Chlorobiaceae,
Chromatiaceae The Chromatiaceae are one of the two families of purple sulfur bacteria, together with the Ectothiorhodospiraceae. They belong to the order Chromatiales of the class Gammaproteobacteria, which is composed by unicellular Gram-negative organisms. ...
(hydrogen sulfide () as hydrogen donor), ''
Chloroflexus Chloroflexales is an order of bacteria in the class Chloroflexia. Taxonomy The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Center for Biotechnology Information (NCBI). * ...
'' (hydrogen () as reducing equivalent donor) * chemolithoheterotrophs obtain energy from the oxidation of inorganic compounds, but cannot fix carbon dioxide (). Examples: some '' Thiobacilus'', some '' Beggiatoa'', some ''
Nitrobacter ''Nitrobacter'' is a genus comprising rod-shaped, gram-negative, and chemoautotrophic bacteria. The name ''Nitrobacter'' derives from the Latin neuter gender noun ''nitrum, nitri'', alkalis; the Ancient Greek noun βακτηρία'','' βακτ ...
'' spp., ''
Wolinella The genus ''Wolinella'' is a member of the Campylobacterales order of Bacteria. The order Campylobacterales includes human pathogens such as ''Helicobacter pylori'' and '' Campylobacter jejuni''. Strains The only publicly available strain of ''W ...
'' (with as reducing equivalent donor), some
Knallgas-bacteria Hydrogen-oxidizing bacteria are a group of facultative autotrophs that can use hydrogen as an electron donor. They can be divided into aerobes and anaerobes. The former use hydrogen as an electron donor and oxygen as an acceptor while the latter ...
, some
sulfate-reducing bacteria Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate () as termina ...
* chemoorganoheterotrophs obtain energy, carbon, and hydrogen for biosynthetic reactions from organic compounds. Examples: most bacteria, e. g. ''
Escherichia coli ''Escherichia coli'' (),Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. also known as ''E. coli'' (), is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus ''Escher ...
'', ''
Bacillus ''Bacillus'' (Latin "stick") is a genus of Gram-positive, rod-shaped bacteria, a member of the phylum '' Bacillota'', with 266 named species. The term is also used to describe the shape (rod) of other so-shaped bacteria; and the plural ''Bacill ...
'' spp., ''
Actinomycetota The ''Actinomycetota'' (or ''Actinobacteria'') are a phylum of all gram-positive bacteria. They can be terrestrial or aquatic. They are of great economic importance to humans because agriculture and forests depend on their contributions to soi ...
'' * photoorganoheterotrophs obtain energy from light, carbon and reducing equivalents for biosynthetic reactions from organic compounds. Some species are strictly heterotrophic, many others can also fix carbon dioxide and are mixotrophic. Examples: ''
Rhodobacter في الفيسبوك In taxonomy, ''Rhodobacter'' is a genus of the Rhodobacteraceae. The most famous species of ''Rhodobacter'' are ''Rhodobacter sphaeroides'' and ''Rhodobacter capsulatus ''Rhodobacter capsulatus'' is a species of purple b ...
'', ''
Rhodopseudomonas ''Rhodopseudomonas'' is a genus of bacteria from the family Nitrobacteraceae. Phylogeny The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature List of Prokaryotic names with Standing in Nomenc ...
'', '' Rhodospirillum'', ''
Rhodomicrobium ''Rhodomicrobium'' is a microaerobic to anaerobic, purple non-sulfur, cluster-building genus of bacteria. ''Rhodomicrobium'' uses bacteriochlorophyll a and bacteriochlorophyll b for photosynthesis Photosynthesis is a process used by pl ...
'', '' Rhodocyclus'', '' Heliobacterium'', ''
Chloroflexus Chloroflexales is an order of bacteria in the class Chloroflexia. Taxonomy The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Center for Biotechnology Information (NCBI). * ...
'' (alternatively to photolithoautotrophy with hydrogen)


Heterotrophic microbial metabolism

Some microbes are heterotrophic (more precisely chemoorganoheterotrophic), using organic compounds as both carbon and energy sources. Heterotrophic microbes live off of nutrients that they scavenge from living hosts (as commensals or
parasite Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson has ...
s) or find in dead organic matter of all kind (
saprophage Saprotrophic nutrition or lysotrophic nutrition is a process of chemoheterotrophic extracellular digestion involved in the processing of decayed (dead or waste) organic matter. It occurs in saprotrophs, and is most often associated with fungi ( ...
s). Microbial metabolism is the main contribution for the bodily decay of all organisms after death. Many
eukaryotic Eukaryotes () are organisms whose Cell (biology), cells have a cell nucleus, nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the ...
microorganisms are heterotrophic by
predation Predation is a biological interaction where one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation (which usually do not kill th ...
or
parasitism Parasitism is a Symbiosis, close relationship between species, where one organism, the parasite, lives on or inside another organism, the Host (biology), host, causing it some harm, and is Adaptation, adapted structurally to this way of lif ...
, properties also found in some bacteria such as '' Bdellovibrio'' (an intracellular parasite of other bacteria, causing death of its victims) and Myxobacteria such as ''
Myxococcus ''Myxococcus'' is a genus of bacteria in the family Myxococcaceae. Myxococci are Gram-negative, spore-forming, chemoorganotrophic, obligate aerobes. They are elongated rods with rounded or tapered ends, and they are nonflagellated. The cells mov ...
'' (predators of other bacteria which are killed and lysed by cooperating swarms of many single cells of Myxobacteria). Most
pathogen In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ ...
ic bacteria can be viewed as heterotrophic parasites of humans or the other eukaryotic species they affect. Heterotrophic microbes are extremely abundant in nature and are responsible for the breakdown of large organic
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
s such as
cellulose Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell w ...
, chitin or lignin which are generally indigestible to larger animals. Generally, the oxidative breakdown of large polymers to carbon dioxide ( mineralization) requires several different organisms, with one breaking down the polymer into its constituent monomers, one able to use the monomers and excreting simpler waste compounds as by-products, and one able to use the excreted wastes. There are many variations on this theme, as different organisms are able to degrade different polymers and secrete different waste products. Some organisms are even able to degrade more recalcitrant compounds such as petroleum compounds or pesticides, making them useful in
bioremediation Bioremediation broadly refers to any process wherein a biological system (typically bacteria, microalgae, fungi, and plants), living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluent ...
. Biochemically,
prokaryotic A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
heterotrophic metabolism is much more versatile than that of
eukaryotic Eukaryotes () are organisms whose Cell (biology), cells have a cell nucleus, nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the ...
organisms, although many prokaryotes share the most basic metabolic models with eukaryotes, e. g. using glycolysis (also called EMP pathway) for sugar metabolism and the
citric acid cycle The citric acid cycle (CAC)—also known as the Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and protein ...
to degrade acetate, producing energy in the form of ATP and reducing power in the form of
NADH Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an aden ...
or
quinols Hydroquinone, also known as benzene-1,4-diol or quinol, is an aromatic organic compound that is a type of phenol, a derivative of benzene, having the chemical formula C6H4(OH)2. It has two hydroxyl groups bonded to a benzene ring in a ''para'' ...
. These basic pathways are well conserved because they are also involved in biosynthesis of many conserved building blocks needed for cell growth (sometimes in reverse direction). However, many
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
and
archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebac ...
utilize alternative metabolic pathways other than glycolysis and the citric acid cycle. A well-studied example is sugar metabolism via the keto-deoxy-phosphogluconate pathway (also called ED pathway) in ''
Pseudomonas ''Pseudomonas'' is a genus of Gram-negative, Gammaproteobacteria, belonging to the family Pseudomonadaceae and containing 191 described species. The members of the genus demonstrate a great deal of metabolic diversity and consequently are able t ...
''. Moreover, there is a third alternative sugar-catabolic pathway used by some bacteria, the
pentose phosphate pathway The pentose phosphate pathway (also called the phosphogluconate pathway and the hexose monophosphate shunt and the HMP Shunt) is a metabolic pathway parallel to glycolysis. It generates NADPH and pentoses (5-carbon sugars) as well as ribose 5-pho ...
. The metabolic diversity and ability of prokaryotes to use a large variety of organic compounds arises from the much deeper evolutionary history and diversity of prokaryotes, as compared to eukaryotes. It is also noteworthy that the
mitochondrion A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used ...
, the small membrane-bound intracellular organelle that is the site of eukaryotic oxygen-using energy metabolism, arose from the
endosymbiosis An ''endosymbiont'' or ''endobiont'' is any organism that lives within the body or cells of another organism most often, though not always, in a mutualistic relationship. (The term endosymbiosis is from the Greek: ἔνδον ''endon'' "within" ...
of a
bacterium Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
related to obligate intracellular ''
Rickettsia ''Rickettsia'' is a genus of nonmotile, gram-negative, nonspore-forming, highly pleomorphic bacteria that may occur in the forms of cocci (0.1 μm in diameter), bacilli (1–4 μm long), or threads (up to about 10 μm long). The term "ricke ...
'', and also to plant-associated ''
Rhizobium ''Rhizobium'' is a genus of Gram-negative soil bacteria that fix nitrogen. ''Rhizobium'' species form an endosymbiotic nitrogen-fixing association with roots of (primarily) legumes and other flowering plants. The bacteria colonize plant cells ...
'' or ''
Agrobacterium ''Agrobacterium'' is a genus of Gram-negative bacteria established by H. J. Conn that uses horizontal gene transfer to cause tumors in plants. '' Agrobacterium tumefaciens'' is the most commonly studied species in this genus. ''Agrobacterium'' i ...
''. Therefore, it is not surprising that all mitrochondriate eukaryotes share metabolic properties with these Pseudomonadota. Most microbes respire (use an electron transport chain), although
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
is not the only
terminal electron acceptor An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. It is an oxidizing agent that, by virtue of its accepting electrons, is itself reduced in the process. Electron acceptors are sometimes mista ...
that may be used. As discussed below, the use of terminal electron acceptors other than oxygen has important biogeochemical consequences.


