HOME





Assignment Problem
The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: :The problem instance has a number of ''agents'' and a number of ''tasks''. Any agent can be assigned to perform any task, incurring some ''cost'' that may vary depending on the agent-task assignment. It is required to perform as many tasks as possible by assigning at most one agent to each task and at most one task to each agent, in such a way that the ''total cost'' of the assignment is minimized. Alternatively, describing the problem using graph theory: :The assignment problem consists of finding, in a weighted graph, weighted bipartite graph, a Matching (graph theory), matching of maximum size, in which the sum of weights of the edges is minimum. If the numbers of agents and tasks are equal, then the problem is called balanced assignment, and the graph-theoretic version is called minimum-cost perfect matching. Otherwise, it is called unbalanced assig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hungarian Algorithm Unbalanced Assignment Problem Example
Hungarian may refer to: * Hungary, a country in Central Europe * Kingdom of Hungary, state of Hungary, existing between 1000 and 1946 * Hungarians/Magyars, ethnic groups in Hungary * Hungarian algorithm, a polynomial time algorithm for solving the assignment problem * Hungarian language, a Uralic language spoken in Hungary and all neighbouring countries * Hungarian notation, a naming convention in computer programming * Hungarian cuisine Hungarian or Magyar cuisine (Hungarian language, Hungarian: ''Magyar konyha'') is the cuisine characteristic of the nation of Hungary, and its primary ethnic group, the Hungarians, Magyars. Hungarian cuisine has been described as being the P ..., the cuisine of Hungary and the Hungarians See also * * {{disambiguation Language and nationality disambiguation pages ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hungarian Algorithm
The Hungarian method is a combinatorial optimization algorithm In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algo ... that solves the assignment problem in polynomial time and which anticipated later primal–dual methods. It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry.Harold W. Kuhn, "The Hungarian Method for the assignment problem", '' Naval Research Logistics Quarterly'', 2: 83–97, 1955. Kuhn's original publication.Harold W. Kuhn, "Variants of the Hungarian method for assignment problems", ''Naval Research Logistics Quarterly'', 3: 253–258, 1956. However, in 2006 it was discovered that Carl Gustav Ja ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Auction Algorithm
The term "auction algorithm" Dimitri P. Bertsekas. "A distributed algorithm for the assignment problem"original paper, 1979 applies to several variations of a combinatorial optimization algorithm which solves assignment problems, and network optimization problems with linear and convex/nonlinear cost. An ''auction algorithm'' has been used in a business setting to determine the best prices on a set of products offered to multiple buyers. It is an iterative procedure, so the name "auction algorithm" is related to a sales auction, where multiple bids are compared to determine the best offer, with the final sales going to the highest bidders. The original form of the auction algorithm is an iterative method to find the optimal prices and an assignment that maximizes the net benefit in a bipartite graph, the '' maximum weight matching problem'' (MWM). M.G. Resende, P.M. Pardalos. "Handbook of optimization in telecommunications"2006/ref>M. Bayati, D. Shah, M. Sharma. "A Simpler Max-Pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Multidimensional Assignment Problem (MAP)
The multidimensional assignment problem (MAP) is a fundamental combinatorial optimization problem which was introduced by William Pierskalla. This problem can be seen as a generalization of the linear assignment problem. In words, the problem can be described as follows: : An instance of the problem has a number of ''agents'' (i.e., ''cardinality'' parameter) and a number of ''job characteristics'' (i.e., ''dimensionality'' parameter) such as task, machine, time interval, etc. For example, an agent can be assigned to perform task X, on machine Y, during time interval Z. Any agent can be assigned to perform a job with any combination of unique job characteristics at some ''cost''. These costs may vary based on the assignment of agent to a combination of job characteristics - specific task, machine, time interval, etc. The problem is to minimize the ''total cost'' of assigning the agents so that the assignment of agents to each job characteristic is an injective function, or one-to- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matching (graph Theory)
In the mathematical discipline of graph theory, a matching or independent edge set in an undirected Graph (discrete mathematics), graph is a set of Edge (graph theory), edges without common vertex (graph theory), vertices. In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a Flow network, network flow problem. Definitions Given a Graph (discrete mathematics), graph a matching ''M'' in ''G'' is a set of pairwise non-adjacent edges, none of which are loop (graph theory), loops; that is, no two edges share common vertices. A vertex is matched (or saturated) if it is an endpoint of one of the edges in the matching. Otherwise the vertex is unmatched (or unsaturated). A maximal matching is a matching ''M'' of a graph ''G'' that is not a subset of any other matching. A matching ''M'' of a graph ''G'' is maximal if every edge in ''G'' has a non-empty intersectio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Network Flow Problem
