HOME

TheInfoList



OR:

Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the
optimization Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfi ...
of a
linear Linearity is the property of a mathematical relationship ('' function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear ...
objective function In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost ...
, subject to linear equality and
linear inequality In mathematics a linear inequality is an inequality which involves a linear function. A linear inequality contains one of the symbols of inequality:. It shows the data which is not equal in graph form. * greater than * ≤ less than or equal to * ...
constraints. Its
feasible region In mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potent ...
is a convex polytope, which is a set defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its objective function is a
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
-valued affine (linear) function defined on this polyhedron. A linear programming
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specificat ...
finds a point in the
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
where this function has the smallest (or largest) value if such a point exists. Linear programs are problems that can be expressed in
canonical form In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an ...
as : \begin & \text && \mathbf \\ & \text && \mathbf^T \mathbf\\ & \text && A \mathbf \leq \mathbf \\ & \text && \mathbf \ge \mathbf. \end Here the components of x are the variables to be determined, c and b are given vectors (with \mathbf^T indicating that the coefficients of c are used as a single-row matrix for the purpose of forming the matrix product), and ''A'' is a given
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
. The function whose value is to be maximized or minimized (\mathbf x\mapsto\mathbf^T\mathbf in this case) is called the
objective function In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost ...
. The inequalities ''A''x ≤ b and x ≥ 0 are the constraints which specify a convex polytope over which the objective function is to be optimized. In this context, two vectors are
comparable Comparable may refer to: * Comparability, in mathematics * Comparative general linguistics, the comparative is a syntactic construction that serves to express a comparison between two (or more) entities or groups of entities in quality or degr ...
when they have the same dimensions. If every entry in the first is less-than or equal-to the corresponding entry in the second, then it can be said that the first vector is less-than or equal-to the second vector. Linear programming can be applied to various fields of study. It is widely used in mathematics and, to a lesser extent, in business,
economics Economics () is the social science that studies the production, distribution, and consumption of goods and services. Economics focuses on the behaviour and interactions of economic agents and how economies work. Microeconomics analyzes ...
, and some engineering problems. Industries that use linear programming models include transportation, energy, telecommunications, and manufacturing. It has proven useful in modeling diverse types of problems in planning, routing,
scheduling A schedule or a timetable, as a basic time-management tool, consists of a list of times at which possible tasks, events, or actions are intended to take place, or of a sequence of events in the chronological order in which such things are ...
,
assignment Assignment, assign or The Assignment may refer to: * Homework * Sex assignment * The process of sending National Basketball Association players to its development league; see Computing * Assignment (computer science), a type of modification to ...
, and design.


