Dynamical Casimir Effect
   HOME

TheInfoList



OR:

In
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
, the Casimir effect is a physical
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
acting on the macroscopic boundaries of a confined space which arises from the
quantum fluctuations In quantum physics, a quantum fluctuation (also known as a vacuum state fluctuation or vacuum fluctuation) is the temporary random change in the amount of energy in a point in space, as prescribed by Werner Heisenberg's uncertainty principle. ...
of the field. It is named after the Dutch physicist
Hendrik Casimir Hendrik Brugt Gerhard Casimir (15 July 1909 – 4 May 2000) was a Dutch physicist best known for his research on the two-fluid model of superconductors (together with C. J. Gorter) in 1934 and the Casimir effect (together with D. Polder) in 1 ...
, who predicted the effect for electromagnetic systems in 1948. In the same year, Casimir together with
Dirk Polder Dirk Polder (23 August 1919 – 18 March 2001) was a Dutch physicist who, together with Hendrik Casimir, first predicted the existence of what today is known as the Casimir-Polder force, sometimes also referred to as the ''Casimir effect ...
described a similar effect experienced by a neutral atom in the vicinity of a macroscopic interface which is referred to as the Casimir–Polder force. Their result is a generalization of the
London London is the capital and largest city of England and the United Kingdom, with a population of just under 9 million. It stands on the River Thames in south-east England at the head of a estuary down to the North Sea, and has been a majo ...
van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
and includes retardation due to the finite
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
. Since the fundamental principles leading to the London–van der Waals force, the Casimir and the Casimir–Polder force, respectively, can be formulated on the same footing, the distinction in nomenclature nowadays serves a historical purpose mostly and usually refers to the different physical setups. It was not until 1997 that a direct experiment by S. Lamoreaux quantitatively measured the Casimir force to within 5% of the value predicted by the theory. The Casimir effect can be understood by the idea that the presence of macroscopic material interfaces, such as conducting metals and
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the mate ...
s, alters the
vacuum expectation value In quantum field theory the vacuum expectation value (also called condensate or simply VEV) of an operator is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by \langle O\rangle. ...
of the energy of the
second-quantized In physics, canonical quantization is a procedure for quantization (physics), quantizing a classical theory, while attempting to preserve the formal structure, such as symmetry (physics), symmetries, of the classical theory, to the greatest extent ...
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
. Reviewed in Since the value of this energy depends on the shapes and positions of the materials, the Casimir effect manifests itself as a force between such objects. Any
medium Medium may refer to: Science and technology Aviation *Medium bomber, a class of war plane * Tecma Medium, a French hang glider design Communication * Media (communication), tools used to store and deliver information or data * Medium of ...
supporting
oscillation Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
s has an analogue of the Casimir effect. For example, beads on a string as well as plates submerged in turbulent water or gas illustrate the Casimir force. In modern
theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experim ...
, the Casimir effect plays an important role in the
chiral bag model In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
of the
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
; in
applied physics Applied physics is the application of physics to solve scientific or engineering problems. It is usually considered to be a bridge or a connection between physics and engineering. "Applied" is distinguished from "pure" by a subtle combination ...
it is significant in some aspects of emerging
microtechnologies Microtechnology deals with technology whose features have dimensions of the order of one micrometre (one millionth of a metre, or 10−6 metre, or 1μm). It focuses on physical and chemical processes as well as the production or manipulation of str ...
and
nanotechnologies Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and Supramolecular complex, supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particul ...
.


Physical properties

The typical example is of two uncharged conductive plates in a
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
, placed a few nanometers apart. In a classical description, the lack of an external field means that there is no field between the plates, and no force would be measured between them. When this field is instead studied using the quantum electrodynamic vacuum, it is seen that the plates do affect the
virtual photons A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle. The concept of virtual particles arises in the perturbat ...
which constitute the field, and generate a net force – either an attraction or a repulsion depending on the specific arrangement of the two plates. Although the Casimir effect can be expressed in terms of virtual particles interacting with the objects, it is best described and more easily calculated in terms of the
zero-point energy Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly Quantum fluctuation, fluctuate in their lowest energy state as described by the Heisen ...
of a quantized field in the intervening space between the objects. This force has been measured and is a striking example of an effect captured formally by
second quantization Second quantization, also referred to as occupation number representation, is a formalism used to describe and analyze quantum many-body systems. In quantum field theory, it is known as canonical quantization, in which the fields (typically as t ...
. The treatment of boundary conditions in these calculations has led to some controversy. In fact, "Casimir's original goal was to compute the
van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
between polarizable molecules" of the conductive plates. Thus it can be interpreted without any reference to the zero-point energy (vacuum energy) of quantum fields. Because the strength of the force falls off rapidly with distance, it is measurable only when the distance between the objects is extremely small. On a submicron scale, this force becomes so strong that it becomes the dominant force between uncharged conductors. In fact, at separations of 10 nm – about 100 times the typical size of an atom – the Casimir effect produces the equivalent of about 1 
atmosphere of pressure The standard atmosphere (symbol: atm) is a unit of pressure defined as Pa. It is sometimes used as a ''reference pressure'' or ''standard pressure''. It is approximately equal to Earth's average atmospheric pressure at sea level. History The s ...
(the precise value depending on surface geometry and other factors).