Fermentation

Fermentation is a specific type of heterotrophic metabolism that uses
organic carbon Total organic carbon (TOC) is the amount of carbon found in an organic compound and is often used as a non-specific indicator of water quality or cleanliness of pharmaceutical manufacturing equipment. TOC may also refer to the amount of organic c ...
instead of oxygen as a terminal electron acceptor. This means that these organisms do not use an electron transport chain to oxidize NADH to and therefore must have an alternative method of using this reducing power and maintaining a supply of for the proper functioning of normal metabolic pathways (e.g. glycolysis). As oxygen is not required, fermentative organisms are
anaerobic Anaerobic means "living, active, occurring, or existing in the absence of free oxygen", as opposed to aerobic which means "living, active, or occurring only in the presence of oxygen." Anaerobic may also refer to: * Anaerobic adhesive, a bonding a ...
. Many organisms can use fermentation under anaerobic conditions and
aerobic respiration Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor such as oxygen to produce large amounts of energy, to drive the bulk production of ATP. Cellular respiration may be des ...
when oxygen is present. These organisms are
facultative anaerobe A facultative anaerobic organism is an organism that makes ATP by aerobic respiration if oxygen is present, but is capable of switching to fermentation if oxygen is absent. Some examples of facultatively anaerobic bacteria are '' Staphylococc ...
s. To avoid the overproduction of NADH, obligately fermentative organisms usually do not have a complete citric acid cycle. Instead of using an ATP synthase as in
respiration Respiration may refer to: Biology * Cellular respiration, the process in which nutrients are converted into useful energy in a cell ** Anaerobic respiration, cellular respiration without oxygen ** Maintenance respiration, the amount of cellul ...
, ATP in fermentative organisms is produced by substrate-level phosphorylation where a
phosphate In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid . The phosphate or orthophosphate ion is derived from phospho ...
group is transferred from a high-energy organic compound to ADP to form ATP. As a result of the need to produce high energy phosphate-containing organic compounds (generally in the form of Coenzyme A-esters) fermentative organisms use NADH and other cofactors to produce many different reduced metabolic by-products, often including
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
gas (). These reduced organic compounds are generally small organic acids and alcohols derived from pyruvate, the end product of glycolysis. Examples include
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an Alcohol (chemistry), alcohol with the chemical formula . Its formula can be also written as or (an ethyl ...
, acetate, lactate, and
butyrate The conjugate acids are in :Carboxylic acids. {{Commons category, Carboxylate ions, Carboxylate anions Carbon compounds Oxyanions ...
. Fermentative organisms are very important industrially and are used to make many different types of food products. The different metabolic end products produced by each specific bacterial species are responsible for the different tastes and properties of each food. Not all fermentative organisms use substrate-level
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
. Instead, some organisms are able to couple the oxidation of low-energy organic compounds directly to the formation of a
proton motive force Chemiosmosis is the movement of ions across a semipermeable membrane bound structure, down their electrochemical gradient. An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H+) across a membra ...
or
sodium-motive force Members of the Solute:Sodium Symporter (SSS) FamilyTC# 2.A.21 catalyze solute:Na+ symport. The SSS family is within the APC Superfamily. The solutes transported may be sugars, amino acids, organo cations such as choline, nucleosides, inositols, v ...
and therefore
ATP synthesis ATP synthase is a protein that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). It is classified under ligases as it changes ADP by the formation ...
. Examples of these unusual forms of fermentation include
succinate Succinic acid () is a dicarboxylic acid with the chemical formula (CH2)2(CO2H)2. The name derives from Latin ''succinum'', meaning amber. In living organisms, succinic acid takes the form of an anion, succinate, which has multiple biological ro ...
fermentation by ''
Propionigenium modestum ''Propionigenium modestum'' is a species of Gram-negative bacteria, gram-negative, strictly anaerobic bacteria. It is rod-shaped and around 0.5-0.6 x 0.5-2.0μm in size. It is important in the elucidation of mechanism of ATP synthase. Etymology ...
'' and
oxalate Oxalate (IUPAC: ethanedioate) is an anion with the formula C2O42−. This dianion is colorless. It occurs naturally, including in some foods. It forms a variety of salts, for example sodium oxalate (Na2C2O4), and several esters such as dimethyl ...
fermentation by '' Oxalobacter formigenes''. These reactions are extremely low-energy yielding. Humans and other higher animals also use fermentation to produce lactate from excess NADH, although this is not the major form of metabolism as it is in fermentative microorganisms.


