Quasicrystal
A quasiperiodicity, quasiperiodic crystal, or quasicrystal, is a structure that is Order and disorder (physics), ordered but not Bravais lattice, periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical crystallographic restriction theorem, can possess only two-, three-, four-, and six-fold rotational symmetries, the Bragg diffraction pattern of quasicrystals shows sharp peaks with other symmetry orders—for instance, five-fold. Aperiodic tilings were discovered by mathematicians in the early 1960s, and some twenty years later, they were found to apply to the study of natural quasicrystals. The discovery of these aperiodic forms in nature has produced a paradigm shift in the field of crystallography. In crystallography, the quasicrystals were predicted in 1981 by a five-fold symmetry study of Alan Lindsay Mackay,—that also brought in 1982, with the crystallographic Fourier t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paul Steinhardt
Paul Joseph Steinhardt (born December 25, 1952) is an American theoretical physicist whose principal research is in cosmology and condensed matter physics. He is currently the Albert Einstein Professorship in Science, Albert Einstein Professor in Science at Princeton University, where he is on the faculty of both the Departments of Physics and of Astrophysical Sciences. Steinhardt is best known for his development of new theories of the origin, evolution and future of the universe. He is also well known for his exploration of a new form of matter, known as quasicrystals, which were thought to exist only as man-made materials until he co-discovered the first known natural quasicrystal in a museum sample. He subsequently led a separate team that followed up that discovery with several more examples of natural quasicrystals recovered from the wilds of the Kamchatka Peninsula in far eastern Russia. Several years later, he and collaborators reported the accidental synthesis of a previo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dan Shechtman
Dan Shechtman (; born January 24, 1941)Dan Shechtman . (PDF). Retrieved on January 28, 2012. is the Philip Tobias Professor of Materials Science at the , an Associate of the 's , and Professor of Materials Science at [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Penrose Tiling
A Penrose tiling is an example of an aperiodic tiling. Here, a ''tiling'' is a covering of two-dimensional space, the plane by non-overlapping polygons or other shapes, and a tiling is ''aperiodic'' if it does not contain arbitrarily large Periodic tiling, periodic regions or patches. However, despite their lack of translational symmetry, Penrose tilings may have both reflection symmetry and fivefold rotational symmetry. Penrose tilings are named after mathematician and physicist Roger Penrose, who investigated them in the 1970s. There are several variants of Penrose tilings with different tile shapes. The original form of Penrose tiling used tiles of four different shapes, but this was later reduced to only two shapes: either two different rhombus, rhombi, or two different quadrilaterals called kite (geometry), kites and darts. The Penrose tilings are obtained by constraining the ways in which these shapes are allowed to fit together in a way that avoids periodic tiling. This ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Icosahedrite
Icosahedrite is the first known naturally occurring quasicrystal Phase (matter), phase. It has the composition Al63Cu24Fe13 and is a mineral approved by the International Mineralogical Association in 2010. Its discovery followed a 10-year-long systematic search by an international team of scientists led by Luca Bindi and Paul J. Steinhardt to find the first natural quasicrystal. It occurs as tiny grains in a small sample labelled "khatyrkite" (catalog number 46407/G, housed in The Museum of Natural History, University of Florence, Italy), collected from an outcrop of weathered serpentinite in the Khatyrka (river), Khatyrka Ultramafic rock, ultramafic zone of the Koryak-Kamchatka area, Koryak Mountains, Russia. The rock sample also contains spinel, diopside, forsterite, nepheline, sodalite, corundum, stishovite, khatyrkite, cupalite and an unnamed AlCuFe alloy. Evidence shows that the sample is actually extraterrestrial in origin, delivered to the Earth by a CV3 carbonaceous chondr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aperiodic Tiling
An aperiodic tiling is a non-periodic Tessellation, tiling with the additional property that it does not contain arbitrarily large periodic regions or patches. A set of tile-types (or prototiles) is aperiodic set of prototiles, aperiodic if copies of these tiles can form only non-periodic tiling, periodic tilings. The Penrose tilings are a well-known example of aperiodic tilings. In March 2023, four researchers, David Smith (amateur mathematician), David Smith, Joseph Samuel Myers, Craig S. Kaplan, and Chaim Goodman-Strauss, announced the proof that the tile discovered by David Smith is an Einstein problem, aperiodic monotile, i.e., a solution to the einstein problem, a problem that seeks the existence of any single shape aperiodic tile. In May 2023 the same authors published a chiral aperiodic monotile with similar but stronger constraints. Aperiodic tilings serve as mathematical models for quasicrystals, physical solids that were discovered in 1982 by Dan Shechtman who subs ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Crystal