History

Dutch Dutch commonly refers to: * Something of, from, or related to the Netherlands * Dutch people () * Dutch language () Dutch may also refer to: Places * Dutch, West Virginia, a community in the United States * Pennsylvania Dutch Country People E ...
physicists Hendrik Casimir and
Dirk Polder Dirk Polder (23 August 1919 – 18 March 2001) was a Dutch physicist who, together with Hendrik Casimir, first predicted the existence of what today is known as the Casimir-Polder force, sometimes also referred to as the ''Casimir effect ...
at Philips Research Labs proposed the existence of a force between two polarizable atoms and between such an atom and a conducting plate in 1947; this special form is called the Casimir–Polder force. After a conversation with
Niels Bohr Niels Henrik David Bohr (; 7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922. B ...
, who suggested it had something to do with zero-point energy, Casimir alone formulated the theory predicting a force between neutral conducting plates in 1948. This latter phenomenon is called the Casimir effect in the narrow sense. Predictions of the force were later extended to finite-conductivity metals and dielectrics, and recent calculations have considered more general geometries. Experiments before 1997 had observed the force qualitatively, and indirect validation of the predicted Casimir energy had been made by measuring the thickness of
liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
films. However, it was not until 1997 that a direct experiment by S. Lamoreaux quantitatively measured the force to within 5% of the value predicted by the theory. Subsequent experiments approach an accuracy of a few percent.


Possible causes


Vacuum energy

The causes of the Casimir effect are described by quantum field theory, which states that all of the various fundamental
fields Fields may refer to: Music *Fields (band), an indie rock band formed in 2006 *Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song by ...
, such as the
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
, must be quantized at each and every point in space. In a simplified view, a "field" in physics may be envisioned as if space were filled with interconnected vibrating balls and springs, and the strength of the field can be visualized as the displacement of a ball from its rest position. Vibrations in this field propagate and are governed by the appropriate
wave equation The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields — as they occur in classical physics — such as mechanical waves (e.g. water waves, sound waves and s ...
for the particular field in question. The second quantization of quantum field theory requires that each such ball-spring combination be quantized, that is, that the strength of the field be quantized at each point in space. At the most basic level, the field at each point in space is a
simple harmonic oscillator In mechanics and physics, simple harmonic motion (sometimes abbreviated ) is a special type of periodic motion of a body resulting from a dynamic equilibrium between an inertial force, proportional to the acceleration of the body away from the ...
, and its quantization places a
quantum harmonic oscillator 量子調和振動子 は、 古典調和振動子 の 量子力学 類似物です。任意の滑らかな ポテンシャル は通常、安定した 平衡点 の近くで 調和ポテンシャル として近似できるため、最 ...
at each point. Excitations of the field correspond to the
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, an ...
s of
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
. However, even the vacuum has a vastly complex structure, so all calculations of quantum field theory must be made in relation to this model of the vacuum. The vacuum has, implicitly, all of the properties that a particle may have:
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally b ...
, or polarization in the case of
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 tera ...
,
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
, and so on. On average, most of these properties cancel out: the vacuum is, after all, "empty" in this sense. One important exception is the
vacuum energy Vacuum energy is an underlying background energy that exists in space throughout the entire Universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum. The effects of vacuum energy can be experimental ...
or the
vacuum expectation value In quantum field theory the vacuum expectation value (also called condensate or simply VEV) of an operator is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by \langle O\rangle. ...
of the energy. The quantization of a simple harmonic oscillator states that the lowest possible energy or zero-point energy that such an oscillator may have is =\tfrac12 \hbar \omega \, . Summing over all possible oscillators at all points in space gives an infinite quantity. Since only ''differences'' in energy are physically measurable (with the notable exception of gravitation, which remains beyond the scope of quantum field theory), this infinity may be considered a feature of the mathematics rather than of the physics. This argument is the underpinning of the theory of
renormalization Renormalization is a collection of techniques in quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering v ...
. Dealing with infinite quantities in this way was a cause of widespread unease among quantum field theorists before the development in the 1970s of the
renormalization group In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the ...
, a mathematical formalism for scale transformations that provides a natural basis for the process. When the scope of the physics is widened to include gravity, the interpretation of this formally infinite quantity remains problematic. There is currently no compelling explanation as to why it should not result in a cosmological constant that is many orders of magnitude larger than observed. However, since we do not yet have any fully coherent
quantum theory of gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics; it deals with environments in which neither Gravity, gravitational nor quantum effects can be ignored, such as ...
, there is likewise no compelling reason as to why it should instead actually result in the value of the cosmological constant that we observe. The Casimir effect for
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks an ...
s can be understood as the
spectral asymmetry In mathematics and physics, the spectral asymmetry is the asymmetry in the distribution of the spectrum of eigenvalues of an operator. In mathematics, the spectral asymmetry arises in the study of elliptic operators on compact manifolds, and is ...
of the fermion operator , where it is known as the
Witten index In quantum field theory and statistical mechanics, the Witten index at the inverse temperature β is defined as a modification of the standard partition function: :\textrm -1)^F e^/math> Note the (-1)F operator, where F is the fermion numbe ...
.