Special metabolic properties


Methylotrophy

Methylotrophy refers to the ability of an organism to use C1-compounds as energy sources. These compounds include
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical and the simplest aliphatic alcohol, with the formula C H3 O H (a methyl group linked to a hydroxyl group, often abbreviated as MeOH). It is a ...
, methyl amines,
formaldehyde Formaldehyde ( , ) (systematic name methanal) is a naturally occurring organic compound with the formula and structure . The pure compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde (refer to section F ...
, and formate. Several other less common substrates may also be used for metabolism, all of which lack carbon-carbon bonds. Examples of methylotrophs include the bacteria ''
Methylomonas ''Methylomonas'' is a genus of bacteria that obtain their carbon and energy from methane, a metabolic process called methanotroph Methanotrophs (sometimes called methanophiles) are prokaryotes that metabolize methane as their source of carbo ...
'' and '' Methylobacter''.
Methanotroph Methanotrophs (sometimes called methanophiles) are prokaryotes that metabolize methane as their source of carbon and chemical energy. They are bacteria or archaea, can grow aerobically or anaerobically, and require single-carbon compounds to s ...
s are a specific type of methylotroph that are also able to use
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Ea ...
() as a carbon source by oxidizing it sequentially to methanol (), formaldehyde (), formate (), and carbon dioxide initially using the enzyme
methane monooxygenase Methane monooxygenase (MMO) is an enzyme capable of oxidizing the C-H bond in methane as well as other alkanes. Methane monooxygenase belongs to the class of oxidoreductase enzymes (). There are two forms of MMO: the well-studied soluble form (s ...
. As oxygen is required for this process, all (conventional) methanotrophs are
obligate aerobe An obligate aerobe is an organism that requires oxygen to grow. Through cellular respiration, these organisms use oxygen to metabolise substances, like sugars or fats, to obtain energy. In this type of respiration, oxygen serves as the terminal ...
s. Reducing power in the form of
quinone The quinones are a class of organic compounds that are formally "derived from aromatic compounds uch as benzene or naphthaleneby conversion of an even number of –CH= groups into –C(=O)– groups with any necessary rearrangement of double ...
s and NADH is produced during these oxidations to produce a proton motive force and therefore ATP generation. Methylotrophs and methanotrophs are not considered as autotrophic, because they are able to incorporate some of the oxidized methane (or other metabolites) into cellular carbon before it is completely oxidized to (at the level of formaldehyde), using either the serine pathway (''
Methylosinus ''Methylosinus'' is a genus of bacteria from the family of Methylocystaceae The Methylocystaceae are a family of bacteria that are capable of obtaining carbon and energy from methane. Such bacteria are called methanotrophs, and in particular ...
'', ''
Methylocystis ''Methylocystis'' is a genus of bacteria from the family ''Methylocystaceae The Methylocystaceae are a family of bacteria that are capable of obtaining carbon and energy from methane. Such bacteria are called methanotrophs, and in particular ...
'') or the ribulose monophosphate pathway ('' Methylococcus''), depending on the species of methylotroph. In addition to aerobic methylotrophy, methane can also be oxidized anaerobically. This occurs by a consortium of sulfate-reducing bacteria and relatives of
methanogen Methanogens are microorganisms that produce methane as a metabolic byproduct in hypoxic conditions. They are prokaryotic and belong to the domain Archaea. All known methanogens are members of the archaeal phylum Euryarchaeota. Methanogens are com ...
ic
Archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebac ...
working syntrophically (see below). Little is currently known about the biochemistry and ecology of this process. Methanogenesis is the biological production of methane. It is carried out by methanogens, strictly
anaerobic Anaerobic means "living, active, occurring, or existing in the absence of free oxygen", as opposed to aerobic which means "living, active, or occurring only in the presence of oxygen." Anaerobic may also refer to: * Anaerobic adhesive, a bonding a ...
Archaea such as '' Methanococcus'', ''
Methanocaldococcus ''Methanocaldococcus'' formerly known as ''Methanococcus'' is a genus of coccoid methanogen archaea. They are all mesophiles, except the thermophilic ''M. thermolithotrophicus'' and the hyperthermophilic ''M. jannaschii''. The latter was discov ...
'', ''
Methanobacterium In taxonomy, ''Methanobacterium'' is a genus of the Methanobacteriaceae family of Archaea.See the NCBIbr>webpage on Methanobacterium Data extracted from the Despite the name, this genus belongs not to the bacterial domain but the archaeal doma ...
'', '' Methanothermus'', ''
Methanosarcina ''Methanosarcina'' is a genus of euryarchaeote archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as ...
'', ''
Methanosaeta In alpha taxonomy, taxonomy, ''Methanosaeta'' is a genus (biology), genus of microbes within Methanosaetaceae. Like other species in this family, those of ''Methanosaeta'' metabolize acetate as their sole source of energy. The genus contains two ...
'' and ''
Methanopyrus In taxonomy, ''Methanopyrus'' is a genus of the Methanopyraceae. ''Methanopyrus'' is a genus of methanogen, with a single described species, ''M. kandleri''. It is a rod-shaped hyperthermophile, discovered on the wall of a black smoker from the ...
''. The biochemistry of methanogenesis is unique in nature in its use of a number of unusual cofactors to sequentially reduce methanogenic substrates to methane, such as
coenzyme M Coenzyme M is a coenzyme required for methyl-transfer reactions in the metabolism of archaeal methanogens, and in the metabolism of other substrates in bacteria. It is also a necessary cofactor in the metabolic pathway of alkene-oxidizing bacteri ...
and
methanofuran Methanofurans are a family of chemical compounds found in methanogenic archaea. These species feature a 2-aminomethylfuran linked to phenoxy group. At least three different end groups are recognized: R = tricarboxyheptanoyl (methanofuran), gluta ...
. These cofactors are responsible (among other things) for the establishment of a proton gradient across the outer membrane thereby driving ATP synthesis. Several types of methanogenesis occur, differing in the starting compounds oxidized. Some methanogens reduce carbon dioxide () to methane () using electrons (most often) from hydrogen gas () chemolithoautotrophically. These methanogens can often be found in environments containing fermentative organisms. The tight association of methanogens and fermentative bacteria can be considered to be syntrophic (see below) because the methanogens, which rely on the fermentors for hydrogen, relieve feedback inhibition of the fermentors by the build-up of excess hydrogen that would otherwise inhibit their growth. This type of syntrophic relationship is specifically known as interspecies hydrogen transfer. A second group of methanogens use methanol () as a substrate for methanogenesis. These are chemoorganotrophic, but still autotrophic in using as only carbon source. The biochemistry of this process is quite different from that of the carbon dioxide-reducing methanogens. Lastly, a third group of methanogens produce both methane and carbon dioxide from acetate () with the acetate being split between the two carbons. These acetate-cleaving organisms are the only chemoorganoheterotrophic methanogens. All autotrophic methanogens use a variation of the
reductive acetyl-CoA pathway Reduction, reduced, or reduce may refer to: Science and technology Chemistry * Reduction (chemistry), part of a reduction-oxidation (redox) reaction in which atoms have their oxidation state changed. ** Organic redox reaction, a redox reacti ...
to fix and obtain cellular carbon.


Syntrophy

Syntrophy, in the context of microbial metabolism, refers to the pairing of multiple species to achieve a
chemical reaction A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
that, on its own, would be energetically unfavorable. The best studied example of this process is the oxidation of fermentative end products (such as acetate,
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an Alcohol (chemistry), alcohol with the chemical formula . Its formula can be also written as or (an ethyl ...
and
butyrate The conjugate acids are in :Carboxylic acids. {{Commons category, Carboxylate ions, Carboxylate anions Carbon compounds Oxyanions ...
) by organisms such as '' Syntrophomonas''. Alone, the oxidation of butyrate to acetate and hydrogen gas is energetically unfavorable. However, when a hydrogenotrophic (hydrogen-using) methanogen is present the use of the hydrogen gas will significantly lower the concentration of hydrogen (down to 10−5 atm) and thereby shift the equilibrium of the butyrate oxidation reaction under standard conditions (ΔGº’) to non-standard conditions (ΔG’). Because the concentration of one product is lowered, the reaction is "pulled" towards the products and shifted towards net energetically favorable conditions (for butyrate oxidation: ΔGº’= +48.2 kJ/mol, but ΔG' = -8.9 kJ/mol at 10−5 atm hydrogen and even lower if also the initially produced acetate is further metabolized by methanogens). Conversely, the available free energy from methanogenesis is lowered from ΔGº’= -131 kJ/mol under standard conditions to ΔG' = -17 kJ/mol at 10−5 atm hydrogen. This is an example of intraspecies hydrogen transfer. In this way, low energy-yielding carbon sources can be used by a consortium of organisms to achieve further degradation and eventual mineralization of these compounds. These reactions help prevent the excess sequestration of carbon over geologic time scales, releasing it back to the biosphere in usable forms such as methane and .


Aerobic respiration

Aerobic metabolism occurs in Bacteria, Archaea and Eucarya. Although most bacterial species are anaerobic, many are facultative or obligate aerobes. The majority of archaeal species live in extreme environments that are often highly anaerobic. There are, however, several cases of aerobic archaea such as Haiobacterium,
Thermoplasma In taxonomy, ''Thermoplasma'' is a genus of the Thermoplasmataceae.See the NCBIbr>webpage on Thermoplasma Data extracted from the ''Thermoplasma'' is a genus of archaea. It belongs to the Thermoplasmata, which thrive in acidic and high-tempe ...
,
Sulfolobus ''Sulfolobus'' is a genus of microorganism in the family Sulfolobaceae. It belongs to the archaea domain. ''Sulfolobus'' species grow in volcanic springs with optimal growth occurring at pH 2-3 and temperatures of 75-80 °C, making them ...
and Yymbaculum. Most of the known eukaryotes carry out aerobic metabolism within their mithchondria which is an organelle that had a
symbiogenesis Symbiogenesis (endosymbiotic theory, or serial endosymbiotic theory,) is the leading evolutionary theory of the origin of eukaryotic cells from prokaryotic organisms. The theory holds that mitochondria, plastids such as chloroplasts, and pos ...
origin from
prokarya A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
. All
aerobic organism Aerobic means "requiring air," in which "air" usually means oxygen. Aerobic may also refer to * Aerobic exercise, prolonged exercise of moderate intensity * Aerobics, a form of aerobic exercise * Aerobic respiration, the aerobic process of cell ...
s contain
oxidase In biochemistry, an oxidase is an enzyme that catalyzes oxidation-reduction reactions, especially one involving dioxygen (O2) as the electron acceptor. In reactions involving donation of a hydrogen atom, oxygen is reduced to water (H2O) or hydro ...
s of the
cytochrome oxidase The enzyme cytochrome c oxidase or Complex IV, (was , now reclassified as a translocasEC 7.1.1.9 is a large transmembrane protein complex found in bacteria, archaea, and mitochondria of eukaryotes. It is the last enzyme in the respiratory elect ...
super family, but some members of the Pseudomonadota ('' E. coli'' and ''
Acetobacter ''Acetobacter'' is a genus of acetic acid bacteria. Acetic acid bacteria are characterized by the ability to convert ethanol to acetic acid in the presence of oxygen. Of these, the genus ''Acetobacter'' is distinguished by the ability to oxidize ...
'') can also use an unrelated cytochrome bd complex as a respiratory terminal oxidase.


Anaerobic respiration

While
aerobic organism Aerobic means "requiring air," in which "air" usually means oxygen. Aerobic may also refer to * Aerobic exercise, prolonged exercise of moderate intensity * Aerobics, a form of aerobic exercise * Aerobic respiration, the aerobic process of cell ...
s during respiration use oxygen as a
terminal electron acceptor An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. It is an oxidizing agent that, by virtue of its accepting electrons, is itself reduced in the process. Electron acceptors are sometimes mista ...
, anaerobic organisms use other electron acceptors. These inorganic compounds release less energy in
cellular respiration Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor such as oxygen to produce large amounts of energy, to drive the bulk production of ATP. Cellular respiration may be des ...
, which leads to slower growth rates than aerobes. Many
facultative anaerobe A facultative anaerobic organism is an organism that makes ATP by aerobic respiration if oxygen is present, but is capable of switching to fermentation if oxygen is absent. Some examples of facultatively anaerobic bacteria are '' Staphylococc ...
s can use either oxygen or alternative terminal electron acceptors for respiration depending on the environmental conditions. Most respiring anaerobes are heterotrophs, although some do live autotrophically. All of the processes described below are dissimilative, meaning that they are used during energy production and not to provide nutrients for the cell (assimilative). Assimilative pathways for many forms of
anaerobic respiration Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain. In aerobic organisms undergoing r ...
are also known.


Denitrification – nitrate as electron acceptor

Denitrification is the utilization of nitrate () as a terminal electron acceptor. It is a widespread process that is used by many members of the Pseudomonadota. Many facultative anaerobes use denitrification because nitrate, like oxygen, has a high reduction potential. Many denitrifying bacteria can also use ferric
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
() and some organic electron acceptors. Denitrification involves the stepwise reduction of nitrate to nitrite (),
nitric oxide Nitric oxide (nitrogen oxide or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its che ...
(NO),
nitrous oxide Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or nos, is a chemical compound, an oxide of nitrogen with the formula . At room temperature, it is a colourless non-flammable gas, and has ...
(), and dinitrogen () by the enzymes nitrate reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide reductase, respectively. Protons are transported across the membrane by the initial NADH reductase, quinones, and nitrous oxide reductase to produce the electrochemical gradient critical for respiration. Some organisms (e.g. '' E. coli'') only produce nitrate reductase and therefore can accomplish only the first reduction leading to the accumulation of nitrite. Others (e.g. '' Paracoccus denitrificans'' or ''
Pseudomonas stutzeri ''Pseudomonas stutzeri'' is a Gram-negative soil bacterium that is motile, has a single polar flagellum, and is classified as bacillus, or rod-shaped. While this bacterium was first isolated from human spinal fluid, it has since been found in man ...
'') reduce nitrate completely. Complete denitrification is an environmentally significant process because some intermediates of denitrification (nitric oxide and nitrous oxide) are important greenhouse gases that react with
sunlight Sunlight is a portion of the electromagnetic radiation given off by the Sun, in particular infrared, visible, and ultraviolet light. On Earth, sunlight is scattered and filtered through Earth's atmosphere, and is obvious as daylight when t ...
and
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the lo ...
to produce nitric acid, a component of acid rain. Denitrification is also important in biological
wastewater Wastewater is water generated after the use of freshwater, raw water, drinking water or saline water in a variety of deliberate applications or processes. Another definition of wastewater is "Used water from any combination of domestic, industr ...
treatment where it is used to reduce the amount of nitrogen released into the environment thereby reducing
eutrophication Eutrophication is the process by which an entire body of water, or parts of it, becomes progressively enriched with minerals and nutrients, particularly nitrogen and phosphorus. It has also been defined as "nutrient-induced increase in phytopla ...
. Denitrification can be determined via a nitrate reductase test.


Sulfate reduction – sulfate as electron acceptor

Dissimilatory sulfate reduction Dissimilatory sulfate reduction is a form of anaerobic respiration that uses sulfate as the terminal electron acceptor to produce hydrogen sulfide. This metabolism is found in some types of bacteria and archaea which are often termed sulfate-reduc ...
is a relatively energetically poor process used by many Gram-negative bacteria found within the
Thermodesulfobacteriota The Thermodesulfobacteriota are a phylum of thermophilic sulfate-reducing bacteria. A pathogenic intracellular thermodesulfobacteriote has recently been identified. Phylogeny The phylogeny is based on phylogenomic Phylogenomics is the interse ...
, Gram-positive organisms relating to '' Desulfotomaculum'' or the archaeon ''
Archaeoglobus ''Archaeoglobus'' is a genus of the phylum Euryarchaeota. ''Archaeoglobus'' can be found in high-temperature oil fields where they may contribute to oil field souring. Metabolism ''Archaeoglobus'' grow anaerobically at extremely high temperat ...
''. Hydrogen sulfide () is produced as a metabolic end product. For sulfate reduction electron donors and energy are needed.


Electron donors

Many sulfate reducers are organotrophic, using carbon compounds such as lactate and pyruvate (among many others) as
electron donor In chemistry, an electron donor is a chemical entity that donates electrons to another compound. It is a reducing agent that, by virtue of its donating electrons, is itself oxidized in the process. Typical reducing agents undergo permanent chemi ...
s, while others are lithotrophic, using hydrogen gas () as an electron donor. Some unusual autotrophic sulfate-reducing bacteria (e.g. '' Desulfotignum phosphitoxidans'') can use
phosphite The general structure of a phosphite ester showing the lone pairs on the P In organic chemistry, a phosphite ester or organophosphite usually refers to an organophosphorous compound with the formula P(OR)3. They can be considered as esters of a ...
() as an electron donor whereas others (e.g. '' Desulfovibrio sulfodismutans'', '' Desulfocapsa thiozymogenes'', '' Desulfocapsa sulfoexigens'') are capable of sulfur disproportionation (splitting one compound into two different compounds, in this case an electron donor and an electron acceptor) using elemental sulfur (S0), sulfite (), and thiosulfate () to produce both hydrogen sulfide () and sulfate ().


