Church–Turing Thesis
   HOME

TheInfoList



OR:

In
computability theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since e ...
, the Church–Turing thesis (also known as computability thesis, the Turing–Church thesis, the Church–Turing conjecture, Church's thesis, Church's conjecture, and Turing's thesis) is a
thesis A thesis ( : theses), or dissertation (abbreviated diss.), is a document submitted in support of candidature for an academic degree or professional qualification presenting the author's research and findings.International Standard ISO 7144: ...
about the nature of
computable function Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do ...
s. It states that a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
on the
natural numbers In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
can be calculated by an
effective method In logic, mathematics and computer science, especially metalogic and computability theory, an effective method Hunter, Geoffrey, ''Metalogic: An Introduction to the Metatheory of Standard First-Order Logic'', University of California Press, 1971 ...
if and only if it is computable by a
Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algori ...
. The thesis is named after American mathematician
Alonzo Church Alonzo Church (June 14, 1903 – August 11, 1995) was an American mathematician, computer scientist, logician, philosopher, professor and editor who made major contributions to mathematical logic and the foundations of theoretical computer scienc ...
and the British mathematician
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical com ...
. Before the precise definition of computable function, mathematicians often used the informal term
effectively calculable In logic, mathematics and computer science, especially metalogic and computability theory, an effective method Hunter, Geoffrey, ''Metalogic: An Introduction to the Metatheory of Standard First-Order Logic'', University of California Press, 1971 ...
to describe functions that are computable by paper-and-pencil methods. In the 1930s, several independent attempts were made to formalize the notion of
computability Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is close ...
: * In 1933,
Kurt Gödel Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imme ...
, with
Jacques Herbrand Jacques Herbrand (12 February 1908 – 27 July 1931) was a French mathematician. Although he died at age 23, he was already considered one of "the greatest mathematicians of the younger generation" by his professors Helmut Hasse and Richard Cour ...
, formalized the definition of the class of
general recursive function In mathematical logic and computer science, a general recursive function, partial recursive function, or μ-recursive function is a partial function from natural numbers to natural numbers that is "computable" in an intuitive sense – as well as i ...
s: the smallest class of functions (with arbitrarily many arguments) that is closed under
composition Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography *Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include v ...
,
recursion Recursion (adjective: ''recursive'') occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics ...
, and minimization, and includes
zero 0 (zero) is a number representing an empty quantity. In place-value notation Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or ...
,
successor Successor may refer to: * An entity that comes after another (see Succession (disambiguation)) Film and TV * ''The Successor'' (film), a 1996 film including Laura Girling * ''The Successor'' (TV program), a 2007 Israeli television program Musi ...
, and all projections. * In 1936,
Alonzo Church Alonzo Church (June 14, 1903 – August 11, 1995) was an American mathematician, computer scientist, logician, philosopher, professor and editor who made major contributions to mathematical logic and the foundations of theoretical computer scienc ...
created a method for defining functions called the
λ-calculus Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation tha ...
. Within λ-calculus, he defined an encoding of the natural numbers called the
Church numerals In mathematics, Church encoding is a means of representing data and operators in the lambda calculus. The Church numerals are a representation of the natural numbers using lambda notation. The method is named for Alonzo Church, who first encoded ...
. A function on the natural numbers is called λ-computable if the corresponding function on the Church numerals can be represented by a term of the λ-calculus. * Also in 1936, before learning of Church's work,
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical com ...
created a theoretical model for machines, now called Turing machines, that could carry out calculations from inputs by manipulating symbols on a tape. Given a suitable encoding of the natural numbers as sequences of symbols, a function on the natural numbers is called
Turing computable Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can d ...
if some Turing machine computes the corresponding function on encoded natural numbers. Church,
Kleene Stephen Cole Kleene ( ; January 5, 1909 – January 25, 1994) was an American mathematician. One of the students of Alonzo Church, Kleene, along with Rózsa Péter, Alan Turing, Emil Post, and others, is best known as a founder of the branch of ...
, and Turing proved that these three formally defined classes of computable functions coincide: a function is λ-computable if and only if it is Turing computable, and if and only if it is ''general recursive''. This has led mathematicians and computer scientists to believe that the concept of computability is accurately characterized by these three equivalent processes. Other formal attempts to characterize computability have subsequently strengthened this belief (see below). On the other hand, the Church–Turing thesis states that the above three formally-defined classes of computable functions coincide with the ''informal'' notion of an effectively calculable function. Although the thesis has near-universal acceptance, it cannot be formally proven, as the concept of effective calculability is only informally defined. Since its inception, variations on the original thesis have arisen, including statements about what can physically be realized by a computer in our universe (
physical Church-Turing thesis Physical may refer to: *Physical examination In a physical examination, medical examination, or clinical examination, a medical practitioner examines a patient for any possible medical signs or symptoms of a medical condition. It generally co ...
) and what can be efficiently computed ( Church–Turing thesis (complexity theory)). These variations are not due to Church or Turing, but arise from later work in complexity theory and
digital physics Digital physics is a speculative idea that the universe can be conceived of as a vast, digital computation device, or as the output of a deterministic or probabilistic computer program. The hypothesis that the universe is a digital computer was p ...
. The thesis also has implications for the
philosophy of mind Philosophy of mind is a branch of philosophy that studies the ontology and nature of the mind and its relationship with the body. The mind–body problem is a paradigmatic issue in philosophy of mind, although a number of other issues are addre ...
(see below).


