(−1)F
   HOME





(−1)F
In a quantum field theory with fermions, (−1)''F'' is a unitary, Hermitian, involutive operator where ''F'' is the fermion number operator. For the example of particles in the Standard Model, it is equal to the sum of the lepton number plus the baryon number, . The action of this operator is to multiply bosonic states by 1 and fermionic states by −1. This is always a global internal symmetry of any quantum field theory with fermions and corresponds to a rotation by 2π. This splits the Hilbert space into two superselection sectors. Bosonic operators commute with (−1)''F'' whereas fermionic operators anticommute with it. This operator really shows its utility in supersymmetric theories. Its trace is the spectral asymmetry of the fermion spectrum, and can be understood physically as the Casimir effect. See also *Parity (physics) * Primon gas *Möbius function The Möbius function \mu(n) is a multiplicative function in number theory introduced by the German mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Number Operator
In quantum mechanics, for systems where the total number of particles may not be preserved, the number operator is the observable that counts the number of particles. The following is in bra–ket notation: The number operator acts on Fock space. Let , \Psi\rangle_\nu=, \phi_1,\phi_2,\cdots,\phi_n\rangle_\nu be a Fock state, composed of single-particle states , \phi_i\rangle drawn from a basis of the underlying Hilbert space of the Fock space. Given the corresponding creation and annihilation operators a^(\phi_i) and a(\phi_i)\, we define the number operator by \hat \ \stackrel\ a^(\phi_i)a(\phi_i) and we have \hat, \Psi\rangle_\nu=N_i, \Psi\rangle_\nu where N_i is the number of particles in state , \phi_i\rangle. The above equality can be proven by noting that \begin a(\phi_i) , \phi_1,\phi_2,\cdots,\phi_,\phi_i,\phi_,\cdots,\phi_n\rangle_\nu &=& \sqrt , \phi_1,\phi_2,\cdots,\phi_,\phi_,\cdots,\phi_n\rangle_\nu \\ a^(\phi_i) , \phi_1,\phi_2,\cdots,\phi_,\phi_,\cdots,\phi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parity (physics)
In physics, a parity transformation (also called parity inversion) is the flip in the sign of ''one'' spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point reflection): \mathbf: \beginx\\y\\z\end \mapsto \begin-x\\-y\\-z\end. It can also be thought of as a test for chirality of a physical phenomenon, in that a parity inversion transforms a phenomenon into its mirror image. All fundamental interactions of elementary particles, with the exception of the weak interaction, are symmetric under parity transformation. As established by the Wu experiment conducted at the US National Bureau of Standards by Chinese-American scientist Chien-Shiung Wu, the weak interaction is chiral and thus provides a means for probing chirality in physics. In her experiment, Wu took advantage of the controlling role of weak interactions in radioactive decay of atomic isotopes to establish the chirality of the weak f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Casimir Effect
In quantum field theory, the Casimir effect (or Casimir force) is a physical force (physics), force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of a field (physics), field. The term Casimir pressure is sometimes used when it is described in units of force per unit area. It is named after the Dutch physicist Hendrik Casimir, who predicted the effect for electromagnetism, electromagnetic systems in 1948. In the same year Casimir, together with Dirk Polder, described a similar effect experienced by a neutral atom in the vicinity of a macroscopic interface which is called the Casimir–Polder force. Their result is a generalization of the London dispersion force, London–van der Waals force and includes retarded potential, retardation due to the finite speed of light. The fundamental principles leading to the London–van der Waals force, the Casimir force, and the Casimir–Polder force can be formulated on the same footing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on QFT. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its development began in the 1920s with the description of interactions between light and electrons, culminating in the first quantum field theory—quantum electrodynamics. A major theoretical obstacle soon followed with the appearance and persistence of various infinities in perturbative calculations, a problem only resolved in the 1950s with the invention of the renormalization procedure. A second major barrier came with QFT's apparent inabili ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anticommute
In mathematics, anticommutativity is a specific property of some non-commutative mathematical operations. Swapping the position of two arguments of an antisymmetric operation yields a result which is the ''inverse'' of the result with unswapped arguments. The notion '' inverse'' refers to a group structure on the operation's codomain, possibly with another operation. Subtraction is an anticommutative operation because commuting the operands of gives for example, Another prominent example of an anticommutative operation is the Lie bracket. In mathematical physics, where symmetry is of central importance, or even just in multilinear algebra these operations are mostly (multilinear with respect to some vector structures and then) called antisymmetric operations, and when they are not already of arity greater than two, extended in an associative setting to cover more than two arguments. Definition If A, B are two abelian groups, a bilinear map f\colon A^2 \to B is anticommuta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on QFT. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its development began in the 1920s with the description of interactions between light and electrons, culminating in the first quantum field theory—quantum electrodynamics. A major theoretical obstacle soon followed with the appearance and persistence of various infinities in perturbative calculations, a problem only resolved in the 1950s with the invention of the renormalization procedure. A second major barrier came with QFT's apparent inabili ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Möbius Function
The Möbius function \mu(n) is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated ''Moebius'') in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted \mu(x). Definition The Möbius function is defined by :\mu(n) = \begin 1 & \text n = 1 \\ (-1)^k & \text n \text k \text \\ 0 & \text n \text > 1 \end The Möbius function can alternatively be represented as : \mu(n) = \delta_ \lambda(n), where \delta_ is the Kronecker delta, \lambda(n) is the Liouville function, Prime omega function, \omega(n) is the number of distinct prime divisors of n, and Prime omega function, \Omega(n) is the number of prime factors of n, counted with multiplicity. Another characterization ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Primon Gas
In mathematical physics, the primon gas or Riemann gas discovered by Bernard Julia is a model illustrating correspondences between number theory and methods in quantum field theory, statistical mechanics and dynamical systems such as the Lee-Yang theorem. It is a quantum field theory of a set of non-interacting particles, the primons; it is called a gas or a ''free model'' because the particles are non-interacting. The idea of the primon gas was independently discovered by Donald Spector. Later works by Ioannis Bakas and Mark Bowick, and Spector explored the connection of such systems to string theory. The model State space Consider a Hilbert space H with an orthonormal basis of states , p\rangle labelled by the prime numbers ''p''. Second quantization gives a new Hilbert space K, the bosonic Fock space on H, where states describe collections of primes - which we can call primons if we think of them as analogous to particles in quantum field theory. This Fock space has an or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectral Asymmetry
In mathematics and physics, the spectral asymmetry is the asymmetry in the distribution of the spectrum of eigenvalues of an operator. In mathematics, the spectral asymmetry arises in the study of elliptic operators on compact manifolds, and is given a deep meaning by the Atiyah-Patodi-Singer index theorem. In physics, it has numerous applications, typically resulting in a fractional charge due to the asymmetry of the spectrum of a Dirac operator. For example, the vacuum expectation value of the baryon number is given by the spectral asymmetry of the Hamiltonian operator. The spectral asymmetry of the confined quark fields is an important property of the chiral bag model. For fermions, it is known as the Witten index, and can be understood as describing the Casimir effect for fermions. Definition Given an operator with eigenvalues \omega_n, an equal number of which are positive and negative, the spectral asymmetry may be defined as the sum :B=\lim_ \frac\sum_n \sgn(\omega_n) \e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Witten Index
In quantum field theory and statistical mechanics, the Witten index at the inverse temperature β is defined as a modification of the standard partition function: :\textrm -1)^F e^/math> Note the (-1)F operator, where F is the fermion number operator. This is what makes it different from the ordinary partition function. It is sometimes referred to as the spectral asymmetry. In a supersymmetric theory, each nonzero energy eigenvalue contains an equal number of bosonic and fermionic states. Because of this, the Witten index is independent of the temperature and gives the number of zero energy bosonic vacuum states minus the number of zero energy fermionic vacuum states. In particular, if supersymmetry is spontaneously broken then there are no zero energy ground states and so the Witten index is equal to zero. The Witten index of the supersymmetric sigma model on a manifold is given by the manifold's Euler characteristic.* p191 (10.124) :\textrm -1)^F e^\sum_(-1)^pb_p=\chi(M) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supersymmetry
Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It proposes that for every known particle, there exists a partner particle with different spin properties. There have been multiple experiments on supersymmetry that have failed to provide evidence that it exists in nature. If evidence is found, supersymmetry could help explain certain phenomena, such as the nature of dark matter and the hierarchy problem in particle physics. A supersymmetric theory is a theory in which the equations for force and the equations for matter are identical. In theoretical physics, theoretical and mathematical physics, any theory with this property has the ''principle of supersymmetry'' (SUSY). Dozens of supersymmetric theories exist. In theory, supersymmetry is a type of Spacetime symmetries, spacetime symmetry betwe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Oxford University Press
Oxford University Press (OUP) is the publishing house of the University of Oxford. It is the largest university press in the world. Its first book was printed in Oxford in 1478, with the Press officially granted the legal right to print books by decree in 1586. It is the second-oldest university press after Cambridge University Press, which was founded in 1534. It is a department of the University of Oxford. It is governed by a group of 15 academics, the Delegates of the Press, appointed by the Vice Chancellor, vice-chancellor of the University of Oxford. The Delegates of the Press are led by the Secretary to the Delegates, who serves as OUP's chief executive and as its major representative on other university bodies. Oxford University Press has had a similar governance structure since the 17th century. The press is located on Walton Street, Oxford, Walton Street, Oxford, opposite Somerville College, Oxford, Somerville College, in the inner suburb of Jericho, Oxford, Jericho. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]