A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macroscopic single crystals are usually identifiable by their geometrical shape, consisting of flat faces with specific, characteristic orientations. The scientific study of crystals and crystal formation is known as crystallography. The process of crystal formation via mechanisms of crystal growth is called crystallization or solidification. The word ''crystal'' derives from the Ancient Greek word (), meaning both "ice" and " rock crystal", from (), "icy cold, frost". Examples of large crystals include snowflakes, diamonds, and table salt. Most inorganic solids are not crystals but polycrystals, i.e. many microscopic crystals fused together into a single solid. Polycrystals include most metals, rocks, ceramics, and ice. A third cat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Crystallographic Restriction Theorem
The crystallographic restriction theorem in its basic form was based on the observation that the rotational symmetries of a crystal are usually limited to 2-fold, 3-fold, 4-fold, and 6-fold. However, quasicrystals can occur with other diffraction pattern symmetries, such as 5-fold; these were not discovered until 1982 by Dan Shechtman.Shechtman et al (1982) Crystals are modeled as discrete lattices, generated by a list of independent finite translations . Because discreteness requires that the spacings between lattice points have a lower bound, the group of rotational symmetries of the lattice at any point must be a finite group (alternatively, the point is the only system allowing for infinite rotational symmetry). The strength of the theorem is that ''not all'' finite groups are compatible with a discrete lattice; in any dimension, we will have only a finite number of compatible groups. Dimensions 2 and 3 The special cases of 2D (wallpaper groups) and 3D (space groups) are mo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Luca Bindi
Luca Bindi (born 1971) is an Italian geologist. He holds the Chair of Mineralogy and Crystallography and is the Head of the Department of Earth Sciences of the University of Florence. He is also a research associate at the Istituto di Geoscienze e Georisorse of the National Research Council (Italy) (CNR). He has received national and international scientific awards including the 2015 President of the Republic Prize in the category of Physical, Mathematical and Natural Sciences. Since 2019 he has been a Member of the National Academy of Lincei. He is the Italian scientist who has contributed to the description of the highest number of new minerals and is among the top ten researchers in the world for the number of new mineralogical species described. In his career he has described about 2% of the 6,000 minerals known in nature. Most of the new materials were discovered in the collections of the Museum System of the University of Florence, with its approximately fifty thousand speci ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alan Lindsay Mackay
Alan Lindsay Mackay FRS (6 September 1926 – 24 February 2025) was a British crystallographer. Life and career Mackay was born in Wolverhampton on 6 September 1926. He was educated at Wolverhampton Grammar School, Oundle School, Trinity College, Cambridge, and the University of London, where he received his doctorate. He spent his scientific career at Birkbeck College, founded by George Birkbeck, one of the Colleges of the University of London, where he was immersed in a liberal scientific atmosphere under the leadership of John Desmond Bernal. Mackay made important scientific contributions related to the structure of materials: In 1962 he published a manuscript that showed how to pack atoms in an icosahedral fashion; a first step towards five-fold symmetry in materials science. These arrangements are now called Mackay icosahedra. He is a pioneer in the introduction of five-fold symmetry in materials and in 1981 predicted quasicrystals in a paper (in Russian) entitled "De N ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order And Disorder (physics)
In physics, the terms order and disorder designate the presence or absence of some symmetry or correlation in a many-particle system. In condensed matter physics, systems typically are ordered at low temperatures; upon heating, they undergo one or several phase transitions into less ordered states. Examples for such an order-disorder transition are: * the melting of ice: solid–liquid transition, loss of crystalline order; * the demagnetization of iron by heating above the Curie temperature: ferromagnetic–paramagnetic transition, loss of magnetic order. The degree of freedom that is ordered or disordered can be translational (crystalline ordering), rotational (ferroelectric ordering), or a spin state (magnetic ordering). The order can consist either in a full crystalline space group symmetry, or in a correlation. Depending on how the correlations decay with distance, one speaks of long range order or short range order. If a disordered state is not in thermodynamic equili ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Crystallography
Crystallography is the branch of science devoted to the study of molecular and crystalline structure and properties. The word ''crystallography'' is derived from the Ancient Greek word (; "clear ice, rock-crystal"), and (; "to write"). In July 2012, the United Nations recognised the importance of the science of crystallography by proclaiming 2014 the International Year of Crystallography.UN announcement "International Year of Crystallography" iycr2014.org. 12 July 2012 Crystallography is a broad topic, and many of its subareas, such as X-ray crystallography, are themselves important scientific topics. Crystallography ranges from the fundamentals of crystal structure to the mathematics of Crystal system, crystal geometry, including those that are Aperiodic crystal, not periodic or quasi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |