In
particle physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and ...
, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a
composite subatomic particle made of two or more
quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All common ...
s
held together by the
strong interaction
The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
. They are analogous to
molecule
A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
s that are held together by
the electric force. Most of the mass of ordinary matter comes from two hadrons: the
proton and the
neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
, while most of the mass of the
protons and neutrons is in turn due to the binding energy of their constituent quarks, due to the strong force.
Hadrons are categorized into two broad families:
baryon
In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classi ...
s, made of an odd number of
quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All common ...
s (usually three quarks) and
meson
In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticle ...
s, made of an even number of quarks (usually two quarks: one quark and one
antiquark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All common ...
).
[ Protons and ]neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
s (which make the majority of the mass of an atom
Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons.
Every solid, liquid, gas ...
) are examples of baryons; pion
In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gen ...
s are an example of a meson. "Exotic" hadrons, containing more than three valence quarks, have been discovered in recent years. A tetraquark state (an exotic meson), named the Z(4430)
Z(4430) is a mesonic resonance discovered by the Belle experiment. It has a mass of . The resonant nature of the peak has been confirmed by the LHCb experiment with a significance of at least 13.9 σ. The particle is charged and is thought ...
, was discovered in 2007 by the Belle Collaboration[ and confirmed as a resonance in 2014 by the LHCb collaboration.] Two pentaquark states ( exotic baryons), named and , were discovered in 2015 by the LHCb collaboration.[ There are several more exotic hadron candidates and other colour-singlet quark combinations that may also exist.
Almost all "free" hadrons and antihadrons (meaning, in isolation and not bound within an ]atomic nucleus
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden experiments, Geiger–Marsden gold foil experiment. After th ...
) are believed to be unstable and eventually decay into other particles. The only known possible exception is free protons, which appear to be stable, or at least, take immense amounts of time to decay (order of 1034+ years). By way of comparison, free neutrons are the longest-lived unstable particle, and decay with a half-life
Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of about 879 seconds. Experimentally, hadron physics is studied by colliding hadrons, e.g. protons, with each other or the nuclei of dense, heavy elements, such as lead or gold, and detecting the debris in the produced particle showers. A similar process occurs in the natural environment, in the extreme upper-atmosphere, where muons and mesons such as pion
In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gen ...
s are produced by the collisions of cosmic ray
Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our ow ...
s with rarefied gas particles in the outer atmosphere.
Terminology and etymology
The term "hadron" is a new Greek
Modern Greek (, , or , ''Kiní Neoellinikí Glóssa''), generally referred to by speakers simply as Greek (, ), refers collectively to the dialects of the Greek language spoken in the modern era, including the official standardized form of the ...
word introduced by L.B. Okun and in a plenary talk at the 1962 International Conference on High Energy Physics at CERN.[ He opened his talk with the definition of a new category term:
]
Properties
According to the quark model,[ the properties of hadrons are primarily determined by their so-called '' valence quarks''. For example, a proton is composed of two ]up quark
The up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up qua ...
s (each with electric charge
Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respecti ...
, for a total of + together) and one down quark
The down quark or d quark (symbol: d) is the second-lightest of all quarks, a type of elementary particle, and a major constituent of matter. Together with the up quark, it forms the neutrons (one up quark, two down quarks) and protons (two u ...
(with electric charge ). Adding these together yields the proton charge of +1. Although quarks also carry color charge, hadrons must have zero total color charge because of a phenomenon called color confinement. That is, hadrons must be "colorless" or "white". The simplest ways for this to occur are with a quark of one color and an antiquark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All common ...
of the corresponding anticolor, or three quarks of different colors. Hadrons with the first arrangement are a type of meson
In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticle ...
, and those with the second arrangement are a type of baryon
In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classi ...
.
Massless virtual gluons compose the overwhelming majority of particles inside hadrons, as well as the major constituents of its mass (with the exception of the heavy charm and bottom quark
The bottom quark or b quark, also known as the beauty quark, is a third-generation heavy quark with a charge of − ''e''.
All quarks are described in a similar way by electroweak and quantum chromodynamics, but the bottom quark has exce ...
s; the top quark vanishes before it has time to bind into a hadron). The strength of the strong force gluon
A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bi ...
s which bind the quarks together has sufficient energy () to have resonances composed of massive () quarks ( ≥ 2). One outcome is that short-lived pairs of virtual quarks and antiquarks are continually forming and vanishing again inside a hadron. Because the virtual quarks are not stable wave packets (quanta), but an irregular and transient phenomenon, it is not meaningful to ask which quark is real and which virtual; only the small excess is apparent from the outside in the form of a hadron. Therefore, when a hadron or anti-hadron is stated to consist of (typically) 2 or 3 quarks, this technically refers to the constant excess of quarks vs. antiquarks.