History

The problem of solving a system of linear inequalities dates back at least as far as Fourier, who in 1827 published a method for solving them, and after whom the method of
Fourier–Motzkin elimination Fourier–Motzkin elimination, also known as the FME method, is a mathematical algorithm for eliminating variables from a system of linear inequalities. It can output real solutions. The algorithm is named after Joseph Fourier who proposed the m ...
is named. In 1939 a linear programming formulation of a problem that is equivalent to the general linear programming problem was given by the
Soviet The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen nation ...
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, structure, space, models, and change. History On ...
and
economist An economist is a professional and practitioner in the social science discipline of economics. The individual may also study, develop, and apply theories and concepts from economics and write about economic policy. Within this field there are ...
Leonid Kantorovich Leonid Vitalyevich Kantorovich ( rus, Леони́д Вита́льевич Канторо́вич, , p=lʲɪɐˈnʲit vʲɪˈtalʲjɪvʲɪtɕ kəntɐˈrovʲɪtɕ, a=Ru-Leonid_Vitaliyevich_Kantorovich.ogg; 19 January 19127 April 1986) was a Sovie ...
, who also proposed a method for solving it. It is a way he developed, during
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the vast majority of the world's countries—including all of the great powers—forming two opposing ...
, to plan expenditures and returns in order to reduce costs of the army and to increase losses imposed on the enemy. Kantorovich's work was initially neglected in the
USSR The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen nationa ...
. About the same time as Kantorovich, the Dutch-American economist T. C. Koopmans formulated classical economic problems as linear programs. Kantorovich and Koopmans later shared the 1975
Nobel prize in economics The Nobel Memorial Prize in Economic Sciences, officially the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel ( sv, Sveriges riksbanks pris i ekonomisk vetenskap till Alfred Nobels minne), is an economics award administered ...
. In 1941,
Frank Lauren Hitchcock Frank Lauren Hitchcock (March 6, 1875 – May 31, 1957) was an American mathematician and physicist known for his formulation of the transportation problem in 1941. Academic life Frank did his preparatory study at Phillips Andover Academy. He en ...
also formulated transportation problems as linear programs and gave a solution very similar to the later
simplex method In mathematical optimization, Dantzig's simplex algorithm (or simplex method) is a popular algorithm for linear programming. The name of the algorithm is derived from the concept of a simplex and was suggested by T. S. Motzkin. Simplices are n ...
. Hitchcock had died in 1957, and the Nobel prize is not awarded posthumously. From 1946 to 1947
George B. Dantzig George Bernard Dantzig (; November 8, 1914 – May 13, 2005) was an American mathematical scientist who made contributions to industrial engineering, operations research, computer science, economics, and statistics. Dantzig is known for his ...
independently developed general linear programming formulation to use for planning problems in the US Air Force. In 1947, Dantzig also invented the
simplex method In mathematical optimization, Dantzig's simplex algorithm (or simplex method) is a popular algorithm for linear programming. The name of the algorithm is derived from the concept of a simplex and was suggested by T. S. Motzkin. Simplices are n ...
that, for the first time efficiently, tackled the linear programming problem in most cases. When Dantzig arranged a meeting with
John von Neumann John von Neumann (; hu, Neumann János Lajos, ; December 28, 1903 – February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engineer and polymath. He was regarded as having perhaps the widest cove ...
to discuss his simplex method, Neumann immediately conjectured the theory of duality by realizing that the problem he had been working in game theory was equivalent. Dantzig provided formal proof in an unpublished report "A Theorem on Linear Inequalities" on January 5, 1948. Dantzig's work was made available to public in 1951. In the post-war years, many industries applied it in their daily planning. Dantzig's original example was to find the best assignment of 70 people to 70 jobs. The computing power required to test all the permutations to select the best assignment is vast; the number of possible configurations exceeds the
number of particles The particle number (or number of particles) of a thermodynamic system, conventionally indicated with the letter ''N'', is the number of constituent particles in that system. The particle number is a fundamental parameter in thermodynamics which is ...
in the
observable universe The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these ob ...
. However, it takes only a moment to find the optimum solution by posing the problem as a linear program and applying the
simplex algorithm In mathematical optimization, Dantzig's simplex algorithm (or simplex method) is a popular algorithm for linear programming. The name of the algorithm is derived from the concept of a simplex and was suggested by T. S. Motzkin. Simplices are n ...
. The theory behind linear programming drastically reduces the number of possible solutions that must be checked. The linear programming problem was first shown to be solvable in polynomial time by
Leonid Khachiyan Leonid Genrikhovich Khachiyan (; russian: Леони́д Ге́нрихович Хачия́н; May 3, 1952April 29, 2005) was a Soviet and American mathematician and computer scientist. He was most famous for his ellipsoid algorithm (1979) for ...
in 1979, but a larger theoretical and practical breakthrough in the field came in 1984 when
Narendra Karmarkar Narendra Krishna Karmarkar (born Circa 1956) is an Indian Mathematician. Karmarkar developed Karmarkar's algorithm. He is listed as an ISI highly cited researcher. He invented one of the first provably polynomial time algorithms for linear p ...
introduced a new
interior-point method Interior-point methods (also referred to as barrier methods or IPMs) are a certain class of algorithms that solve linear and nonlinear convex optimization problems. An interior point method was discovered by Soviet mathematician I. I. Dikin in 1 ...
for solving linear-programming problems.


Uses

Linear programming is a widely used field of optimization for several reasons. Many practical problems in
operations research Operations research ( en-GB, operational research) (U.S. Air Force Specialty Code: Operations Analysis), often shortened to the initialism OR, is a discipline that deals with the development and application of analytical methods to improve decis ...
can be expressed as linear programming problems. Certain special cases of linear programming, such as '' network flow'' problems and ''multicommodity flow'' problems, are considered important enough to have much research on specialized algorithms. A number of algorithms for other types of optimization problems work by solving linear programming problems as sub-problems. Historically, ideas from linear programming have inspired many of the central concepts of optimization theory, such as ''duality,'' ''decomposition,'' and the importance of ''convexity'' and its generalizations. Likewise, linear programming was heavily used in the early formation of microeconomics, and it is currently utilized in company management, such as planning, production, transportation, and technology. Although the modern management issues are ever-changing, most companies would like to maximize profits and minimize costs with limited resources. Google also uses linear programming to stabilize YouTube videos.