Relativistic van der Waals force

Alternatively, a 2005 paper by
Robert Jaffe Robert Loren Jaffe (born May 23, 1946) is an American physicist and the Jane and Otto Morningstar Professor of Physics at the Massachusetts Institute of Technology (MIT). He was formerly director of the MIT Center for Theoretical Physics. Biograp ...
of MIT states that "Casimir effects can be formulated and Casimir forces can be computed without reference to zero-point energies. They are relativistic, quantum forces between charges and currents. The Casimir force (per unit area) between parallel plates vanishes as alpha, the fine structure constant, goes to zero, and the standard result, which appears to be independent of alpha, corresponds to the alpha approaching infinity limit", and that "The Casimir force is simply the (relativistic, retarded) van der Waals force between the metal plates." Casimir and Polder's original paper used this method to derive the Casimir–Polder force. In 1978, Schwinger, DeRadd, and Milton published a similar derivation for the Casimir effect between two parallel plates. More recently, Nikolic proved from first principles of
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and spec ...
that Casimir force does not originate from vacuum energy of electromagnetic field, and explained in simple terms why the fundamental microscopic origin of Casimir force lies in van der Waals forces.


Effects

Casimir's observation was that the
second-quantized In physics, canonical quantization is a procedure for quantization (physics), quantizing a classical theory, while attempting to preserve the formal structure, such as symmetry (physics), symmetries, of the classical theory, to the greatest extent ...
quantum electromagnetic field, in the presence of bulk bodies such as metals or
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the mate ...
s, must obey the same
boundary conditions In mathematics, in the field of differential equations, a boundary value problem is a differential equation together with a set of additional constraints, called the boundary conditions. A solution to a boundary value problem is a solution to th ...
that the classical electromagnetic field must obey. In particular, this affects the calculation of the vacuum energy in the presence of a conductor or dielectric. Consider, for example, the calculation of the vacuum expectation value of the electromagnetic field inside a metal cavity, such as, for example, a
radar cavity The cavity magnetron is a high-power vacuum tube used in early radar systems and currently in microwave ovens and linear particle accelerators. It generates microwaves using the interaction of a stream of electrons with a magnetic field while ...
or a
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ran ...
waveguide A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. Without the physical constraint of a waveguide, wave intensities de ...
. In this case, the correct way to find the zero-point energy of the field is to sum the energies of the
standing wave In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect ...
s of the cavity. To each and every possible standing wave corresponds an energy; say the energy of the th standing wave is . The vacuum expectation value of the energy of the electromagnetic field in the cavity is then \langle E \rangle=\tfrac12 \sum_n E_n with the sum running over all possible values of enumerating the standing waves. The factor of is present because the zero-point energy of the th mode is , where is the energy increment for the th mode. (It is the same as appears in the equation .) Written in this way, this sum is clearly divergent; however, it can be used to create finite expressions. In particular, one may ask how the zero-point energy depends on the shape of the cavity. Each energy level depends on the shape, and so one should write for the energy level, and for the vacuum expectation value. At this point comes an important observation: The force at point on the wall of the cavity is equal to the change in the vacuum energy if the shape of the wall is perturbed a little bit, say by , at . That is, one has F(p) = - \left. \frac \right\vert_p \,. This value is finite in many practical calculations. Attraction between the plates can be easily understood by focusing on the one-dimensional situation. Suppose that a moveable conductive plate is positioned at a short distance from one of two widely separated plates (distance apart). With , the states within the slot of width are highly constrained so that the energy of any one mode is widely separated from that of the next. This is not the case in the large region where there is a large number of states (about ) with energy evenly spaced between and the next mode in the narrow slot, or in other words, all slightly larger than . Now on shortening by an amount (which is negative), the mode in the narrow slot shrinks in wavelength and therefore increases in energy proportional to , whereas all the states that lie in the large region lengthen and correspondingly decrease their energy by an amount proportional to (note the different denominator). The two effects nearly cancel, but the net change is slightly negative, because the energy of all the modes in the large region are slightly larger than the single mode in the slot. Thus the force is attractive: it tends to make slightly smaller, the plates drawing each other closer, across the thin slot.


Derivation of Casimir effect assuming zeta-regularization

In the original calculation done by Casimir, he considered the space between a pair of conducting metal plates at distance apart. In this case, the standing waves are particularly easy to calculate, because the transverse component of the electric field and the normal component of the magnetic field must vanish on the surface of a conductor. Assuming the plates lie parallel to the -plane, the standing waves are \psi_n(x,y,z;t)=e^ e^ \sin(k_n z) \,, where stands for the electric component of the electromagnetic field, and, for brevity, the polarization and the magnetic components are ignored here. Here, and are the
wavenumber In the physical sciences, the wavenumber (also wave number or repetency) is the ''spatial frequency'' of a wave, measured in cycles per unit distance (ordinary wavenumber) or radians per unit distance (angular wavenumber). It is analogous to temp ...
s in directions parallel to the plates, and k_n=\frac is the wavenumber perpendicular to the plates. Here, is an integer, resulting from the requirement that vanish on the metal plates. The frequency of this wave is \omega_n=c \sqrt \,, where is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
. The vacuum energy is then the sum over all possible excitation modes. Since the area of the plates is large, we may sum by integrating over two of the dimensions in -space. The assumption of
periodic boundary conditions Periodic boundary conditions (PBCs) are a set of boundary conditions which are often chosen for approximating a large (infinite) system by using a small part called a ''unit cell''. PBCs are often used in computer simulations and mathematical mode ...
yields, \langle E \rangle=\frac \cdot 2 \int \frac \sum_^\infty \omega_n \,, where is the area of the metal plates, and a factor of 2 is introduced for the two possible polarizations of the wave. This expression is clearly infinite, and to proceed with the calculation, it is convenient to introduce a regulator (discussed in greater detail below). The regulator will serve to make the expression finite, and in the end will be removed. The zeta-regulated version of the energy per unit-area of the plate is \frac=\hbar \int \frac \sum_^\infty \omega_n \left, \omega_n \^ \,. In the end, the limit is to be taken. Here is just a
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
, not to be confused with the shape discussed previously. This integral sum is finite for
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
and larger than 3. The sum has a
pole Pole may refer to: Astronomy *Celestial pole, the projection of the planet Earth's axis of rotation onto the celestial sphere; also applies to the axis of rotation of other planets *Pole star, a visible star that is approximately aligned with the ...
at , but may be analytically continued to , where the expression is finite. The above expression simplifies to: \frac= \frac \sum_n \int_0^\infty 2\pi q \,dq \left , q^2 + \frac \^\frac \,, where
polar coordinates In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to the or ...
were introduced to turn the
double integral In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, or . Integrals of a function of two variables over a region in \mathbb^2 (the real-numbe ...
into a single integral. The in front is the Jacobian, and the comes from the angular integration. The integral converges if , resulting in \frac= -\frac \frac \sum_n \left, n \ ^= -\frac \sum_n \frac \,. The sum diverges at in the neighborhood of zero, but if the damping of large-frequency excitations corresponding to analytic continuation of the
Riemann zeta function The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for \operatorname(s) > ...
to is assumed to make sense physically in some way, then one has \frac= \lim_ \frac= -\frac \zeta (-3) \,. But and so one obtains \frac= -\frac \,. The analytic continuation has evidently lost an additive positive infinity, somehow exactly accounting for the zero-point energy (not included above) outside the slot between the plates, but which changes upon plate movement within a closed system. The Casimir force per unit area for idealized, perfectly conducting plates with vacuum between them is \frac=-\frac \frac = -\frac where * is the
reduced Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
, * is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
, * is the
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
between the two plates The force is negative, indicating that the force is attractive: by moving the two plates closer together, the energy is lowered. The presence of shows that the Casimir force per unit area is very small, and that furthermore, the force is inherently of quantum-mechanical origin. By integrating the equation above it is possible to calculate the energy required to separate to infinity the two plates as: \begin U_E(a) &= \int F(a) \,da = \int - \hbar c \pi^2 \frac \,da \\ pt&= \hbar c \pi^2 \frac \end where * is the
reduced Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
, * is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
, * is the
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape A shape or figure is a graphics, graphical representation of an obje ...
of one of the plates, * is the
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
between the two plates In Casimir's original derivation, a moveable conductive plate is positioned at a short distance from one of two widely separated plates (distance apart). The zero-point energy on ''both'' sides of the plate is considered. Instead of the above ''ad hoc'' analytic continuation assumption, non-convergent sums and integrals are computed using Euler–Maclaurin summation with a regularizing function (e.g., exponential regularization) not so anomalous as in the above.