Energy for reduction

All sulfate-reducing organisms are strict anaerobes. Because sulfate is energetically stable, before it can be metabolized it must first be activated by adenylation to form APS (adenosine 5’-phosphosulfate) thereby consuming ATP. The APS is then reduced by the enzyme APS reductase to form sulfite () and
AMP #REDIRECT Amp {{Redirect category shell, {{R from other capitalisation{{R from ambiguous page ...
. In organisms that use carbon compounds as electron donors, the ATP consumed is accounted for by fermentation of the carbon substrate. The hydrogen produced during fermentation is actually what drives respiration during sulfate reduction.


Acetogenesis – carbon dioxide as electron acceptor

Acetogenesis is a type of microbial metabolism that uses hydrogen () as an electron donor and carbon dioxide () as an electron acceptor to produce acetate, the same electron donors and acceptors used in methanogenesis (see above). Bacteria that can autotrophically synthesize acetate are called homoacetogens. Carbon dioxide reduction in all homoacetogens occurs by the acetyl-CoA pathway. This pathway is also used for carbon fixation by autotrophic sulfate-reducing bacteria and hydrogenotrophic methanogens. Often homoacetogens can also be fermentative, using the hydrogen and carbon dioxide produced as a result of fermentation to produce acetate, which is secreted as an end product.


Other inorganic electron acceptors

Ferric iron () is a widespread anaerobic terminal electron acceptor both for autotrophic and heterotrophic organisms. Electron flow in these organisms is similar to those in
electron transport An electron transport chain (ETC) is a series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples thi ...
, ending in oxygen or nitrate, except that in ferric iron-reducing organisms the final enzyme in this system is a ferric iron reductase. Model organisms include ''
Shewanella putrefaciens ''Shewanella putrefaciens'' is a Gram-negative pleomorphic bacterium. It has been isolated from marine environments, as well as from anaerobic sandstone in the Morrison Formation in New Mexico. ''S. putrefaciens'' is also a facultative anaerobe ...
'' and ''
Geobacter metallireducens ''Geobacter metallireducens'' is a gram-negative metal-reducing proteobacterium. It is a strict anaerobe that oxidizes several short-chain fatty acids, alcohols, and monoaromatic compounds with Fe(III) as the sole electron acceptor. It can also ...
''. Since some ferric iron-reducing bacteria (e.g. ''G. metallireducens'') can use toxic
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ...
s such as
toluene Toluene (), also known as toluol (), is a substituted aromatic hydrocarbon. It is a colorless, water-insoluble liquid with the smell associated with paint thinners. It is a mono-substituted benzene derivative, consisting of a methyl group (CH3) a ...
as a carbon source, there is significant interest in using these organisms as bioremediation agents in ferric iron-rich contaminated
aquifer An aquifer is an underground layer of water-bearing, permeable rock, rock fractures, or unconsolidated materials ( gravel, sand, or silt). Groundwater from aquifers can be extracted using a water well. Aquifers vary greatly in their characteris ...
s. Although ferric iron is the most prevalent inorganic electron acceptor, a number of organisms (including the iron-reducing bacteria mentioned above) can use other
inorganic In chemistry, an inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds, that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as ''inorganic chemist ...
ions in anaerobic respiration. While these processes may often be less significant ecologically, they are of considerable interest for bioremediation, especially when heavy metals or radionuclides are used as electron acceptors. Examples include: * Manganic ion () reduction to manganous ion () *
Selenate The selenate ion is . Selenates are analogous to sulfates and have similar chemistry. They are highly soluble in aqueous solutions at ambient temperatures. Unlike sulfate, selenate is a somewhat good oxidizer; it can be reduced to selenite o ...
() reduction to
selenite Selenite may refer to: Substances containing selenium *A selenium-containing anion or ionic compound with the SeO32− anion: **Selenite (ion), anion is a selenium oxoanion with the chemical formula SeO32− ***Selenous acid, the conjugate acid, w ...
() and selenite reduction to inorganic
selenium Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, ...
(Se0) *
Arsenate The arsenate ion is . An arsenate (compound) is any compound that contains this ion. Arsenates are salts or esters of arsenic acid. The arsenic atom in arsenate has a valency of 5 and is also known as pentavalent arsenic or As(V). Arsenate res ...
() reduction to
arsenite In chemistry, an arsenite is a chemical compound containing an arsenic oxyanion where arsenic has oxidation state +3. Note that in fields that commonly deal with groundwater chemistry, arsenite is used generically to identify soluble AsIII anions. ...
() * Uranyl ion ion () reduction to
uranium dioxide Uranium dioxide or uranium(IV) oxide (), also known as urania or uranous oxide, is an oxide of uranium, and is a black, radioactive, crystalline powder that naturally occurs in the mineral uraninite. It is used in nuclear fuel rods in nuclear re ...
()


Organic terminal electron acceptors

A number of organisms, instead of using inorganic compounds as terminal electron acceptors, are able to use organic compounds to accept electrons from respiration. Examples include: *
Fumarate Fumaric acid is an organic compound with the formula HO2CCH=CHCO2H. A white solid, fumaric acid occurs widely in nature. It has a fruit-like taste and has been used as a food additive. Its E number is E297. The salts and esters are known as f ...
reduction to
succinate Succinic acid () is a dicarboxylic acid with the chemical formula (CH2)2(CO2H)2. The name derives from Latin ''succinum'', meaning amber. In living organisms, succinic acid takes the form of an anion, succinate, which has multiple biological ro ...
* Trimethylamine ''N''-oxide (TMAO) reduction to
trimethylamine Trimethylamine (TMA) is an organic compound with the formula N(CH3)3. It is a colorless, hygroscopic, and flammable tertiary amine. It is a gas at room temperature but is usually sold as a 40% solution in water. (It is also sold in pressurized ...
(TMA) * Dimethyl sulfoxide (DMSO) reduction to Dimethyl sulfide (DMS) * Reductive dechlorination TMAO is a chemical commonly produced by
fish Fish are aquatic, craniate, gill-bearing animals that lack limbs with digits. Included in this definition are the living hagfish, lampreys, and cartilaginous and bony fish as well as various extinct related groups. Approximately 95% of li ...
, and when reduced to TMA produces a strong odor. DMSO is a common marine and freshwater chemical which is also odiferous when reduced to DMS. Reductive dechlorination is the process by which chlorinated organic compounds are reduced to form their non-chlorinated endproducts. As chlorinated organic compounds are often important (and difficult to degrade) environmental pollutants, reductive dechlorination is an important process in bioremediation.


Chemolithotrophy

Chemolithotrophy Lithotrophs are a diverse group of organisms using an inorganic substrate (usually of mineral origin) to obtain reducing equivalents for use in biosynthesis (e.g., carbon dioxide fixation) or energy conservation (i.e., ATP production) via aerobic ...
is a type of metabolism where energy is obtained from the oxidation of inorganic compounds. Most chemolithotrophic organisms are also autotrophic. There are two major objectives to chemolithotrophy: the generation of energy (ATP) and the generation of reducing power (NADH).


Hydrogen oxidation

Many organisms are capable of using hydrogen () as a source of energy. While several mechanisms of anaerobic hydrogen
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
have been mentioned previously (e.g. sulfate reducing- and acetogenic bacteria), the chemical energy of hydrogen can be used in the aerobic Knallgas reaction: :2 H2 + O2 → 2 H2O + energy In these organisms, hydrogen is oxidized by a membrane-bound
hydrogenase A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below: Hydrogen uptake () is coupled to the reduction of electron acceptors such as oxygen, nitrate, sulfate, carbon dioxide (), and fumarat ...
causing proton pumping via electron transfer to various quinones and
cytochrome Cytochromes are redox-active proteins containing a heme, with a central Fe atom at its core, as a cofactor. They are involved in electron transport chain and redox catalysis. They are classified according to the type of heme and its mode of bi ...
s. In many organisms, a second cytoplasmic hydrogenase is used to generate reducing power in the form of NADH, which is subsequently used to fix carbon dioxide via the
Calvin cycle The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into ...
. Hydrogen-oxidizing organisms, such as ''Cupriavidus necator'' (formerly ''
Ralstonia eutropha ''Cupriavidus necator'' is a Gram-negative soil bacterium of the class Betaproteobacteria. Taxonomy ''Cupriavidus necator'' has gone through a series of name changes. In the first half of the 20th century, many micro-organisms were isolated ...
''), often inhabit oxic-anoxic interfaces in nature to take advantage of the hydrogen produced by anaerobic fermentative organisms while still maintaining a supply of oxygen.