Standard form

''Standard form'' is the usual and most intuitive form of describing a linear programming problem. It consists of the following three parts: * A linear function to be maximized : e.g. f(x_,x_) = c_1 x_1 + c_2 x_2 * Problem constraints of the following form : e.g. :: \begin a_ x_1 + a_ x_2 &\leq b_1 \\ a_ x_1 + a_ x_2 &\leq b_2 \\ a_ x_1 + a_ x_2 &\leq b_3 \\ \end * Non-negative variables : e.g. :: \begin x_1 \geq 0 \\ x_2 \geq 0 \end The problem is usually expressed in ''
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
form'', and then becomes: : \max \ Other forms, such as minimization problems, problems with constraints on alternative forms, and problems involving negative variables can always be rewritten into an equivalent problem in standard form.


Example

Suppose that a farmer has a piece of farm land, say ''L'' km2, to be planted with either wheat or barley or some combination of the two. The farmer has a limited amount of fertilizer, ''F'' kilograms, and pesticide, ''P'' kilograms. Every square kilometer of wheat requires ''F''1 kilograms of fertilizer and ''P''1 kilograms of pesticide, while every square kilometer of barley requires ''F''2 kilograms of fertilizer and ''P''2 kilograms of pesticide. Let S1 be the selling price of wheat per square kilometer, and S2 be the selling price of barley. If we denote the area of land planted with wheat and barley by ''x''1 and ''x''2 respectively, then profit can be maximized by choosing optimal values for ''x''1 and ''x''2. This problem can be expressed with the following linear programming problem in the standard form: In matrix form this becomes: : maximize \begin S_1 & S_2 \end \begin x_1 \\ x_2 \end : subject to \begin 1 & 1 \\ F_1 & F_2 \\ P_1 & P_2 \end \begin x_1 \\ x_2 \end \le \begin L \\ F \\ P \end, \, \begin x_1 \\ x_2 \end \ge \begin 0 \\ 0 \end.


Augmented form (slack form)

Linear programming problems can be converted into an ''augmented form'' in order to apply the common form of the
simplex algorithm In mathematical optimization, Dantzig's simplex algorithm (or simplex method) is a popular algorithm for linear programming. The name of the algorithm is derived from the concept of a simplex and was suggested by T. S. Motzkin. Simplices are n ...
. This form introduces non-negative ''
slack variable In an optimization problem, a slack variable is a variable that is added to an inequality constraint to transform it into an equality. Introducing a slack variable replaces an inequality constraint with an equality constraint and a non-negativity c ...
s'' to replace inequalities with equalities in the constraints. The problems can then be written in the following block matrix form: : Maximize z: : \begin 1 & -\mathbf^T & 0 \\ 0 & \mathbf & \mathbf \end \begin z \\ \mathbf \\ \mathbf \end = \begin 0 \\ \mathbf \end :\mathbf \ge 0, \mathbf \ge 0 where \mathbf are the newly introduced slack variables, \mathbf are the decision variables, and z is the variable to be maximized.


Example

The example above is converted into the following augmented form: : where x_3, x_4, x_5 are (non-negative) slack variables, representing in this example the unused area, the amount of unused fertilizer, and the amount of unused pesticide. In matrix form this becomes: : Maximize z: : \begin 1 & -S_1 & -S_2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & F_1 & F_2 & 0 & 1 & 0 \\ 0 & P_1 & P_2 & 0 & 0 & 1 \\ \end \begin z \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end = \begin 0 \\ L \\ F \\ P \end, \, \begin x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end \ge 0.


Duality

Every linear programming problem, referred to as a ''primal'' problem, can be converted into a
dual problem In mathematical optimization theory, duality or the duality principle is the principle that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. If the primal is a minimization problem then t ...
, which provides an upper bound to the optimal value of the primal problem. In matrix form, we can express the ''primal'' problem as: : Maximize cTx subject to ''A''x ≤ b, x ≥ 0; :: with the corresponding symmetric dual problem, : Minimize bTy subject to ''A''Ty ≥ c, y ≥ 0. An alternative primal formulation is: : Maximize cTx subject to ''A''x ≤ b; :: with the corresponding asymmetric dual problem, : Minimize bTy subject to ''A''Ty = c, y ≥ 0. There are two ideas fundamental to duality theory. One is the fact that (for the symmetric dual) the dual of a dual linear program is the original primal linear program. Additionally, every feasible solution for a linear program gives a bound on the optimal value of the objective function of its dual. The
weak duality In applied mathematics, weak duality is a concept in optimization which states that the duality gap is always greater than or equal to 0. That means the solution to the dual (minimization) problem is ''always'' greater than or equal to the solution ...
theorem states that the objective function value of the dual at any feasible solution is always greater than or equal to the objective function value of the primal at any feasible solution. The strong duality theorem states that if the primal has an optimal solution, x*, then the dual also has an optimal solution, y*, and cTx*=bTy*. A linear program can also be unbounded or infeasible. Duality theory tells us that if the primal is unbounded then the dual is infeasible by the weak duality theorem. Likewise, if the dual is unbounded, then the primal must be infeasible. However, it is possible for both the dual and the primal to be infeasible. See
dual linear program The dual of a given linear program (LP) is another LP that is derived from the original (the primal) LP in the following schematic way: * Each variable in the primal LP becomes a constraint in the dual LP; * Each constraint in the primal LP becomes ...
for details and several more examples.


