HOME

TheInfoList



OR:

In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with other atoms when it forms
chemical compound A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one ele ...
s or
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
s.


Description

The combining capacity, or affinity of an
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas ...
of a given element is determined by the number of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
atoms that it combines with. In
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Ear ...
, carbon has a valence of 4; in
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogeno ...
, nitrogen has a valence of 3; in water, oxygen has a valence of 2; and in hydrogen chloride, chlorine has a valence of 1. Chlorine, as it has a valence of one, can be substituted for hydrogen. Phosphorus has a valence of 5 in phosphorus pentachloride, . Valence diagrams of a compound represent the connectivity of the elements, with lines drawn between two elements, sometimes called bonds, representing a saturated valency for each element. The two tables below show some examples of different compounds, their valence diagrams, and the valences for each element of the compound.


Modern definitions

Valence is defined by the
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
as: IUPAC Gold Book definition
valence
/ref> :''The maximum number of univalent atoms (originally hydrogen or chlorine atoms) that may combine with an atom of the element under consideration, or with a fragment, or for which an atom of this element can be substituted.'' An alternative modern description is: : ''The number of hydrogen atoms that can combine with an element in a binary hydride or twice the number of oxygen atoms combining with an element in its oxide or oxides.'' This definition differs from the IUPAC definition as an element can be said to have more than one valence. A very similar modern definition given in a recent article defines the valence of a particular atom in a molecule as "the number of electrons that an atom uses in bonding", with two equivalent formulas for calculating valence: :''valence = number of electrons in valence shell of free atom'' – ''number of non-bonding electrons on atom in molecule'', and :''valence = number of bonds'' + ''formal charge''.


Historical development

The
etymology Etymology () The New Oxford Dictionary of English (1998) – p. 633 "Etymology /ˌɛtɪˈmɒlədʒi/ the study of the class in words and the way their meanings have changed throughout time". is the study of the history of the form of words ...
of the words ''
valence Valence or valency may refer to: Science * Valence (chemistry), a measure of an element's combining power with other atoms * Degree (graph theory), also called the valency of a vertex in graph theory * Valency (linguistics), aspect of verbs rel ...
'' (plural '' valences'') and ''
valency Valence or valency may refer to: Science * Valence (chemistry), a measure of an element's combining power with other atoms * Degree (graph theory), also called the valency of a vertex in graph theory * Valency (linguistics), aspect of verbs re ...
'' (plural '' valencies'') traces back to 1425, meaning "extract, preparation", from Latin ''valentia'' "strength, capacity", from the earlier ''valor'' "worth, value", and the chemical meaning referring to the "combining power of an element" is recorded from 1884, from German ''Valenz''. The concept of valence was developed in the second half of the 19th century and helped successfully explain the molecular structure of inorganic and organic compounds. The quest for the underlying causes of valence led to the modern theories of chemical bonding, including the cubical atom (1902),
Lewis structure Lewis structures, also known as Lewis dot formulas, Lewis dot structures, electron dot structures, or Lewis electron dot structures (LEDS), are diagrams that show the bonding between atoms of a molecule, as well as the lone pairs of electrons t ...
s (1916),
valence bond theory In chemistry, valence bond (VB) theory is one of the two basic theories, along with molecular orbital (MO) theory, that were developed to use the methods of quantum mechanics to explain chemical bonding. It focuses on how the atomic orbitals of ...
(1927),
molecular orbital In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of findi ...
s (1928), valence shell electron pair repulsion theory (1958), and all of the advanced methods of
quantum chemistry Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contribution ...
. In 1789, William Higgins published views on what he called combinations of "ultimate" particles, which foreshadowed the concept of valency bonds. If, for example, according to Higgins, the force between the ultimate particle of oxygen and the ultimate particle of nitrogen were 6, then the strength of the force would be divided accordingly, and likewise for the other combinations of ultimate particles (see illustration). The exact inception, however, of the theory of chemical valencies can be traced to an 1852 paper by Edward Frankland, in which he combined the older radical theory with thoughts on chemical affinity to show that certain elements have the tendency to combine with other elements to form compounds containing 3, i.e., in the 3-atom groups (e.g., , , , etc.) or 5, i.e., in the 5-atom groups (e.g., , , , etc.), equivalents of the attached elements. According to him, this is the manner in which their affinities are best satisfied, and by following these examples and postulates, he declares how obvious it is that This “combining power” was afterwards called quantivalence or valency (and valence by American chemists). In 1857 August Kekulé proposed fixed valences for many elements, such as 4 for carbon, and used them to propose structural formulas for many organic molecules, which are still accepted today. Most 19th-century chemists defined the valence of an element as the number of its bonds without distinguishing different types of valence or of bond. However, in 1893 Alfred Werner described
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that c ...
coordination complex A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as ''ligands'' or complexing agents. Many ...
es such as , in which he distinguished ''principal'' and ''subsidiary'' valences (German: 'Hauptvalenz' and 'Nebenvalenz'), corresponding to the modern concepts of
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. ...
and
coordination number In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central i ...
respectively. For main-group elements, in 1904 Richard Abegg considered ''positive'' and ''negative'' valences (maximal and minimal oxidation states), and proposed Abegg's rule to the effect that their difference is often 8.


Electrons and valence

The Rutherford model of the nuclear atom (1911) showed that the exterior of an atom is occupied by
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary partic ...
s, which suggests that electrons are responsible for the interaction of atoms and the formation of chemical bonds. In 1916,
Gilbert N. Lewis Gilbert Newton Lewis (October 23 or October 25, 1875 – March 23, 1946) was an American physical chemist and a Dean of the College of Chemistry at University of California, Berkeley. Lewis was best known for his discovery of the covalent bond a ...
explained valence and chemical bonding in terms of a tendency of (main-group) atoms to achieve a stable octet of 8 valence-shell electrons. According to Lewis, covalent bonding leads to octets by the sharing of electrons, and ionic bonding leads to octets by the transfer of electrons from one atom to the other. The term covalence is attributed to Irving Langmuir, who stated in 1919 that "the number of pairs of
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary partic ...
s which any given atom shares with the adjacent atoms is called the ''covalence'' of that atom". The prefix ''co-'' means "together", so that a co-valent bond means that the atoms share a valence. Subsequent to that, it is now more common to speak of '' covalent bonds'' rather than ''valence'', which has fallen out of use in higher-level work from the advances in the theory of chemical bonding, but it is still widely used in elementary studies, where it provides a
heuristic A heuristic (; ), or heuristic technique, is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediat ...
introduction to the subject. In the 1930s,
Linus Pauling Linus Carl Pauling (; February 28, 1901August 19, 1994) was an American chemist, biochemist, chemical engineer, peace activist, author, and educator. He published more than 1,200 papers and books, of which about 850 dealt with scientific top ...
proposed that there are also polar covalent bonds, which are intermediate between covalent and ionic, and that the degree of ionic character depends on the difference of
electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
of the two bonded atoms. Pauling also considered hypervalent molecules, in which main-group elements have apparent valences greater than the maximal of 4 allowed by the octet rule. For example, in the
sulfur hexafluoride Sulfur hexafluoride or sulphur hexafluoride ( British spelling) is an inorganic compound with the formula SF6. It is a colorless, odorless, non- flammable, and non-toxic gas. has an octahedral geometry, consisting of six fluorine atoms attach ...
molecule (), Pauling considered that the sulfur forms 6 true two-electron bonds using sp3d2 hybrid atomic orbitals, which combine one s, three p and two d orbitals. However more recently, quantum-mechanical calculations on this and similar molecules have shown that the role of d orbitals in the bonding is minimal, and that the molecule should be described as having 6 polar covalent (partly ionic) bonds made from only four orbitals on sulfur (one s and three p) in accordance with the octet rule, together with six orbitals on the fluorines. Similar calculations on transition-metal molecules show that the role of p orbitals is minor, so that one s and five d orbitals on the metal are sufficient to describe the bonding.


Common valences

For elements in the main groups of the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ...
, the valence can vary between 1 and 7. Many elements have a common valence related to their position in the periodic table, and nowadays this is rationalised by the
octet rule The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The ...
. The Greek/Latin numeral prefixes (mono-/uni-, di-/bi-, tri-/ter-, and so on) are used to describe ions in the charge states 1, 2, 3, and so on, respectively. ''Polyvalence'' or ''multivalence'' refers to
species In biology, a species is the basic unit of Taxonomy (biology), classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of ...
that are not restricted to a specific number of valence bonds. Species with a single charge are univalent (monovalent). For example, the
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
is a univalent or monovalent cation, whereas the cation is a divalent cation, and the cation is a trivalent cation. Unlike Cs and Ca, Fe can also exist in other charge states, notably 2+ and 4+, and is thus known as a multivalent (polyvalent) ion. Transition metals and metals to the right are typically multivalent but there is no simple pattern predicting their valency. † The same adjectives are also used in medicine to refer to vaccine valence, with the slight difference that in the latter sense, ''quadri-'' is more common than ''tetra-''. ‡ As demonstrated by hit counts in Google web search and Google Books search corpora (accessed 2017). § A few other forms can be found in large English-language corpora (for example, ''*quintavalent, *quintivalent, *decivalent''), but they are not the conventionally established forms in English and thus are not entered in major dictionaries.


Valence versus oxidation state

Because of the ambiguity of the term valence,The Free Dictionary
''valence''
/ref> other notations are currently preferred. Beside the system of
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. ...
s (also called ''oxidation numbers'') as used in
Stock nomenclature Stock nomenclature for inorganic compounds is a widely used system of chemical nomenclature developed by the German chemist Alfred Stock and first published in 1919. In the "Stock system", the oxidation states of some or all of the elements in a ...
for coordination compounds, and the lambda notation, as used in the IUPAC nomenclature of inorganic chemistry,
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. ...
is a more clear indication of the electronic state of atoms in a molecule. The
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
state of an atom in a molecule gives the number of
valence electron In chemistry and physics, a valence electron is an electron in the outer shell associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed. In a single covalent bond, a shared pair f ...
s it has gained or lost. In contrast to the valency number, the oxidation state can be positive (for an electropositive atom) or negative (for an electronegative atom). Elements in a high oxidation state have an oxidation state higher than +4, and also, elements in a high valence state ( hypervalent elements) have a valence higher than 4. For example, in
perchlorate A perchlorate is a chemical compound containing the perchlorate ion, . The majority of perchlorates are commercially produced salts. They are mainly used as oxidizers for pyrotechnic devices and to control static electricity in food packaging. ...
s ,
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is ...
has 7 valence bonds (thus, it is heptavalent, in other words, it has valence 7), and it has oxidation state +7; in
ruthenium tetroxide Ruthenium tetroxide is the inorganic compound with the formula RuO4. It is a yellow volatile solid that melts near room temperature. It has the odor of ozone. Samples are typically black due to impurities. The analogous OsO4 is more widely used a ...
,
ruthenium Ruthenium is a chemical element with the symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is inert to most other chemic ...
has 8 valence bonds (thus, it is octavalent, in other words, it has valence 8), and it has oxidation state +8. In some scenarios, the difference between valence and oxidation state arises. Valence and oxidation state of the same atom may not be the same. For example, in
disulfur decafluoride Disulfur decafluoride is a chemical compound with the formula . It was discovered in 1934 by Kenneth Denbigh, Denbigh and Whytlaw-Gray. Each sulfur atom of the molecule is octahedral, and surrounded by five fluorine atoms and one sulfur atom. The ...
molecule , each
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formul ...
atom has 6 valence bonds (5 single bonds with fluorine atoms and 1 single bond with sulfur atom), thus, each sulfur atom is hexavalent, in other words, it has valence 6, but has oxidation state +5. In
dioxygen There are several known allotropes of oxygen. The most familiar is molecular oxygen (O2), present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone (O3). Others are: ...
molecule , each
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as we ...
atom has 2 valence bonds, thus, each oxygen atom is divalent, in other words, it has valence 2, but has oxidation state 0. In
acetylene Acetylene ( systematic name: ethyne) is the chemical compound with the formula and structure . It is a hydrocarbon and the simplest alkyne. This colorless gas is widely used as a fuel and a chemical building block. It is unstable in its pur ...
, each
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon makes ...
atom has 4 valence bonds (1 single bond with
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
atom and 3 single bonds with carbon atom), thus, each carbon atom is tetravalent, in other words, it has valence 4, but has oxidation state −1.


Examples

* The
perchlorate A perchlorate is a chemical compound containing the perchlorate ion, . The majority of perchlorates are commercially produced salts. They are mainly used as oxidizers for pyrotechnic devices and to control static electricity in food packaging. ...
ion is monovalent, in other words, it has valence 1.
** Valences may also be different from absolute values of oxidation states due to different polarity of bonds. For example, in dichloromethane, , carbon has valence 4 but oxidation state 0.
*** Iron oxides appear in a
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns t ...
, so no typical molecule can be identified. In ferrous oxide, Fe has oxidation state +2; in ferric oxide, oxidation state +3.


"Maximum number of bonds" definition

Frankland took the view that the valence (he used the term "atomicity") of an element was a single value that corresponded to the maximum value observed. The number of unused valencies on atoms of what are now called the p-block elements is generally even, and Frankland suggested that the unused valencies saturated one another. For example, nitrogen has a maximum valence of 5, in forming ammonia two valencies are left unattached; sulfur has a maximum valence of 6, in forming hydrogen sulphide four valencies are left unattached. The
International Union of Pure and Applied Chemistry The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
(IUPAC) has made several attempts to arrive at an unambiguous definition of valence. The current version, adopted in 1994: :''The maximum number of univalent atoms (originally hydrogen or chlorine atoms) that may combine with an atom of the element under consideration, or with a fragment, or for which an atom of this element can be substituted.''
Hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
and
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is ...
were originally used as examples of univalent atoms, because of their nature to form only one single bond. Hydrogen has only one ''valence electron'' and can form only one bond with an atom that has an incomplete outer shell. Chlorine has seven ''valence electrons'' and can form only one bond with an atom that donates a ''valence electron'' to complete chlorine's outer shell. However, chlorine can also have oxidation states from +1 to +7 and can form more than one bond by donating ''valence electrons''. Hydrogen has only one valence electron, but it can form bonds with more than one atom. In the bifluoride ion (), for example, it forms a three-center four-electron bond with two fluoride atoms: : Another example is the
three-center two-electron bond A three-center two-electron (3c–2e) bond is an electron-deficient chemical bond where three atoms share two electrons. The combination of three atomic orbitals form three molecular orbitals: one bonding, one ''non''-bonding, and one ''anti''- ...
in diborane ().


Maximum valences of the elements

Maximum valences for the elements are based on the data from
list of oxidation states of the elements In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. Co ...
.


See also

* Abegg's rule *
Oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. ...


References

{{DEFAULTSORT:Valence (Chemistry) Chemical bonding Chemical properties Dimensionless numbers of chemistry