More recent theory

Casimir's analysis of idealized metal plates was generalized to arbitrary dielectric and realistic metal plates by
Evgeny Lifshitz Evgeny Mikhailovich Lifshitz (russian: Евге́ний Миха́йлович Ли́фшиц; February 21, 1915, Kharkiv, Russian Empire – October 29, 1985, Moscow, Russian SFSR) was a leading Soviet physicist and brother of the physicist ...
and his students. Using this approach, complications of the bounding surfaces, such as the modifications to the Casimir force due to finite conductivity, can be calculated numerically using the tabulated complex dielectric functions of the bounding materials. Lifshitz's theory for two metal plates reduces to Casimir's idealized force law for large separations much greater than the
skin depth Skin effect is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface of the conductor and decreases exponentially with greater depths in the con ...
of the metal, and conversely reduces to the force law of the
London dispersion force London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds or loosely as van der Waals forces) are a type of intermolecular force acting between at ...
(with a coefficient called a
Hamaker constant The Hamaker constant ''A'' can be defined for a van der Waals (vdW) body–body interaction: :A=\pi^2C\rho_1\rho_2, where \rho_1 and \rho_2 are the number densities of the two interacting kinds of particles, and ''C'' is the London coefficient in ...
) for small , with a more complicated dependence on for intermediate separations determined by the
dispersion Dispersion may refer to: Economics and finance *Dispersion (finance), a measure for the statistical distribution of portfolio returns *Price dispersion, a variation in prices across sellers of the same item *Wage dispersion, the amount of variatio ...
of the materials. Lifshitz's result was subsequently generalized to arbitrary multilayer planar geometries as well as to anisotropic and magnetic materials, but for several decades the calculation of Casimir forces for non-planar geometries remained limited to a few idealized cases admitting analytical solutions. For example, the force in the experimental sphere–plate geometry was computed with an approximation (due to Derjaguin) that the sphere radius is much larger than the separation , in which case the nearby surfaces are nearly parallel and the parallel-plate result can be adapted to obtain an approximate force (neglecting both skin-depth and higher-order curvature effects). However, in the 2000s a number of authors developed and demonstrated a variety of numerical techniques, in many cases adapted from classical
computational electromagnetics Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment. It typically involves using computer ...
, that are capable of accurately calculating Casimir forces for arbitrary geometries and materials, from simple finite-size effects of finite plates to more complicated phenomena arising for patterned surfaces or objects of various shapes. Review article.


Measurement

One of the first experimental tests was conducted by Marcus Sparnaay at Philips in
Eindhoven Eindhoven () is a city and municipality in the Netherlands, located in the southern province of North Brabant of which it is its largest. With a population of 238,326 on 1 January 2022,Los Alamos National Laboratory Los Alamos National Laboratory (often shortened as Los Alamos and LANL) is one of the sixteen research and development laboratories of the United States Department of Energy (DOE), located a short distance northwest of Santa Fe, New Mexico, ...
, and by Umar Mohideen and Anushree Roy of the
University of California, Riverside The University of California, Riverside (UCR or UC Riverside) is a public land-grant research university in Riverside, California. It is one of the ten campuses of the University of California system. The main campus sits on in a suburban distr ...
. In practice, rather than using two parallel plates, which would require phenomenally accurate alignment to ensure they were parallel, the experiments use one plate that is flat and another plate that is a part of a
sphere A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
with a very large
radius In classical geometry, a radius ( : radii) of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the ...
. In 2001, a group (Giacomo Bressi, Gianni Carugno, Roberto Onofrio and Giuseppe Ruoso) at the
University of Padua The University of Padua ( it, Università degli Studi di Padova, UNIPD) is an Italian university located in the city of Padua, region of Veneto, northern Italy. The University of Padua was founded in 1222 by a group of students and teachers from B ...
(Italy) finally succeeded in measuring the Casimir force between parallel plates using microresonators. In 2013, a conglomerate of scientists from
Hong Kong University of Science and Technology The Hong Kong University of Science and Technology (HKUST) is a public research university in Clear Water Bay Peninsula, New Territories, Hong Kong. Founded in 1991 by the British Hong Kong Government, it was the territory's third institution ...
,
University of Florida The University of Florida (Florida or UF) is a public land-grant research university in Gainesville, Florida. It is a senior member of the State University System of Florida, traces its origins to 1853, and has operated continuously on its ...
,
Harvard University Harvard University is a private Ivy League research university in Cambridge, Massachusetts. Founded in 1636 as Harvard College and named for its first benefactor, the Puritan clergyman John Harvard, it is the oldest institution of higher le ...
,
Massachusetts Institute of Technology The Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. Established in 1861, MIT has played a key role in the development of modern technology and science, and is one of the ...
, and
Oak Ridge National Laboratory Oak Ridge National Laboratory (ORNL) is a U.S. multiprogram science and technology national laboratory sponsored by the U.S. Department of Energy (DOE) and administered, managed, and operated by UT–Battelle as a federally funded research and ...
demonstrated a compact integrated silicon chip that can measure the Casimir force. The integrated chip defined by electron-beam lithography does not need extra alignment, making it an ideal platform for measuring Casimir force between complex geometries. In 2017 and 2021, the same group from
Hong Kong University of Science and Technology The Hong Kong University of Science and Technology (HKUST) is a public research university in Clear Water Bay Peninsula, New Territories, Hong Kong. Founded in 1991 by the British Hong Kong Government, it was the territory's third institution ...
demonstrated the non-monotonic Casimir force and distance-independent Casimir force, respectively, using this on-chip platform.


Regularization

In order to be able to perform calculations in the general case, it is convenient to introduce a regulator in the summations. This is an artificial device, used to make the sums finite so that they can be more easily manipulated, followed by the taking of a limit so as to remove the regulator. The
heat kernel In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectru ...
or
exponentially Exponential may refer to any of several mathematical topics related to exponentiation, including: *Exponential function, also: **Matrix exponential, the matrix analogue to the above * Exponential decay, decrease at a rate proportional to value *Exp ...
regulated sum is \langle E(t) \rangle=\frac12 \sum_n \hbar , \omega_n , \exp \bigl(-t , \omega_n , \bigr)\,, where the limit is taken in the end. The divergence of the sum is typically manifested as \langle E(t) \rangle=\frac + \textrm\, for three-dimensional cavities. The infinite part of the sum is associated with the bulk constant which ''does not'' depend on the shape of the cavity. The interesting part of the sum is the finite part, which is shape-dependent. The
Gaussian Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below. There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy. The English eponymo ...
regulator \langle E(t) \rangle=\frac12 \sum_n \hbar , \omega_n , \exp \left(-t^2 , \omega_n , ^2\right) is better suited to numerical calculations because of its superior convergence properties, but is more difficult to use in theoretical calculations. Other, suitably smooth, regulators may be used as well. The
zeta function regulator Zeta (, ; uppercase Ζ, lowercase ζ; grc, ζῆτα, el, ζήτα, label=Demotic Greek, classical or ''zē̂ta''; ''zíta'') is the sixth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 7. It was derived fr ...
\langle E(s) \rangle=\frac12 \sum_n \hbar , \omega_n , , \omega_n , ^ is completely unsuited for numerical calculations, but is quite useful in theoretical calculations. In particular, divergences show up as poles in the complex plane, with the bulk divergence at . This sum may be analytically continued past this pole, to obtain a finite part at . Not every cavity configuration necessarily leads to a finite part (the lack of a pole at ) or shape-independent infinite parts. In this case, it should be understood that additional physics has to be taken into account. In particular, at extremely large frequencies (above the
plasma frequency Plasma oscillations, also known as Langmuir waves (after Irving Langmuir), are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability i ...
), metals become transparent to
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s (such as
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s), and dielectrics show a frequency-dependent cutoff as well. This frequency dependence acts as a natural regulator. There are a variety of bulk effects in
solid state physics Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the l ...
, mathematically very similar to the Casimir effect, where the cutoff frequency comes into explicit play to keep expressions finite. (These are discussed in greater detail in ''Landau and Lifshitz'', "Theory of Continuous Media".)


Generalities

The Casimir effect can also be computed using the mathematical mechanisms of
functional integral Functional integration is a collection of results in mathematics and physics where the domain of an integral is no longer a region of space, but a space of functions. Functional integrals arise in probability, in the study of partial differential ...
s of quantum field theory, although such calculations are considerably more abstract, and thus difficult to comprehend. In addition, they can be carried out only for the simplest of geometries. However, the formalism of quantum field theory makes it clear that the vacuum expectation value summations are in a certain sense summations over so-called "virtual particles". More interesting is the understanding that the sums over the energies of standing waves should be formally understood as sums over the
eigenvalue In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
s of a
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
. This allows atomic and molecular effects, such as the
Van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
, to be understood as a variation on the theme of the Casimir effect. Thus one considers the Hamiltonian of a system as a function of the arrangement of objects, such as atoms, in configuration space. The change in the zero-point energy as a function of changes of the configuration can be understood to result in forces acting between the objects. In the
chiral bag model In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
of the nucleon, the Casimir energy plays an important role in showing the mass of the nucleon is independent of the bag radius. In addition, the spectral asymmetry is interpreted as a non-zero vacuum expectation value of the baryon number, cancelling the
topological winding number In physics, a topological quantum number (also called topological charge) is any quantity, in a physical theory, that takes on only one of a discrete set of values, due to topological considerations. Most commonly, topological quantum numbers are ...
of the
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gene ...
field surrounding the nucleon. A "pseudo-Casimir" effect can be found in
liquid crystal Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way. T ...
systems, where the boundary conditions imposed through anchoring by rigid walls give rise to a long-range force, analogous to the force that arises between conducting plates.


Dynamical Casimir effect

The dynamical Casimir effect is the production of particles and energy from an accelerated ''moving mirror''. This reaction was predicted by certain numerical solutions to
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
equations made in the 1970s. In May 2011 an announcement was made by researchers at the
Chalmers University of Technology Chalmers University of Technology ( sv, Chalmers tekniska högskola, often shortened to Chalmers) is a Swedish university located in Gothenburg that conducts research and education in technology and natural sciences at a high international level ...
, in Gothenburg, Sweden, of the detection of the dynamical Casimir effect. In their experiment, microwave photons were generated out of the vacuum in a superconducting microwave resonator. These researchers used a modified
SQUID True squid are molluscs with an elongated soft body, large eyes, eight arms, and two tentacles in the superorder Decapodiformes, though many other molluscs within the broader Neocoleoidea are also called squid despite not strictly fitting t ...
to change the effective length of the resonator in time, mimicking a mirror moving at the required relativistic velocity. If confirmed this would be the first experimental verification of the dynamical Casimir effect. In March 2013 an article appeared on the
PNAS ''Proceedings of the National Academy of Sciences of the United States of America'' (often abbreviated ''PNAS'' or ''PNAS USA'') is a peer-reviewed multidisciplinary scientific journal. It is the official journal of the National Academy of Scien ...
scientific journal describing an experiment that demonstrated the dynamical Casimir effect in a Josephson metamaterial. In July 2019 an article was published describing an experiment providing evidence of optical dynamical Casimir effect in a dispersion-oscillating fibre.


Analogies

A similar analysis can be used to explain
Hawking radiation Hawking radiation is theoretical black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical arg ...
that causes the slow "
evaporation Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. High concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidi ...
" of
black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
s (although this is generally visualized as the escape of one particle from a virtual particle– antiparticle pair, the other particle having been captured by the black hole). Constructed within the framework of
quantum field theory in curved spacetime In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory treats spacetime as a fixed, classical background, while giving ...
, the dynamical Casimir effect has been used to better understand acceleration radiation such as the
Unruh effect The Unruh effect (also known as the Fulling–Davies–Unruh effect) is a kinematic prediction of quantum field theory that an accelerating observer will observe a thermal bath, like blackbody radiation, whereas an inertial observer would observe ...
.