Variations


Covering/packing dualities

A covering LP is a linear program of the form: : Minimize: bTy, : subject to: ''A''Ty ≥ c, y ≥ 0, such that the matrix ''A'' and the vectors b and c are non-negative. The dual of a covering LP is a packing LP, a linear program of the form: : Maximize: cTx, : subject to: ''A''x ≤ b, x ≥ 0, such that the matrix ''A'' and the vectors b and c are non-negative.


Examples

Covering and packing LPs commonly arise as a
linear programming relaxation In mathematics, the relaxation of a (mixed) integer linear program is the problem that arises by removing the integrality constraint of each variable. For example, in a 0–1 integer program, all constraints are of the form :x_i\in\. The relax ...
of a combinatorial problem and are important in the study of
approximation algorithms In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned sol ...
. For example, the LP relaxations of the set packing problem, the
independent set problem In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set S of vertices such that for every two vertices in S, there is no edge connecting the two ...
, and the matching problem are packing LPs. The LP relaxations of the
set cover problem The set cover problem is a classical question in combinatorics, computer science, operations research, and complexity theory. It is one of Karp's 21 NP-complete problems shown to be NP-complete in 1972. Given a set of elements (called the un ...
, the
vertex cover problem In graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimiza ...
, and the
dominating set problem In graph theory, a dominating set for a graph is a subset of its vertices, such that any vertex of is either in , or has a neighbor in . The domination number is the number of vertices in a smallest dominating set for . The dominating set ...
are also covering LPs. Finding a
fractional coloring Fractional coloring is a topic in a young branch of graph theory known as fractional graph theory. It is a generalization of ordinary graph coloring. In a traditional graph coloring, each vertex in a graph is assigned some color, and adjacent ve ...
of a
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ...
is another example of a covering LP. In this case, there is one constraint for each vertex of the graph and one variable for each independent set of the graph.


Complementary slackness

It is possible to obtain an optimal solution to the dual when only an optimal solution to the primal is known using the complementary slackness theorem. The theorem states: Suppose that x = (x1, x2, ... , x''n'') is primal feasible and that y = (y1, y2, ... , y''m'') is dual feasible. Let (w1, w2, ..., w''m'') denote the corresponding primal slack variables, and let (z1, z2, ... , z''n'') denote the corresponding dual slack variables. Then x and y are optimal for their respective problems if and only if * x''j'' z''j'' = 0, for ''j'' = 1, 2, ... , ''n'', and * w''i'' y''i'' = 0, for ''i'' = 1, 2, ... , ''m''. So if the ''i''-th slack variable of the primal is not zero, then the ''i''-th variable of the dual is equal to zero. Likewise, if the ''j''-th slack variable of the dual is not zero, then the ''j''-th variable of the primal is equal to zero. This necessary condition for optimality conveys a fairly simple economic principle. In standard form (when maximizing), if there is slack in a constrained primal resource (i.e., there are "leftovers"), then additional quantities of that resource must have no value. Likewise, if there is slack in the dual (shadow) price non-negativity constraint requirement, i.e., the price is not zero, then there must be scarce supplies (no "leftovers").


Theory


Existence of optimal solutions

Geometrically, the linear constraints define the
feasible region In mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potent ...
, which is a
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on ...
. A
linear function In mathematics, the term linear function refers to two distinct but related notions: * In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For dist ...
is a convex function, which implies that every
local minimum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ra ...
is a
global minimum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
; similarly, a linear function is a concave function, which implies that every
local maximum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ra ...
is a
global maximum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ra ...
. An optimal solution need not exist, for two reasons. First, if the constraints are inconsistent, then no feasible solution exists: For instance, the constraints x ≥ 2 and x ≤ 1 cannot be satisfied jointly; in this case, we say that the LP is ''infeasible''. Second, when the
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
is unbounded in the direction of the gradient of the objective function (where the gradient of the objective function is the vector of the coefficients of the objective function), then no optimal value is attained because it is always possible to do better than any finite value of the objective function.


