HOME
*





Assignment Problem
The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: :The problem instance has a number of ''agents'' and a number of ''tasks''. Any agent can be assigned to perform any task, incurring some ''cost'' that may vary depending on the agent-task assignment. It is required to perform as many tasks as possible by assigning at most one agent to each task and at most one task to each agent, in such a way that the ''total cost'' of the assignment is minimized. Alternatively, describing the problem using graph theory: :The assignment problem consists of finding, in a weighted bipartite graph, a matching of a given size, in which the sum of weights of the edges is minimum. If the numbers of agents and tasks are equal, then the problem is called ''balanced assignment''. Otherwise, it is called ''unbalanced assignment''. If the total cost of the assignment for all tasks is equal to the sum of the costs for each agent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Combinatorial Optimization
Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead. Combinatorial optimization is related to operations research, algorithm theory, and computational complexity theory. It has important applications in several fields, including artificial intelligence, machine learning, auction theory, software engineering, VLSI, applied mathematics and theoretical computer science. Some research literature considers discrete o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Strongly Polynomial
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expressed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

National Resident Matching Program
The National Resident Matching Program (NRMP), also called The Match, is a United States-based private non-profit non-governmental organization created in 1952 to place U.S. medical school students into residency training programs located in United States teaching hospitals. Its mission has since expanded to include the placement of U.S. citizen and non-U.S. citizen international medical school students and graduates into residency and fellowship training programs. In addition to the annual Main Residency Match that in 2021 encompassed more than 48,000 applicants and 38,000 positions, the NRMP conducts Fellowship Matches for more than 60 subspecialties through its Specialties Matching Service (SMS). The NRMP is sponsored by a Board of Directors that includes medical school deans, teaching hospital executives, graduate medical education program directors, medical students and residents, and one public member. NRMP International, a subsidiary of the National Resident Matching Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monge-Kantorovich Transportation Problem
In mathematics and economics, transportation theory or transport theory is a name given to the study of optimal transportation and allocation of resources. The problem was formalized by the French mathematician Gaspard Monge in 1781.G. Monge. ''Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année'', pages 666–704, 1781. In the 1920s A.N. Tolstoi was one of the first to study the transportation problem mathematically. In 1930, in the collection ''Transportation Planning Volume I'' for the National Commissariat of Transportation of the Soviet Union, he published a paper "Methods of Finding the Minimal Kilometrage in Cargo-transportation in space". Major advances were made in the field during World War II by the Soviet mathematician and economist Leonid Kantorovich.L. Kantorovich. ''On the translocation of masses.'' C.R. (Doklady) Acad. Sci. URSS (N.S. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Bottleneck Assignment Problem
In combinatorial optimization, a field within mathematics, the linear bottleneck assignment problem (LBAP) is similar to the linear assignment problem. In plain words the problem is stated as follows: :There are a number of ''agents'' and a number of ''tasks''. Any agent can be assigned to perform any task, incurring some ''cost'' that may vary depending on the agent-task assignment. It is required to perform all tasks by assigning exactly one agent to each task in such a way that the ''maximum cost'' among the individual assignments is minimized. The term "bottleneck" is explained by a common type of application of the problem, where the cost is the duration of the task performed by an agent. In this setting the "maximum cost" is "maximum duration", which is the bottleneck for the schedule of the overall job, to be minimized. Formal definition The formal definition of the bottleneck assignment problem is :Given two sets, ''A'' and ''T'', together with a weight function A weigh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Auction Algorithm
The term "auction algorithm"Dimitri P. Bertsekas. "A distributed algorithm for the assignment problem"original paper, 1979 applies to several variations of a Optimization (mathematics), combinatorial optimization algorithm which solves assignment problems, and network optimization problems with linear and convex/nonlinear cost. An ''auction algorithm'' has been used in a business setting to determine the best prices on a set of products offered to multiple buyers. It is an iterative procedure, so the name "auction algorithm" is related to a sales auction, where multiple bids are compared to determine the best offer, with the final sales going to the highest bidders. The original form of the auction algorithm is an iterative method to find the optimal prices and an assignment that maximizes the net benefit in a bipartite graph, the ''maximum weight matching problem'' (MWM).M.G. Resende, P.M. Pardalos. "Handbook of optimization in telecommunications"2006/ref>M. Bayati, D. Shah, M. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multidimensional Assignment Problem (MAP)
The multidimensional assignment problem (MAP) is a fundamental combinatorial optimization problem which was introduced by William Pierskalla. This problem can be seen as a generalization of the linear assignment problem. In words, the problem can be described as follows: : An instance of the problem has a number of ''agents'' (i.e., ''cardinality'' parameter) and a number of ''job characteristics'' (i.e., ''dimensionality'' parameter) such as task, machine, time interval, etc. For example, an agent can be assigned to perform task X, on machine Y, during time interval Z. Any agent can be assigned to perform a job with any combination of unique job characteristics at some ''cost''. These costs may vary based on the assignment of agent to a combination of job characteristics - specific task, machine, time interval, etc. The problem is to minimize the ''total cost'' of assigning the agents so that the assignment of agents to each job characteristic is an injective function, or one-to-o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matching (graph Theory)
In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. Finding a matching in a bipartite graph can be treated as a network flow problem. Definitions Given a graph a matching ''M'' in ''G'' is a set of pairwise non-adjacent edges, none of which are loops; that is, no two edges share common vertices. A vertex is matched (or saturated) if it is an endpoint of one of the edges in the matching. Otherwise the vertex is unmatched (or unsaturated). A maximal matching is a matching ''M'' of a graph ''G'' that is not a subset of any other matching. A matching ''M'' of a graph ''G'' is maximal if every edge in ''G'' has a non-empty intersection with at least one edge in ''M''. The following figure shows examples of maximal matchings (red) in three graphs. : A maximum matching (also known as maximum-cardinality matching) is a matching that contains the largest possible number of edges. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximum Weight Matching
In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem, in which the input is restricted to be a bipartite graph, and the matching constrained to be have cardinality that of the smaller of the two partitions. Another special case is the problem of finding a maximum cardinality matching on an unweighted graph: this corresponds to the case where all edge weights are the same. Algorithms There is a O(V^E) time algorithm to find a maximum matching or a maximum weight matching in a graph that is not bipartite; it is due to Jack Edmonds, is called the ''paths, trees, and flowers'' method or simply Edmonds' algorithm, and uses bidirected edges. A generalization of the same technique can also be used to find maximum independent set In graph theory, an independent set, stable set, coclique or anticlique is a set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Approximation Algorithm
In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unimodular Matrix
In mathematics, a unimodular matrix ''M'' is a square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible over the integers: there is an integer matrix ''N'' that is its inverse (these are equivalent under Cramer's rule). Thus every equation , where ''M'' and ''b'' both have integer components and ''M'' is unimodular, has an integer solution. The ''n'' × ''n'' unimodular matrices form a group called the ''n'' × ''n'' general linear group over \mathbb, which is denoted \operatorname_n(\mathbb). Examples of unimodular matrices Unimodular matrices form a subgroup of the general linear group under matrix multiplication, i.e. the following matrices are unimodular: * Identity matrix * The inverse of a unimodular matrix * The product of two unimodular matrices Other examples include: * Pascal matrices * Permutation matrices * the three transformation matrices in the ternary tree of primitive Pythagorean ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]