Repulsive forces

There are few instances wherein the Casimir effect can give rise to repulsive forces between uncharged objects. Evgeny Lifshitz showed (theoretically) that in certain circumstances (most commonly involving liquids), repulsive forces can arise. This has sparked interest in applications of the Casimir effect toward the development of levitating devices. An experimental demonstration of the Casimir-based repulsion predicted by Lifshitz was carried out by Munday et al. who described it as "''quantum levitation''". Other scientists have also suggested the use of
gain media The active laser medium (also called gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a ...
to achieve a similar levitation effect, though this is controversial because these materials seem to violate fundamental causality constraints and the requirement of thermodynamic equilibrium (
Kramers–Kronig relations The Kramers–Kronig relations are bidirectional mathematical relations, connecting the real and imaginary parts of any complex function that is analytic in the upper half-plane. The relations are often used to compute the real part from the imag ...
). Casimir and Casimir–Polder repulsion can in fact occur for sufficiently anisotropic electrical bodies; for a review of the issues involved with repulsion see Milton et al. A notable recent development on repulsive Casimir forces relies on using chiral materials. Q.-D. Jiang at Stockholm University and Nobel Laureate Frank Wilczek at MIT show that chiral "lubricant" can generate repulsive, enhanced, and tunable Casimir interactions. Timothy Boyer showed in his work published in 1968 that a conductor with spherical symmetry will also show this repulsive force, and the result is independent of radius. Further work shows that the repulsive force can be generated with materials of carefully chosen dielectrics.


Speculative applications

It has been suggested that the Casimir forces have application in nanotechnology, in particular silicon integrated circuit technology based micro- and nanoelectromechanical systems, and so-called Casimir oscillators. The Casimir effect shows that quantum field theory allows the energy density in certain regions of space to be negative relative to the ordinary vacuum energy, and it has been shown theoretically that quantum field theory allows states where the energy can be ''arbitrarily'' negative at a given point. Many prominent physicists such as Stephen Hawking,
Kip Thorne Kip Stephen Thorne (born June 1, 1940) is an American theoretical physicist known for his contributions in gravitational physics and astrophysics. A longtime friend and colleague of Stephen Hawking and Carl Sagan, he was the Richard P. Fey ...
, and others therefore argue that such effects might make it possible to stabilize a
traversable wormhole A wormhole (Einstein-Rosen bridge) is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations. A wormhole can be visualized as a tunnel with two ends at separate po ...
.


See also

*
Casimir pressure Casimir pressure is created by the Casimir force of virtual particles. According to experiments, the Casimir force F between two closely spaced neutral parallel plate conductors is directly proportional to their surface area A: F=PA. Therefore, ...
*
Negative energy Negative energy is a concept used in physics to explain the nature of certain fields, including the gravitational field and various quantum field effects. Gravitational potential energy Gravitational potential energy can be defined as being ne ...
*
Scharnhorst effect __NOTOC__ The Scharnhorst effect is a hypothetical phenomenon in which light signals travel slightly faster than ''c'' between two closely spaced conducting plates. It was first predicted in a 1990 paper by Klaus Scharnhorst of the Humboldt Unive ...
*
Van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
*
Squeezed vacuum In physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position x and momentum p of a particle, and the (dimension-less) electri ...


References


Further reading


Introductory readings


Casimir effect description
from
University of California, Riverside The University of California, Riverside (UCR or UC Riverside) is a public land-grant research university in Riverside, California. It is one of the ten campuses of the University of California system. The main campus sits on in a suburban distr ...
's version of th
Usenet physics FAQ
* A. Lambrecht
The Casimir effect: a force from nothing
''Physics World'', September 2002. * *


Papers, books and lectures

* * * * * * * * * (Includes discussion of French naval analogy.) * (Also includes discussion of French naval analogy.) * * Patent No. PCT/RU2011/000847 Author Urmatskih.


Temperature dependence



from
NIST The National Institute of Standards and Technology (NIST) is an agency of the United States Department of Commerce whose mission is to promote American innovation and industrial competitiveness. NIST's activities are organized into physical sci ...
*


External links


Casimir effect article search
on arxiv.org * G. Lang

web site, 2002 * J. Babb

web site, 2009 * H. Nikolic
The origin of Casimir effect; Vacuum energy or van der Waals force?
presentation slides, 2018 {{Authority control Quantum field theory Physical phenomena Force Levitation Faster-than-light travel Articles containing video clips