Optimal vertices (and rays) of polyhedra

Otherwise, if a feasible solution exists and if the constraint set is bounded, then the optimum value is always attained on the boundary of the constraint set, by the ''
maximum principle In the mathematical fields of partial differential equations and geometric analysis, the maximum principle is any of a collection of results and techniques of fundamental importance in the study of elliptic and parabolic differential equations. ...
'' for '' convex functions'' (alternatively, by the ''minimum'' principle for '' concave functions'') since linear functions are both convex and concave. However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (that is, the constant function taking the value zero everywhere). For this feasibility problem with the zero-function for its objective-function, if there are two distinct solutions, then every convex combination of the solutions is a solution. The vertices of the polytope are also called ''basic feasible solutions''. The reason for this choice of name is as follows. Let ''d'' denote the number of variables. Then the fundamental theorem of linear inequalities implies (for feasible problems) that for every vertex x* of the LP feasible region, there exists a set of ''d'' (or fewer) inequality constraints from the LP such that, when we treat those ''d'' constraints as equalities, the unique solution is x*. Thereby we can study these vertices by means of looking at certain subsets of the set of all constraints (a discrete set), rather than the continuum of LP solutions. This principle underlies the
simplex algorithm In mathematical optimization, Dantzig's simplex algorithm (or simplex method) is a popular algorithm for linear programming. The name of the algorithm is derived from the concept of a simplex and was suggested by T. S. Motzkin. Simplices are n ...
for solving linear programs.


Algorithms


Basis exchange algorithms


Simplex algorithm of Dantzig

The
simplex algorithm In mathematical optimization, Dantzig's simplex algorithm (or simplex method) is a popular algorithm for linear programming. The name of the algorithm is derived from the concept of a simplex and was suggested by T. S. Motzkin. Simplices are n ...
, developed by
George Dantzig George Bernard Dantzig (; November 8, 1914 – May 13, 2005) was an American mathematical scientist who made contributions to industrial engineering, operations research, computer science, economics, and statistics. Dantzig is known for his ...
in 1947, solves LP problems by constructing a feasible solution at a vertex of the
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
and then walking along a path on the edges of the polytope to vertices with non-decreasing values of the objective function until an optimum is reached for sure. In many practical problems, " stalling" occurs: many pivots are made with no increase in the objective function. In rare practical problems, the usual versions of the simplex algorithm may actually "cycle". To avoid cycles, researchers developed new pivoting rules. In practice, the simplex
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specificat ...
is quite efficient and can be guaranteed to find the global optimum if certain precautions against ''cycling'' are taken. The simplex algorithm has been proved to solve "random" problems efficiently, i.e. in a cubic number of steps, which is similar to its behavior on practical problems. However, the simplex algorithm has poor worst-case behavior: Klee and Minty constructed a family of linear programming problems for which the simplex method takes a number of steps exponential in the problem size. In fact, for some time it was not known whether the linear programming problem was solvable in polynomial time, i.e. of
complexity class P In computational complexity theory, P, also known as PTIME or DTIME(''n''O(1)), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, ...
.


Criss-cross algorithm

Like the simplex algorithm of Dantzig, the
criss-cross algorithm In mathematical optimization, the criss-cross algorithm is any of a family of algorithms for linear programming. Variants of the criss-cross algorithm also solve more general problems with linear inequality constraints and nonlinear object ...
is a basis-exchange algorithm that pivots between bases. However, the criss-cross algorithm need not maintain feasibility, but can pivot rather from a feasible basis to an infeasible basis. The criss-cross algorithm does not have polynomial time-complexity for linear programming. Both algorithms visit all 2''D'' corners of a (perturbed) cube in dimension ''D'', the
Klee–Minty cube The Klee–Minty cube or Klee–Minty polytope (named after Victor Klee and George J. Minty) is a unit cube, unit hypercube of variable dimension whose corners have been perturbed. Klee and Minty demonstrated that George Dantzig's simplex algorith ...
, in the
worst case In computer science, best, worst, and average cases of a given algorithm express what the resource usage is ''at least'', ''at most'' and ''on average'', respectively. Usually the resource being considered is running time, i.e. time complexity, b ...
.


Interior point

In contrast to the simplex algorithm, which finds an optimal solution by traversing the edges between vertices on a polyhedral set, interior-point methods move through the interior of the feasible region.