Sulfur oxidation

Sulfur oxidation involves the oxidation of reduced sulfur compounds (such as sulfide ), inorganic sulfur (S), and thiosulfate () to form
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
(). A classic example of a sulfur-oxidizing bacterium is '' Beggiatoa'', a microbe originally described by Sergei Winogradsky, one of the founders of
environmental microbiology A biophysical environment is a biotic and abiotic surrounding of an organism or population, and consequently includes the factors that have an influence in their survival, development, and evolution. A biophysical environment can vary in scale f ...
. Another example is '' Paracoccus''. Generally, the oxidation of sulfide occurs in stages, with inorganic sulfur being stored either inside or outside of the cell until needed. This two step process occurs because energetically sulfide is a better electron donor than inorganic sulfur or thiosulfate, allowing for a greater number of protons to be translocated across the membrane. Sulfur-oxidizing organisms generate reducing power for carbon dioxide fixation via the Calvin cycle using
reverse electron flow Reverse electron flow (also known as reverse electron transport) is a mechanism in microbial metabolism. Chemolithotrophs using an electron donor with a higher redox potential than NAD(P)+/NAD(P)H, such as nitrite or sulfur compounds, must use ene ...
, an energy-requiring process that pushes the electrons against their
thermodynamic Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of the ...
gradient to produce NADH. Biochemically, reduced sulfur compounds are converted to sulfite () and subsequently converted to sulfate () by the enzyme
sulfite oxidase Sulfite oxidase () is an enzyme in the mitochondria of all eukaryotes, with exception of the yeasts. It oxidizes sulfite to sulfate and, via cytochrome c, transfers the electrons produced to the electron transport chain, allowing generation o ...
. Some organisms, however, accomplish the same oxidation using a reversal of the APS reductase system used by sulfate-reducing bacteria (see above). In all cases the energy liberated is transferred to the electron transport chain for ATP and NADH production. In addition to aerobic sulfur oxidation, some organisms (e.g. '' Thiobacillus denitrificans'') use nitrate () as a terminal electron acceptor and therefore grow anaerobically.


Ferrous iron () oxidation

Ferrous iron In chemistry, iron(II) refers to the element iron in its +2 oxidation state. In ionic compounds (salts), such an atom may occur as a separate cation (positive ion) denoted by Fe2+. The adjective ferrous or the prefix ferro- is often used to ...
is a soluble form of iron that is stable at extremely low pHs or under anaerobic conditions. Under aerobic, moderate pH conditions ferrous iron is oxidized spontaneously to the ferric () form and is hydrolyzed abiotically to insoluble
ferric hydroxide Iron(III) oxide-hydroxide or ferric oxyhydroxideA. L. Mackay (1960): "β-Ferric Oxyhydroxide". ''Mineralogical Magazine'' (''Journal of the Mineralogical Society''), volume 32, issue 250, pages 545-557. is the chemical compound of iron, oxygen, ...
(). There are three distinct types of ferrous iron-oxidizing microbes. The first are
acidophile Acidophiles or acidophilic organisms are those that thrive under highly acidic conditions (usually at pH 5.0 or below). These organisms can be found in different branches of the tree of life, including Archaea, Bacteria,Becker, A.Types of Bacteria ...
s, such as the bacteria ''
Acidithiobacillus ferrooxidans ''Acidithiobacillus'' is a genus of the ''Acidithiobacillia'' in the "Pseudomonadota". The genus includes acidophilic organisms capable of iron and/or sulfur oxidation. Like all ''"Pseudomonadota"'', ''Acidithiobacillus'' spp. are Gram-negative. ...
'' and ''
Leptospirillum ferrooxidans Nitrospirota is a phylum of bacteria. It includes multiple genera, such as ''Nitrospira'', the largest. The first member of this phylum, ''Nitrospira marina'', was discovered in 1985. The second member, ''Nitrospira moscoviensis'', was discovered ...
'', as well as the
archaeon Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebact ...
''
Ferroplasma ''Ferroplasma'' is a genus of Archaea that belong to the family Ferroplasmaceae. Members of the ''Ferroplasma'' are typically acidophillic, pleomorphic, irregularly shaped cocci. The archaean family Ferroplasmaceae was first described in the ea ...
''. These microbes oxidize iron in environments that have a very low pH and are important in
acid mine drainage Acid mine drainage, acid and metalliferous drainage (AMD), or acid rock drainage (ARD) is the outflow of acidic water from metal mines or coal mines. Acid rock drainage occurs naturally within some environments as part of the rock weathering ...
. The second type of microbes oxidize ferrous iron at near-neutral pH. These micro-organisms (for example '' Gallionella ferruginea'', '' Leptothrix ochracea'', or '' Mariprofundus ferrooxydans'') live at the oxic-anoxic interfaces and are microaerophiles. The third type of iron-oxidizing microbes are anaerobic photosynthetic bacteria such as
Rhodopseudomonas ''Rhodopseudomonas'' is a genus of bacteria from the family Nitrobacteraceae. Phylogeny The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature List of Prokaryotic names with Standing in Nomenc ...
, which use ferrous iron to produce NADH for autotrophic carbon dioxide fixation. Biochemically, aerobic iron oxidation is a very energetically poor process which therefore requires large amounts of iron to be oxidized by the enzyme
rusticyanin Rusticyanin (RCN) is a copper protein with a type I copper center that plays an integral role in electron transfer. It can be extracted from the periplasm of the gram-negative bacterium Thiobacillus ferrooxidans (T. ferrooxidans), also known as Ac ...
to facilitate the formation of proton motive force. Like sulfur oxidation, reverse electron flow must be used to form the NADH used for carbon dioxide fixation via the Calvin cycle.