Statement in Church's and Turing's words

addresses the notion of "effective computability" as follows: "Clearly the existence of CC and RC (Church's and Rosser's proofs) presupposes a precise definition of 'effective'. 'Effective method' is here used in the rather special sense of a method each step of which is precisely predetermined and which is certain to produce the answer in a finite number of steps". Thus the adverb-adjective "effective" is used in a sense of "1a: producing a decided, decisive, or desired effect", and "capable of producing a result". In the following, the words "effectively calculable" will mean "produced by any intuitively 'effective' means whatsoever" and "effectively computable" will mean "produced by a Turing-machine or equivalent mechanical device". Turing's "definitions" given in a footnote in his 1938 Ph.D. thesis '' Systems of Logic Based on Ordinals'', supervised by Church, are virtually the same:
We shall use the expression "computable function" to mean a function calculable by a machine, and let "effectively calculable" refer to the intuitive idea without particular identification with any one of these definitions.
The thesis can be stated as: ''Every effectively calculable function is a computable function''. Church also stated that "No computational procedure will be considered as an algorithm unless it can be represented as a Turing Machine". Turing stated it this way:
It was stated ... that "a function is effectively calculable if its values can be found by some purely mechanical process". We may take this literally, understanding that by a purely mechanical process one which could be carried out by a machine. The development ... leads to ... an identification of computability with effective calculability.
is the footnote quoted above. In linguistics, a copula (plural: copulas or copulae; abbreviated ) is a word or phrase that links the subject of a sentence to a subject complement, such as the word ''is'' in the sentence "The sky is blue" or the phrase ''was not being'' i ...
ref name="Turing_1938_thesis_p8"/>


History

One of the important problems for logicians in the 1930s was the
Entscheidungsproblem In mathematics and computer science, the ' (, ) is a challenge posed by David Hilbert and Wilhelm Ackermann in 1928. The problem asks for an algorithm that considers, as input, a statement and answers "Yes" or "No" according to whether the state ...
of
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many a ...
and
Wilhelm Ackermann Wilhelm Friedrich Ackermann (; ; 29 March 1896 – 24 December 1962) was a German mathematician and logician best known for his work in mathematical logic and the Ackermann function, an important example in the theory of computation. Biography ...
, which asked whether there was a mechanical procedure for separating mathematical truths from mathematical falsehoods. This quest required that the notion of "algorithm" or "effective calculability" be pinned down, at least well enough for the quest to begin. But from the very outset
Alonzo Church Alonzo Church (June 14, 1903 – August 11, 1995) was an American mathematician, computer scientist, logician, philosopher, professor and editor who made major contributions to mathematical logic and the foundations of theoretical computer scienc ...
's attempts began with a debate that continues to this day. the notion of "effective calculability" to be (i) an "axiom or axioms" in an axiomatic system, (ii) merely a ''definition'' that "identified" two or more propositions, (iii) an ''empirical hypothesis'' to be verified by observation of natural events, or (iv) just ''a proposal'' for the sake of argument (i.e. a "thesis").


Circa 1930–1952

In the course of studying the problem, Church and his student
Stephen Kleene Stephen Cole Kleene ( ; January 5, 1909 – January 25, 1994) was an American mathematician. One of the students of Alonzo Church, Kleene, along with Rózsa Péter, Alan Turing, Emil Post, and others, is best known as a founder of the branch of ...
introduced the notion of λ-definable functions, and they were able to prove that several large classes of functions frequently encountered in number theory were λ-definable. The debate began when Church proposed to Gödel that one should define the "effectively computable" functions as the λ-definable functions. Gödel, however, was not convinced and called the proposal "thoroughly unsatisfactory". Rather, in correspondence with Church (c. 1934–1935), Gödel proposed ''axiomatizing'' the notion of "effective calculability"; indeed, in a 1935 letter to Kleene, Church reported that: But Gödel offered no further guidance. Eventually, he would suggest his recursion, modified by Herbrand's suggestion, that Gödel had detailed in his 1934 lectures in Princeton NJ (Kleene and Rosser transcribed the notes). But he did not think that the two ideas could be satisfactorily identified "except heuristically". Next, it was necessary to identify and prove the equivalence of two notions of effective calculability. Equipped with the λ-calculus and "general" recursion, Kleene with help of Church and
J. Barkley Rosser John Barkley Rosser Sr. (December 6, 1907 – September 5, 1989) was an American logician, a student of Alonzo Church, and known for his part in the Church–Rosser theorem, in lambda calculus. He also developed what is now called the "Rosser siev ...
produced proofs (1933, 1935) to show that the two calculi are equivalent. Church subsequently modified his methods to include use of Herbrand–Gödel recursion and then proved (1936) that the
Entscheidungsproblem In mathematics and computer science, the ' (, ) is a challenge posed by David Hilbert and Wilhelm Ackermann in 1928. The problem asks for an algorithm that considers, as input, a statement and answers "Yes" or "No" according to whether the state ...
is unsolvable: there is no algorithm that can determine whether a
well formed formula In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language. A formal language can b ...
has a
beta normal form In the lambda calculus, a term is in beta normal form if no ''beta reduction'' is possible. A term is in beta-eta normal form if neither a beta reduction nor an ''eta reduction'' is possible. A term is in head normal form if there is no ''beta-red ...
. Many years later in a letter to Davis (c. 1965), Gödel said that "he was, at the time of these
934 Year 934 ( CMXXXIV) was a common year starting on Wednesday (link will display the full calendar) of the Julian calendar. Events By place Byzantine Empire * Spring and Summer – The Hungarians make an alliance with the Pecheneg ...
lectures, not at all convinced that his concept of recursion comprised all possible recursions". By 1963–1964 Gödel would disavow Herbrand–Gödel recursion and the λ-calculus in favor of the Turing machine as the definition of "algorithm" or "mechanical procedure" or "formal system". A hypothesis leading to a natural law?: In late 1936
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical com ...
's paper (also proving that the
Entscheidungsproblem In mathematics and computer science, the ' (, ) is a challenge posed by David Hilbert and Wilhelm Ackermann in 1928. The problem asks for an algorithm that considers, as input, a statement and answers "Yes" or "No" according to whether the state ...
is unsolvable) was delivered orally, but had not yet appeared in print.. On the other hand,
Emil Post Emil Leon Post (; February 11, 1897 – April 21, 1954) was an American mathematician and logician. He is best known for his work in the field that eventually became known as computability theory. Life Post was born in Augustów, Suwałki Gove ...
's 1936 paper had appeared and was certified independent of Turing's work. Post strongly disagreed with Church's "identification" of effective computability with the λ-calculus and recursion, stating: Rather, he regarded the notion of "effective calculability" as merely a "working hypothesis" that might lead by
inductive reasoning Inductive reasoning is a method of reasoning in which a general principle is derived from a body of observations. It consists of making broad generalizations based on specific observations. Inductive reasoning is distinct from ''deductive'' re ...
to a "
natural law Natural law ( la, ius naturale, ''lex naturalis'') is a system of law based on a close observation of human nature, and based on values intrinsic to human nature that can be deduced and applied independently of positive law (the express enacte ...
" rather than by "a definition or an axiom". This idea was "sharply" criticized by Church. Thus Post in his 1936 paper was also discounting
Kurt Gödel Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imme ...
's suggestion to Church in 1934–1935 that the thesis might be expressed as an axiom or set of axioms.Sieg 1997:160. Turing adds another definition, Rosser equates all three: Within just a short time, Turing's 1936–1937 paper "On Computable Numbers, with an Application to the Entscheidungsproblem" appeared. In it he stated another notion of "effective computability" with the introduction of his a-machines (now known as the
Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algori ...
abstract computational model). And in a proof-sketch added as an "Appendix" to his 1936–1937 paper, Turing showed that the classes of functions defined by λ-calculus and Turing machines coincided. Church was quick to recognise how compelling Turing's analysis was. In his review of Turing's paper he made clear that Turing's notion made "the identification with effectiveness in the ordinary (not explicitly defined) sense evident immediately". In a few years (1939) Turing would propose, like Church and Kleene before him, that ''his'' formal definition of mechanical computing agent was the correct one. Thus, by 1939, both Church (1934) and Turing (1939) had individually proposed that their "formal systems" should be ''definitions'' of "effective calculability"; neither framed their statements as ''theses''. Rosser (1939) formally identified the three notions-as-definitions: Kleene proposes ''Thesis I'': This left the overt expression of a "thesis" to Kleene. In 1943 Kleene proposed his "Thesis I": in . Footnotes omitted. The Church–Turing Thesis: Stephen Kleene, in ''Introduction To Metamathematics'', finally goes on to formally name "Church's Thesis" and "Turing's Thesis", using his theory of recursive realizability. Kleene having switched from presenting his work in the terminology of Church-Kleene lambda definability, to that of Gödel-Kleene recursiveness (partial recursive functions). In this transition, Kleene modified Gödel's general recursive functions to allow for proofs of the unsolvability of problems in the Intuitionism of E. J. Brouwer. In his graduate textbook on logic, "Church's thesis" is introduced and basic mathematical results are demonstrated to be unrealizable. Next, Kleene proceeds to present "Turing's thesis", where results are shown to be uncomputable, using his simplified derivation of a Turing machine based on the work of Emil Post. Both theses are proven equivalent by use of "Theorem XXX". Kleene, finally, uses for the first time the term the "Church-Turing thesis" in a section in which he helps to give clarifications to concepts in Alan Turing's paper "The Word Problem in Semi-Groups with Cancellation", as demanded in a critique from William Boone.