Ellipsoid algorithm, following Khachiyan

This is the first
worst-case In computer science, best, worst, and average cases of a given algorithm express what the resource usage is ''at least'', ''at most'' and ''on average'', respectively. Usually the resource being considered is running time, i.e. time complexity, b ...
polynomial-time algorithm ever found for linear programming. To solve a problem which has ''n'' variables and can be encoded in ''L'' input bits, this algorithm runs in O(n^6 L) time.
Leonid Khachiyan Leonid Genrikhovich Khachiyan (; russian: Леони́д Ге́нрихович Хачия́н; May 3, 1952April 29, 2005) was a Soviet and American mathematician and computer scientist. He was most famous for his ellipsoid algorithm (1979) for ...
solved this long-standing complexity issue in 1979 with the introduction of the
ellipsoid method In mathematical optimization, the ellipsoid method is an iterative method for minimizing convex functions. When specialized to solving feasible linear optimization problems with rational data, the ellipsoid method is an algorithm which find ...
. The convergence analysis has (real-number) predecessors, notably the
iterative method In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the ''n''-th approximation is derived from the pr ...
s developed by Naum Z. Shor and the approximation algorithms by Arkadi Nemirovski and D. Yudin.


Projective algorithm of Karmarkar

Khachiyan's algorithm was of landmark importance for establishing the polynomial-time solvability of linear programs. The algorithm was not a computational break-through, as the simplex method is more efficient for all but specially constructed families of linear programs. However, Khachiyan's algorithm inspired new lines of research in linear programming. In 1984, N. Karmarkar proposed a
projective method Karmarkar's algorithm is an algorithm introduced by Narendra Karmarkar in 1984 for solving linear programming problems. It was the first reasonably efficient algorithm that solves these problems in polynomial time. The ellipsoid method is also polyn ...
for linear programming. Karmarkar's algorithm improved on Khachiyan's worst-case polynomial bound (giving O(n^L)). Karmarkar claimed that his algorithm was much faster in practical LP than the simplex method, a claim that created great interest in interior-point methods. Since Karmarkar's discovery, many interior-point methods have been proposed and analyzed.


Vaidya's 87 algorithm

In 1987, Vaidya proposed an algorithm that runs in O(n^3) time.


Vaidya's 89 algorithm

In 1989, Vaidya developed an algorithm that runs in O(n^) time. Formally speaking, the algorithm takes O( (n+d)^ n L) arithmetic operations in the worst case, where d is the number of constraints, n is the number of variables, and L is the number of bits.


Input sparsity time algorithms

In 2015, Lee and Sidford showed that, it can be solved in \tilde O((nnz(A) + d^2)\sqrtL) time, where nnz(A) represents the number of non-zero elements, and it remains taking O(n^L) in the worst case.


Current matrix multiplication time algorithm

In 2019, Cohen, Lee and Song improved the running time to \tilde O( ( n^ + n^ + n^ ) L) time, \omega is the exponent of
matrix multiplication In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the s ...
and \alpha is the dual exponent of
matrix multiplication In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the s ...
. \alpha is (roughly) defined to be the largest number such that one can multiply an n \times n matrix by a n \times n^\alpha matrix in O(n^2) time. In a followup work by Lee, Song and Zhang, they reproduce the same result via a different method. These two algorithms remain \tilde O( n^ L ) when \omega = 2 and \alpha = 1 . The result due to Jiang, Song, Weinstein and Zhang improved \tilde O ( n^ L) to \tilde O ( n^ L) .


Comparison of interior-point methods and simplex algorithms

The current opinion is that the efficiencies of good implementations of simplex-based methods and interior point methods are similar for routine applications of linear programming. However, for specific types of LP problems, it may be that one type of solver is better than another (sometimes much better), and that the structure of the solutions generated by interior point methods versus simplex-based methods are significantly different with the support set of active variables being typically smaller for the latter one.


Open problems and recent work

There are several open problems in the theory of linear programming, the solution of which would represent fundamental breakthroughs in mathematics and potentially major advances in our ability to solve large-scale linear programs. * Does LP admit a
strongly polynomial In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by t ...
-time algorithm? * Does LP admit a strongly polynomial-time algorithm to find a strictly complementary solution? * Does LP admit a polynomial-time algorithm in the real number (unit cost) model of computation? This closely related set of problems has been cited by Stephen Smale as among the 18 greatest unsolved problems of the 21st century. In Smale's words, the third version of the problem "is the main unsolved problem of linear programming theory." While algorithms exist to solve linear programming in weakly polynomial time, such as the
ellipsoid method In mathematical optimization, the ellipsoid method is an iterative method for minimizing convex functions. When specialized to solving feasible linear optimization problems with rational data, the ellipsoid method is an algorithm which find ...
s and interior-point techniques, no algorithms have yet been found that allow strongly polynomial-time performance in the number of constraints and the number of variables. The development of such algorithms would be of great theoretical interest, and perhaps allow practical gains in solving large LPs as well. Although the Hirsch conjecture was recently disproved for higher dimensions, it still leaves the following questions open. * Are there pivot rules which lead to polynomial-time simplex variants? * Do all polytopal graphs have polynomially bounded diameter? These questions relate to the performance analysis and development of simplex-like methods. The immense efficiency of the simplex algorithm in practice despite its exponential-time theoretical performance hints that there may be variations of simplex that run in polynomial or even strongly polynomial time. It would be of great practical and theoretical significance to know whether any such variants exist, particularly as an approach to deciding if LP can be solved in strongly polynomial time. The simplex algorithm and its variants fall in the family of edge-following algorithms, so named because they solve linear programming problems by moving from vertex to vertex along edges of a polytope. This means that their theoretical performance is limited by the maximum number of edges between any two vertices on the LP polytope. As a result, we are interested in knowing the maximum graph-theoretical diameter of polytopal
graphs Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ...
. It has been proved that all polytopes have subexponential diameter. The recent disproof of the Hirsch conjecture is the first step to prove whether any polytope has superpolynomial diameter. If any such polytopes exist, then no edge-following variant can run in polynomial time. Questions about polytope diameter are of independent mathematical interest. Simplex pivot methods preserve primal (or dual) feasibility. On the other hand, criss-cross pivot methods do not preserve (primal or dual) feasibilitythey may visit primal feasible, dual feasible or primal-and-dual infeasible bases in any order. Pivot methods of this type have been studied since the 1970s. Essentially, these methods attempt to find the shortest pivot path on the arrangement polytope under the linear programming problem. In contrast to polytopal graphs, graphs of arrangement polytopes are known to have small diameter, allowing the possibility of strongly polynomial-time criss-cross pivot algorithm without resolving questions about the diameter of general polytopes.


Integer unknowns

If all of the unknown variables are required to be integers, then the problem is called an
integer programming An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective ...
(IP) or integer linear programming (ILP) problem. In contrast to linear programming, which can be solved efficiently in the worst case, integer programming problems are in many practical situations (those with bounded variables) NP-hard. 0–1 integer programming or binary integer programming (BIP) is the special case of integer programming where variables are required to be 0 or 1 (rather than arbitrary integers). This problem is also classified as NP-hard, and in fact the decision version was one of
Karp's 21 NP-complete problems In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete. In his 1972 paper, "Reducibility Among Combinatorial Problems", Richard Karp used Stephen Cook's 1971 theorem that the b ...
. If only some of the unknown variables are required to be integers, then the problem is called a mixed integer (linear) programming (MIP or MILP) problem. These are generally also NP-hard because they are even more general than ILP programs. There are however some important subclasses of IP and MIP problems that are efficiently solvable, most notably problems where the constraint matrix is
totally unimodular In mathematics, a unimodular matrix ''M'' is a square matrix, square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible matrix, invertible over the integers: there is an integer matrix ''N'' th ...
and the right-hand sides of the constraints are integers or – more general – where the system has the
total dual integrality In mathematical optimization, total dual integrality is a sufficient condition for the integrality of a polyhedron. Thus, the optimization of a linear objective over the integral points of such a polyhedron can be done using techniques from linear ...
(TDI) property. Advanced algorithms for solving integer linear programs include: *
cutting-plane method In mathematical optimization, the cutting-plane method is any of a variety of optimization methods that iteratively refine a feasible set or objective function by means of linear inequalities, termed ''cuts''. Such procedures are commonly used ...
*
Branch and bound Branch and bound (BB, B&B, or BnB) is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical optimization. A branch-and-bound algorithm consists of a systematic enumeration of candidate solut ...
*
Branch and cut Branch and cut is a method of combinatorial optimization for solving integer linear programs (ILPs), that is, linear programming (LP) problems where some or all the unknowns are restricted to integer values. Branch and cut involves running a branc ...
* Branch and price * if the problem has some extra structure, it may be possible to apply
delayed column generation Column generation or delayed column generation is an efficient algorithm for solving large linear programs. The overarching idea is that many linear programs are too large to consider all the variables explicitly. The idea is thus to start by sol ...
. Such integer-programming algorithms are discussed by Padberg and in Beasley.


Integral linear programs

A linear program in real variables is said to be ''integral'' if it has at least one optimal solution which is integral, i.e., made of only integer values. Likewise, a polyhedron P = \ is said to be ''integral'' if for all bounded feasible objective functions ''c'', the linear program \ has an optimum x^* with integer coordinates. As observed by Edmonds and Giles in 1977, one can equivalently say that the polyhedron P is integral if for every bounded feasible integral objective function ''c'', the optimal ''value'' of the linear program \ is an integer. Integral linear programs are of central importance in the polyhedral aspect of
combinatorial optimization Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combi ...
since they provide an alternate characterization of a problem. Specifically, for any problem, the convex hull of the solutions is an integral polyhedron; if this polyhedron has a nice/compact description, then we can efficiently find the optimal feasible solution under any linear objective. Conversely, if we can prove that a
linear programming relaxation In mathematics, the relaxation of a (mixed) integer linear program is the problem that arises by removing the integrality constraint of each variable. For example, in a 0–1 integer program, all constraints are of the form :x_i\in\. The relax ...
is integral, then it is the desired description of the convex hull of feasible (integral) solutions. Terminology is not consistent throughout the literature, so one should be careful to distinguish the following two concepts, * in an ''integer linear program,'' described in the previous section, variables are forcibly constrained to be integers, and this problem is NP-hard in general, * in an ''integral linear program,'' described in this section, variables are not constrained to be integers but rather one has proven somehow that the continuous problem always has an integral optimal value (assuming ''c'' is integral), and this optimal value may be found efficiently since all polynomial-size linear programs can be solved in polynomial time. One common way of proving that a polyhedron is integral is to show that it is
totally unimodular In mathematics, a unimodular matrix ''M'' is a square matrix, square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible matrix, invertible over the integers: there is an integer matrix ''N'' th ...
. There are other general methods including the integer decomposition property and
total dual integrality In mathematical optimization, total dual integrality is a sufficient condition for the integrality of a polyhedron. Thus, the optimization of a linear objective over the integral points of such a polyhedron can be done using techniques from linear ...
. Other specific well-known integral LPs include the matching polytope, lattice polyhedra,
submodular flow In the theory of combinatorial optimization, submodular flow is a general class of optimization problems that includes as special cases the minimum-cost flow problem, matroid intersection, and the problem of computing a minimum-weight dijoin in a ...
polyhedra, and the intersection of two generalized polymatroids/''g''-polymatroids – e.g. see Schrijver 2003.


Solvers and scripting (programming) languages

Permissive {{about, , the 1970 British film, Permissive (film), the grammatical mode, Permissive mood, the flavor of software license, permissive free software licence A permissive cell or host is one that allows a virus to circumvent its defenses and replica ...
licenses: Copyleft (reciprocal) licenses:
MINTO Minto may refer to: Places Antarctica *Mount Minto (Antarctica) Australia *Minto, New South Wales, a suburb of Sydney ** Minto railway station * Minto County, Western Australia * Parish of Minto, New South Wales Canada * Minto City, British C ...
(Mixed Integer Optimizer, an
integer programming An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective ...
solver which uses branch and bound algorithm) has publicly available source code but is not open source.
Proprietary {{Short pages monitor * Chapter 4: Linear Programming: pp. 63–94. Describes a randomized half-plane intersection algorithm for linear programming. * A6: MP1: INTEGER PROGRAMMING, pg.245. (computer science, complexity theory) * (elementary introduction for mathematicians and computer scientists) * Cornelis Roos, Tamás Terlaky, Jean-Philippe Vial, ''Interior Point Methods for Linear Optimization'', Second Edition, Springer-Verlag, 2006. (Graduate level) * * Alexander Schrijver, ''Theory of Linear and Integer Programming''. John Wiley & sons, 1998, (mathematical) * * (linear optimization modeling) * H. P. Williams,
Model Building in Mathematical Programming
', Fifth Edition, 2013. (Modeling) * Stephen J. Wright, 1997,
Primal-Dual Interior-Point Methods
', SIAM. (Graduate level) * Yinyu Ye, 1997, ''Interior Point Algorithms: Theory and Analysis'', Wiley. (Advanced graduate-level) * Günter M. Ziegler, Ziegler, Günter M., Chapters 1–3 and 6–7 in ''Lectures on Polytopes'', Springer-Verlag, New York, 1994. (Geometry)


External links


Guidance On Formulating LP ProblemsMathematical Programming Glossary
{{Authority control Linear programming, Convex optimization Geometric algorithms P-complete problems