Nitrification

Nitrification is the process by which
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous was ...
() is converted to nitrate (). Nitrification is actually the net result of two distinct processes: oxidation of ammonia to nitrite () by nitrosifying bacteria (e.g. ''
Nitrosomonas ''Nitrosomonas'' is a genus of Gram-negative bacteria, belonging to the Betaproteobacteria. It is one of the five genera of ammonia-oxidizing bacteria and, as an obligate chemolithoautotroph, uses ammonia (NH3) as an energy source and carbon di ...
'') and oxidation of nitrite to nitrate by the nitrite-oxidizing bacteria (e.g. ''
Nitrobacter ''Nitrobacter'' is a genus comprising rod-shaped, gram-negative, and chemoautotrophic bacteria. The name ''Nitrobacter'' derives from the Latin neuter gender noun ''nitrum, nitri'', alkalis; the Ancient Greek noun βακτηρία'','' βακτ ...
''). Both of these processes are extremely energetically poor leading to very slow growth rates for both types of organisms. Biochemically, ammonia oxidation occurs by the stepwise oxidation of ammonia to
hydroxylamine Hydroxylamine is an inorganic compound with the formula . The material is a white crystalline, hygroscopic compound.Greenwood and Earnshaw. ''Chemistry of the Elements.'' 2nd Edition. Reed Educational and Professional Publishing Ltd. pp. 431–43 ...
() by the enzyme ammonia monooxygenase in the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
, followed by the oxidation of hydroxylamine to nitrite by the enzyme
hydroxylamine oxidoreductase Hydroxylamine oxidoreductase (HAO) is an enzyme found in the prokaryote '' Nitrosomonas europaea.'' It plays a critically important role in the biogeochemical nitrogen cycle as part of the metabolism of ammonia-oxidizing bacteria. The substrate i ...
in the
periplasm The periplasm is a concentrated gel-like matrix in the space between the inner cytoplasmic membrane and the bacterial outer membrane called the ''periplasmic space'' in gram-negative bacteria. Using cryo-electron microscopy it has been found that ...
. Electron and proton cycling are very complex but as a net result only one proton is translocated across the membrane per molecule of ammonia oxidized. Nitrite oxidation is much simpler, with nitrite being oxidized by the enzyme
nitrite oxidoreductase Nitrite oxidoreductase (NOR or NXR) is an enzyme involved in nitrification. It is the last step in the process of aerobic ammonia oxidation, which is carried out by two groups of nitrifying bacteria: ammonia oxidizers such as '' Nitrosospira'', ''N ...
coupled to proton translocation by a very short electron transport chain, again leading to very low growth rates for these organisms. Oxygen is required in both ammonia and nitrite oxidation, meaning that both nitrosifying and nitrite-oxidizing bacteria are aerobes. As in sulfur and iron oxidation, NADH for carbon dioxide fixation using the Calvin cycle is generated by reverse electron flow, thereby placing a further metabolic burden on an already energy-poor process. In 2015, two groups independently showed the microbial genus ''
Nitrospira ''Nitrospira'' (from Latin: nitro, meaning "nitrate" and Greek: spira, meaning "spiral") translate into “a nitrate spiral” is a genus of bacteria within the monophyletic clade of the Nitrospirota phylum. The first member of this genus was d ...
'' is capable of complete nitrification (
Comammox Comammox (COMplete AMMonia OXidation) is the name attributed to an organism that can convert ammonia into nitrite and then into nitrate through the process of nitrification. Nitrification has traditionally thought to be a two-step process, where amm ...
).


Anammox

Anammox stands for anaerobic ammonia oxidation and the organisms responsible were relatively recently discovered, in the late 1990s. This form of metabolism occurs in members of the
Planctomycetota The Planctomycetota are a phylum of widely distributed bacteria, occurring in both aquatic and terrestrial habitats. They play a considerable role in global carbon and nitrogen cycles, with many species of this phylum capable of anaerobic ammoniu ...
(e.g. "''Candidatus''
Brocadia anammoxidans "''Candidatus'' Brocadia" is a ''candidatus'' genus of bacteria. Many of the species in this genus are capable of anammox. Phylogeny Phylogeny based on GTDB 07-RS207 by Genome Taxonomy Database The Genome Taxonomy Database (GTDB) is an onl ...
") and involves the coupling of ammonia oxidation to nitrite reduction. As oxygen is not required for this process, these organisms are strict anaerobes. Amazingly,
hydrazine Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly toxic unless handled in solution as, for example, hydrazine ...
( – rocket fuel) is produced as an intermediate during anammox metabolism. To deal with the high toxicity of hydrazine, anammox bacteria contain a hydrazine-containing intracellular organelle called the anammoxasome, surrounded by highly compact (and unusual)
ladderane In chemistry, a ladderane is an organic molecule containing two or more fused cyclobutane rings. The name arises from the resemblance of a series of fused cyclobutane rings to a ladder. Numerous synthetic approaches have been developed for the synt ...
lipid membrane. These lipids are unique in nature, as is the use of hydrazine as a metabolic intermediate. Anammox organisms are autotrophs although the mechanism for carbon dioxide fixation is unclear. Because of this property, these organisms could be used to remove nitrogen in industrial wastewater treatment processes. Anammox has also been shown to have widespread occurrence in anaerobic aquatic systems and has been speculated to account for approximately 50% of nitrogen gas production in the ocean.


Manganese oxidation

In July 2020 researchers report the discovery of
chemolithoautotroph A lithoautotroph is an organism which derives energy from reactions of reduced compounds of mineral (inorganic) origin. Two types of lithoautotrophs are distinguished by their energy source; photolithoautotrophs derive their energy from light while ...
ic bacterial culture that feeds on the metal
manganese Manganese is a chemical element with the symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of industrial alloy use ...
after performing unrelated experiments and named its bacterial species ''
Candidatus In prokaryote nomenclature, ''Candidatus'' (Latin for candidate of Roman office) is used to name prokaryotic phyla that are well characterized but yet-uncultured. Contemporary sequencing approaches, such as 16S sequencing or metagenomics, provide m ...
Manganitrophus noduliformans'' and ''Ramlibacter lithotrophicus''.