In combinatorial optimization, network flow problems are a class of computational problems in which the input is a flow network (a graph with numerical capacities on its edges), and the goal is to construct a flow, numerical values on each edge that respect the capacity constraints and that have incoming flow equal to outgoing flow at all vertices except for certain designated terminals. Specific types of network flow problems include: *The maximum flow problem, in which the goal is to maximize the total amount of flow out of the source terminals and into the sink terminals *The minimum-cost flow problem, in which the edges have costs as well as capacities and the goal is to achieve a given amount of flow (or a maximum flow) that has the minimum possible cost *The multi-commodity flow problem, in which one must construct multiple flows for different commodities whose total flow amounts together respect the capacities * Nowhere-zero flow, a type of flow studied in combinatorics in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maximum Weight Matching
In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a Matching (graph theory), matching in which the sum of weights is maximized. A special case of the maximum weight matching problem is the assignment problem, in which the graph is a bipartite graph and the matching must have cardinality equal to that of the smaller of the two partitions. Another special case is the problem of finding a maximum cardinality matching on an unweighted graph: this corresponds to the case where all edge weights are the same. Algorithms There is a O(V^E) time algorithm to find a maximum matching or a maximum weight matching in a graph that is not bipartite; it is due to Jack Edmonds, is called the ''paths, trees, and flowers'' method or simply Edmonds's matching algorithm, Edmonds' algorithm, and uses Bidirected graph, bidirected edges. A generalization of the same technique can also be used to find maximum independent sets in cl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximation Algorithm
In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Unimodular Matrix
In mathematics, a unimodular matrix ''M'' is a square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible over the integers: there is an integer matrix ''N'' that is its inverse (these are equivalent under Cramer's rule). Thus every equation , where ''M'' and ''b'' both have integer components and ''M'' is unimodular, has an integer solution. The ''n'' × ''n'' unimodular matrices form a group called the ''n'' × ''n'' general linear group over \mathbb, which is denoted \operatorname_n(\mathbb). Examples of unimodular matrices Unimodular matrices form a subgroup of the general linear group under matrix multiplication, i.e. the following matrices are unimodular: * Identity matrix * The inverse of a unimodular matrix * The product of two unimodular matrices Other examples include: * Pascal matrices * Permutation matrices * the three transformation matrices in the ternary tree of primitive Pythagore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isolation Lemma
In theoretical computer science, the term isolation lemma (or isolating lemma) refers to randomized algorithms that reduce the number of solutions to a problem to one, should a solution exist. This is achieved by constructing random constraints such that, with non-negligible probability, exactly one solution satisfies these additional constraints if the solution space is not empty. Isolation lemmas have important applications in computer science, such as the Valiant–Vazirani theorem and Toda's theorem in computational complexity theory. The first isolation lemma was introduced by , albeit not under that name. Their isolation lemma chooses a random number of random hyperplanes, and has the property that, with non-negligible probability, the intersection of any fixed non-empty solution space with the chosen hyperplanes contains exactly one element. This suffices to show the Valiant–Vazirani theorem: there exists a randomized polynomial-time reduction from the satisfiability prob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjacency Matrix
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph (discrete mathematics), graph. The elements of the matrix (mathematics), matrix indicate whether pairs of Vertex (graph theory), vertices are Neighbourhood (graph theory), adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is Glossary of graph theory terms#undirected, undirected (i.e. all of its Glossary of graph theory terms#edge, edges are bidirectional), the adjacency matrix is symmetric matrix, symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory. The adjacency matrix of a graph should be distinguished from its incidence matrix, a different matrix representation whose elements indicate whether vertex–edge pairs are Incidence (graph), incident or not, and its degree matrix, whic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]