Like all subatomic particles, hadrons are assigned quantum numbers corresponding to the representations of the Poincaré group: (), where is the spin quantum number, the intrinsic parity (or P-parity), the charge conjugation (or C-parity), and is the particle's mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different element ...
. Note that the mass of a hadron has very little to do with the mass of its valence quarks; rather, due to mass–energy equivalence
In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement. The principle is described by the physicis ...
, most of the mass comes from the large amount of energy associated with the strong interaction
The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
. Hadrons may also carry flavor quantum numbers such as isospin ( G parity), and strangeness. All quarks carry an additive, conserved quantum number called a baryon number (), which is for quarks and for antiquarks. This means that baryons (composite particles made of three, five or a larger odd number of quarks) have = 1 whereas mesons have = 0.
Hadrons have excited state
In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers t ...
s known as resonances. Each ground state hadron may have several excited states; several hundreds of resonances have been observed in experiments. Resonances decay extremely quickly (within about 10 seconds) via the strong nuclear force.
In other phases of matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic par ...
the hadrons may disappear. For example, at very high temperature and high pressure, unless there are sufficiently many flavors of quarks, the theory of quantum chromodynamics
In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a ty ...
(QCD) predicts that quarks and gluon
A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bi ...
s will no longer be confined within hadrons, "because the strength of the strong interaction diminishes with energy". This property, which is known as asymptotic freedom, has been experimentally confirmed in the energy range between 1 GeV GEV may refer to:
* ''G.E.V.'' (board game), a tabletop game by Steve Jackson Games
* Ashe County Airport, in North Carolina, United States
* Gällivare Lapland Airport, in Sweden
* Generalized extreme value distribution
* Gev Sella, Israeli-South ...
(gigaelectronvolt) and 1 TeV (teraelectronvolt).[ All ]free
Free may refer to:
Concept
* Freedom, having the ability to do something, without having to obey anyone/anything
* Freethought, a position that beliefs should be formed only on the basis of logic, reason, and empiricism
* Emancipate, to procur ...
hadrons except (''possibly'') the proton and antiproton are unstable.
Baryons
Baryon
In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classi ...
s are hadrons containing an odd number of valence quarks (at least 3).[ Most well known baryons such as the proton and ]neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
have three valence quarks, but pentaquarks with five quarks – three quarks of different colors, and also one extra quark-antiquark pair – have also been proven to exist. Because baryons have an odd number of quarks, they are also all fermion
In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
s, ''i.e.'', they have half-integer spin. As quarks possess baryon number ''B'' = , baryons have baryon number ''B'' = 1. Pentaquarks ''also'' have ''B'' = 1, since the extra quark's and antiquark's baryon numbers cancel.
Each type of baryon has a corresponding antiparticle (antibaryon) in which quarks are replaced by their corresponding antiquarks. For example, just as a proton is made of two up-quarks and one down-quark, its corresponding antiparticle, the antiproton, is made of two up-antiquarks and one down-antiquark.
As of August 2015, there are two known pentaquarks, and , both discovered in 2015 by the LHCb collaboration.[
]
Mesons
Meson
In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticle ...
s are hadrons containing an even number of valence quarks (at least 2).[ Most well known mesons are composed of a quark-antiquark pair, but possible tetraquarks (4 quarks) and hexaquarks (6 quarks, comprising either a dibaryon or three quark-antiquark pairs) may have been discovered and are being investigated to confirm their nature.][ Several other hypothetical types of exotic meson may exist which do not fall within the quark model of classification. These include glueballs and hybrid mesons (mesons bound by excited ]gluon
A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bi ...
s).
Because mesons have an even number of quarks, they are also all boson
In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer s ...
s, with integer spin, ''i.e.'', 0, +1, or −1. They have baryon number Examples of mesons commonly produced in particle physics experiments include pion
In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gen ...
s and kaon
KAON (Karlsruhe ontology) is an ontology infrastructure developed by the University of Karlsruhe and the Research Center for Information Technologies in Karlsruhe.
Its first incarnation was developed in 2002 and supported an enhanced version o ...
s. Pions also play a role in holding atomic nuclei
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in ...
together via the residual strong force
The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nucle ...
.
See also
Footnotes
References
External links
*
{{Authority control
Nuclear physics