Phototrophy

Many microbes (phototrophs) are capable of using light as a source of energy to produce ATP and
organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. The ...
s such as
carbohydrate In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may or ma ...
s,
lipid Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include ...
s, and
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
s. Of these,
algae Algae (; singular alga ) is an informal term for a large and diverse group of photosynthetic eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular mic ...
are particularly significant because they are oxygenic, using water as an
electron donor In chemistry, an electron donor is a chemical entity that donates electrons to another compound. It is a reducing agent that, by virtue of its donating electrons, is itself oxidized in the process. Typical reducing agents undergo permanent chemi ...
for electron transfer during photosynthesis. Phototrophic bacteria are found in the phyla "
Cyanobacteria Cyanobacteria (), also known as Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name ''cyanobacteria'' refers to their color (), which similarly forms the basis of cyanobacteria's common name, blu ...
",
Chlorobiota The green sulfur bacteria are a phylum of obligately anaerobic photoautotrophic bacteria that metabolize sulfur. Green sulfur bacteria are nonmotile (except ''Chloroherpeton thalassium'', which may glide) and capable of anoxygenic photosynthes ...
, Pseudomonadota,
Chloroflexota The Chloroflexota are a phylum of bacteria containing isolates with a diversity of phenotypes, including members that are aerobic thermophiles, which use oxygen and grow well in high temperatures; anoxygenic phototrophs, which use light for phot ...
, and
Bacillota The Bacillota (synonym Firmicutes) are a phylum of bacteria, most of which have gram-positive cell wall structure. The renaming of phyla such as Firmicutes in 2021 remains controversial among microbiologists, many of whom continue to use the earl ...
. Along with plants these microbes are responsible for all biological generation of oxygen gas on
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
. Because chloroplasts were derived from a lineage of the Cyanobacteria, the general principles of metabolism in these
endosymbiont An ''endosymbiont'' or ''endobiont'' is any organism that lives within the body or cells of another organism most often, though not always, in a mutualistic relationship. (The term endosymbiosis is from the Greek: ἔνδον ''endon'' "within ...
s can also be applied to chloroplasts. In addition to oxygenic photosynthesis, many bacteria can also photosynthesize anaerobically, typically using sulfide () as an electron donor to produce sulfate. Inorganic sulfur (), thiosulfate () and ferrous iron () can also be used by some organisms. Phylogenetically, all oxygenic photosynthetic bacteria are Cyanobacteria, while anoxygenic photosynthetic bacteria belong to the purple bacteria (Pseudomonadota),
Green sulfur bacteria The green sulfur bacteria are a phylum of obligately anaerobic photoautotrophic bacteria that metabolize sulfur. Green sulfur bacteria are nonmotile (except ''Chloroherpeton thalassium'', which may glide) and capable of anoxygenic photosynthe ...
(e.g., ''
Chlorobium ''Chlorobium'' is a genus of green sulfur bacteria. They are photolithotrophic oxidizers of sulfur and most notably utilise a noncyclic electron transport chain to reduce NAD+. Photosynthesis is achieved using a Type 1 Reaction Centre using b ...
''),
Green non-sulfur bacteria The Chloroflexia are a class of bacteria in the phylum Chloroflexota, known as filamentous green non-sulfur bacteria. They use light for energy and are named for their green pigment, usually found in photosynthetic bodies called chlorosomes. Chl ...
(e.g., ''
Chloroflexus Chloroflexales is an order of bacteria in the class Chloroflexia. Taxonomy The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Center for Biotechnology Information (NCBI). * ...
''), or the
heliobacteria Heliobacteria are a unique subset of prokaryotic bacteria that process light for energy. Distinguishable from other phototrophic bacteria, they utilize a unique photosynthetic pigment, bacteriochlorophyll ''g'' and are the only known Gram-posit ...
(Low %G+C Gram positives). In addition to these organisms, some microbes (e.g. the Archaeon '' Halobacterium'' or the bacterium '' Roseobacter'', among others) can utilize light to produce energy using the enzyme
bacteriorhodopsin Bacteriorhodopsin is a protein used by Archaea, most notably by haloarchaea, a class of the Euryarchaeota. It acts as a proton pump; that is, it captures light energy and uses it to move protons across the membrane out of the cell. The resulting ...
, a light-driven proton pump. However, there are no known Archaea that carry out photosynthesis. As befits the large diversity of photosynthetic bacteria, there are many different mechanisms by which light is converted into energy for metabolism. All photosynthetic organisms locate their
photosynthetic reaction center A photosynthetic reaction center is a complex of several proteins, pigments and other co-factors that together execute the primary energy conversion reactions of photosynthesis. Molecular excitations, either originating directly from sunlight or t ...
s within a membrane, which may be invaginations of the
cytoplasmic membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (th ...
(Pseudomonadota),
thylakoid membrane Thylakoids are membrane-bound compartments inside chloroplasts and cyanobacteria. They are the site of the light-dependent reactions of photosynthesis. Thylakoids consist of a thylakoid membrane surrounding a thylakoid lumen. Chloroplast thyla ...
s ("Cyanobacteria"), specialized antenna structures called
chlorosome A chlorosome is a photosynthetic antenna complex found in green sulfur bacteria (GSB) and some green filamentous anoxygenic phototrophs (FAP) ( Chloroflexaceae, Oscillochloridaceae; both members of Chloroflexia). They differ from other antenna ...
s (Green sulfur and non-sulfur bacteria), or the cytoplasmic membrane itself (heliobacteria). Different photosynthetic bacteria also contain different photosynthetic pigments, such as chlorophylls and
carotenoids Carotenoids (), also called tetraterpenoids, are yellow, orange, and red organic pigments that are produced by plants and algae, as well as several bacteria, and fungi. Carotenoids give the characteristic color to pumpkins, carrots, parsnips, co ...
, allowing them to take advantage of different portions of the
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from ...
and thereby inhabit different
niche Niche may refer to: Science *Developmental niche, a concept for understanding the cultural context of child development *Ecological niche, a term describing the relational position of an organism's species *Niche differentiation, in ecology, the ...
s. Some groups of organisms contain more specialized light-harvesting structures (e.g.
phycobilisome Phycobilisomes are light harvesting antennae of photosystem II in cyanobacteria, red algae and glaucophytes. It was lost in the plastids of green algae / plants (chloroplasts). General structure Phycobilisomes are protein complexes (up to 6 ...
s in Cyanobacteria and chlorosomes in Green sulfur and non-sulfur bacteria), allowing for increased efficiency in light utilization. Biochemically, anoxygenic photosynthesis is very different from oxygenic photosynthesis. Cyanobacteria (and by extension, chloroplasts) use the Z scheme of electron flow in which electrons eventually are used to form NADH. Two different reaction centers (photosystems) are used and proton motive force is generated both by using cyclic electron flow and the quinone pool. In anoxygenic photosynthetic bacteria, electron flow is cyclic, with all electrons used in photosynthesis eventually being transferred back to the single reaction center. A proton motive force is generated using only the quinone pool. In heliobacteria, Green sulfur, and Green non-sulfur bacteria, NADH is formed using the protein ferredoxin, an energetically favorable reaction. In purple bacteria, NADH is formed by reverse electron flow due to the lower chemical potential of this reaction center. In all cases, however, a proton motive force is generated and used to drive ATP production via an ATPase. Most photosynthetic microbes are autotrophic, fixing carbon dioxide via the Calvin cycle. Some photosynthetic bacteria (e.g. ''Chloroflexus'') are photoheterotrophs, meaning that they use organic carbon compounds as a carbon source for growth. Some photosynthetic organisms also fix nitrogen (see below).


Nitrogen fixation

Nitrogen is an element required for growth by all biological systems. While extremely common (80% by volume) in the
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
, dinitrogen gas () is generally biologically inaccessible due to its high
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules p ...
. Throughout all of nature, only specialized bacteria and Archaea are capable of nitrogen fixation, converting dinitrogen gas into ammonia (), which is easily assimilated by all organisms. These prokaryotes, therefore, are very important ecologically and are often essential for the survival of entire ecosystems. This is especially true in the ocean, where nitrogen-fixing cyanobacteria are often the only sources of fixed nitrogen, and in soils, where specialized symbioses exist between
legume A legume () is a plant in the family Fabaceae (or Leguminosae), or the fruit or seed of such a plant. When used as a dry grain, the seed is also called a pulse. Legumes are grown agriculturally, primarily for human consumption, for livestock f ...
s and their nitrogen-fixing partners to provide the nitrogen needed by these plants for growth. Nitrogen fixation can be found distributed throughout nearly all bacterial lineages and physiological classes but is not a universal property. Because the enzyme
nitrogenase Nitrogenases are enzymes () that are produced by certain bacteria, such as cyanobacteria (blue-green bacteria) and rhizobacteria. These enzymes are responsible for the Organic redox reaction, reduction of nitrogen (N2) to ammonia (NH3). Nitrog ...
, responsible for nitrogen fixation, is very sensitive to oxygen which will inhibit it irreversibly, all nitrogen-fixing organisms must possess some mechanism to keep the concentration of oxygen low. Examples include: * heterocyst formation (cyanobacteria e.g. ''
Anabaena ''Anabaena'' is a genus of filamentous cyanobacteria that exist as plankton. They are known for nitrogen-fixing abilities, and they form symbiotic relationships with certain plants, such as the mosquito fern. They are one of four genera of cyanob ...
'') where one cell does not photosynthesize but instead fixes nitrogen for its neighbors which in turn provide it with energy * root nodule symbioses (e.g. ''
Rhizobium ''Rhizobium'' is a genus of Gram-negative soil bacteria that fix nitrogen. ''Rhizobium'' species form an endosymbiotic nitrogen-fixing association with roots of (primarily) legumes and other flowering plants. The bacteria colonize plant cells ...
'') with plants that supply oxygen to the bacteria bound to molecules of
leghaemoglobin 3rd Leghemoglobin (also leghaemoglobin or legoglobin) is an oxygen-carrying phytoglobin found in the nitrogen-fixing root nodules of leguminous plants. It is produced by these plants in response to the roots being colonized by nitrogen-fixing ...
* anaerobic lifestyle (e.g. '' Clostridium pasteurianum'') * very fast metabolism (e.g. ''
Azotobacter vinelandii ''Azotobacter vinelandii'' is Gram-negative diazotroph that can fix nitrogen while grown aerobically. These bacteria are easily cultured and grown. ''A. vinelandii'' is a free-living N2 fixer known to produce many phytohormones and vitamins in ...
'') The production and activity of nitrogenases is very highly regulated, both because nitrogen fixation is an extremely energetically expensive process (16–24 ATP are used per fixed) and due to the extreme sensitivity of the nitrogenase to oxygen.


See also

*
Lipophilic bacteria Lipophilic bacteria (''fat-loving bacteria'') are bacteria that may proliferate in lipids. Types They include lipophilic corynebacteria. ''Cutibacterium acnes'' is a type of lipophilic bacteria, releasing fatty acids and worsening comedones in a ...
, a minority of bacteria with
lipid metabolism Lipid metabolism is the synthesis and degradation of lipids in cells, involving the breakdown or storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of cell membranes. In anim ...


References


Further reading

* {{modelling ecosystems Metabolism Trophic ecology