History Of Solid-state Physics
   HOME

TheInfoList



OR:

Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics,
crystallography Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics (condensed matter physics). The wor ...
, electromagnetism, and
metallurgy Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the sc ...
. It is the largest branch of
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the sub ...
. Solid-state physics studies how the large-scale properties of solid materials result from their atomic-scale properties. Thus, solid-state physics forms a theoretical basis of materials science. It also has direct applications, for example in the technology of transistors and semiconductors.


Background

Solid materials are formed from densely packed atoms, which interact intensely. These interactions produce the mechanical (e.g. hardness and
elasticity Elasticity often refers to: *Elasticity (physics), continuum mechanics of bodies that deform reversibly under stress Elasticity may also refer to: Information technology * Elasticity (data store), the flexibility of the data model and the cl ...
), thermal, electrical,
magnetic Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particle ...
and optical properties of solids. Depending on the material involved and the conditions in which it was formed, the atoms may be arranged in a regular, geometric pattern (
crystalline solids A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macrosc ...
, which include metals and ordinary water ice) or irregularly (an amorphous solid such as common window glass). The bulk of solid-state physics, as a general theory, is focused on crystals. Primarily, this is because the periodicity of atoms in a crystal — its defining characteristic — facilitates mathematical modeling. Likewise, crystalline materials often have electrical,
magnetic Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particle ...
, optical, or
mechanical Mechanical may refer to: Machine * Machine (mechanical), a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement * Mechanical calculator, a device used to perform the basic operations of ...
properties that can be exploited for engineering purposes. The forces between the atoms in a crystal can take a variety of forms. For example, in a crystal of
sodium chloride Sodium chloride , commonly known as salt (although sea salt also contains other chemical salts), is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. With molar masses of 22.99 and 35.45 g ...
(common salt), the crystal is made up of ionic sodium and chlorine, and held together with ionic bonds. In others, the atoms share electrons and form
covalent bond A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms ...
s. In metals, electrons are shared amongst the whole crystal in metallic bonding. Finally, the noble gases do not undergo any of these types of bonding. In solid form, the noble gases are held together with van der Waals forces resulting from the polarisation of the electronic charge cloud on each atom. The differences between the types of solid result from the differences between their bonding.


History

The physical properties of solids have been common subjects of scientific inquiry for centuries, but a separate field going by the name of solid-state physics did not emerge until the 1940s, in particular with the establishment of the Division of Solid State Physics (DSSP) within the
American Physical Society The American Physical Society (APS) is a not-for-profit membership organization of professionals in physics and related disciplines, comprising nearly fifty divisions, sections, and other units. Its mission is the advancement and diffusion of k ...
. The DSSP catered to industrial physicists, and solid-state physics became associated with the technological applications made possible by research on solids. By the early 1960s, the DSSP was the largest division of the American Physical Society. Large communities of solid state physicists also emerged in Europe after World War II, in particular in England, Germany, and the Soviet Union. In the United States and Europe, solid state became a prominent field through its investigations into semiconductors, superconductivity, nuclear magnetic resonance, and diverse other phenomena. During the early Cold War, research in solid state physics was often not restricted to solids, which led some physicists in the 1970s and 1980s to found the field of
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the sub ...
, which organized around common techniques used to investigate solids, liquids, plasmas, and other complex matter. Today, solid-state physics is broadly considered to be the subfield of condensed matter physics, often referred to as hard condensed matter, that focuses on the properties of solids with regular crystal lattices.


Crystal structure and properties

Many properties of materials are affected by their crystal structure. This structure can be investigated using a range of
crystallographic Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics (condensed matter physics). The word ...
techniques, including X-ray crystallography, neutron diffraction and
electron diffraction Electron diffraction refers to the bending of electron beams around atomic structures. This behaviour, typical for waves, is applicable to electrons due to the wave–particle duality stating that electrons behave as both particles and waves. Si ...
. The sizes of the individual crystals in a crystalline solid material vary depending on the material involved and the conditions when it was formed. Most crystalline materials encountered in everyday life are polycrystalline, with the individual crystals being microscopic in scale, but macroscopic single crystals can be produced either naturally (e.g. diamonds) or artificially. Real crystals feature defects or irregularities in the ideal arrangements, and it is these defects that critically determine many of the electrical and mechanical properties of real materials.


Electronic properties

Properties of materials such as electrical conduction and heat capacity are investigated by solid state physics. An early model of electrical conduction was the
Drude model The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials (especially metals). Basically, Ohm's law was well established and stated that the current ''J'' and voltage ...
, which applied
kinetic theory Kinetic (Ancient Greek: κίνησις “kinesis”, movement or to move) may refer to: * Kinetic theory, describing a gas as particles in random motion * Kinetic energy, the energy of an object that it possesses due to its motion Art and ente ...
to the electrons in a solid. By assuming that the material contains immobile positive ions and an "electron gas" of classical, non-interacting electrons, the Drude model was able to explain electrical and thermal conductivity and the Hall effect in metals, although it greatly overestimated the electronic heat capacity.
Arnold Sommerfeld Arnold Johannes Wilhelm Sommerfeld, (; 5 December 1868 – 26 April 1951) was a German theoretical physicist who pioneered developments in atomic and quantum physics, and also educated and mentored many students for the new era of theoretica ...
combined the classical Drude model with quantum mechanics in the free electron model (or Drude-Sommerfeld model). Here, the electrons are modelled as a Fermi gas, a gas of particles which obey the quantum mechanical
Fermi–Dirac statistics Fermi–Dirac statistics (F–D statistics) is a type of quantum statistics that applies to the physics of a system consisting of many non-interacting, identical particles that obey the Pauli exclusion principle. A result is the Fermi–Dirac di ...
. The free electron model gave improved predictions for the heat capacity of metals, however, it was unable to explain the existence of
insulators Insulator may refer to: * Insulator (electricity), a substance that resists electricity ** Pin insulator, a device that isolates a wire from a physical support such as a pin on a utility pole ** Strain insulator, a device that is designed to work ...
. The nearly free electron model is a modification of the free electron model which includes a weak periodic
perturbation Perturbation or perturb may refer to: * Perturbation theory, mathematical methods that give approximate solutions to problems that cannot be solved exactly * Perturbation (geology), changes in the nature of alluvial deposits over time * Perturbatio ...
meant to model the interaction between the conduction electrons and the ions in a crystalline solid. By introducing the idea of electronic bands, the theory explains the existence of conductors, semiconductors and insulators. The nearly free electron model rewrites the Schrödinger equation for the case of a periodic potential. The solutions in this case are known as
Bloch state In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential take the form of a plane wave modulated by a periodic function. The theorem is named after the physicist Felix Bloch, who d ...
s. Since Bloch's theorem applies only to periodic potentials, and since unceasing random movements of atoms in a crystal disrupt periodicity, this use of Bloch's theorem is only an approximation, but it has proven to be a tremendously valuable approximation, without which most solid-state physics analysis would be intractable. Deviations from periodicity are treated by quantum mechanical perturbation theory.


Modern research

Modern research topics in solid-state physics include: * High-temperature superconductivity * Quasicrystals * Spin glass *
Strongly correlated material Strongly correlated materials are a wide class of compounds that include insulators and electronic materials, and show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions, heavy fermion ...
s * Two-dimensional materials * Nanomaterials


See also

*
Condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the sub ...
*
Crystallography Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics (condensed matter physics). The wor ...
* Nuclear spectroscopy


References


Further reading

* Neil W. Ashcroft and N. David Mermin, ''Solid State Physics'' (Harcourt: Orlando, 1976). * Charles Kittel, '' Introduction to Solid State Physics'' (Wiley: New York, 2004). * H. M. Rosenberg, ''The Solid State'' (Oxford University Press: Oxford, 1995). *
Steven H. Simon Steven H. Simon (born 1967) is an American theoretical physics professor at Oxford University (since 2009) and professorial fellow of Somerville College, Oxford (since 2016). From 2000 to 2008 he was the director of theoretical physics research a ...
, ''The Oxford Solid State Basics'' (Oxford University Press: Oxford, 2013). * ''Out of the Crystal Maze. Chapters from the History of Solid State Physics'', ed. Lillian Hoddeson, Ernest Braun, Jürgen Teichmann, Spencer Weart (Oxford: Oxford University Press, 1992). * M. A. Omar, ''Elementary Solid State Physics'' (Revised Printing, Addison-Wesley, 1993). * {{Authority control Condensed matter physics Metallurgy