Later developments

An attempt to understand the notion of "effective computability" better led
Robin Gandy Robin Oliver Gandy (22 September 1919 – 20 November 1995) was a British mathematician and logician. He was a friend, student, and associate of Alan Turing, having been supervised by Turing during his PhD at the University of Cambridge, where ...
(Turing's student and friend) in 1980 to analyze ''machine'' computation (as opposed to human-computation acted out by a Turing machine). Gandy's curiosity about, and analysis of,
cellular automata A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessel ...
(including
Conway's game of life The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is a zero-player game, meaning that its evolution is determined by its initial state, requiring no furthe ...
), parallelism, and crystalline automata, led him to propose four "principles (or constraints) ... which it is argued, any machine must satisfy". His most-important fourth, "the principle of causality" is based on the "finite velocity of propagation of effects and signals; contemporary physics rejects the possibility of instantaneous action at a distance". From these principles and some additional constraints—(1a) a lower bound on the linear dimensions of any of the parts, (1b) an upper bound on speed of propagation (the velocity of light), (2) discrete progress of the machine, and (3) deterministic behavior—he produces a theorem that "What can be calculated by a device satisfying principles I–IV is computable." In the late 1990s
Wilfried Sieg Wilfried is a masculine German given name derived from Germanic languages, Germanic roots meaning "will" and "peace" (''Wille'' and ''Frieden'' in German). The English spelling is Wilfrid. Wilfred (given name), Wilfred and Wifred (also Wifredo) are ...
analyzed Turing's and Gandy's notions of "effective calculability" with the intent of "sharpening the informal notion, formulating its general features axiomatically, and investigating the axiomatic framework". In his 1997 and 2002 work Sieg presents a series of constraints on the behavior of a ''computor''—"a human computing agent who proceeds mechanically". These constraints reduce to: *"(B.1) (Boundedness) There is a fixed bound on the number of symbolic configurations a computor can immediately recognize. *"(B.2) (Boundedness) There is a fixed bound on the number of internal states a computor can be in. *"(L.1) (Locality) A computor can change only elements of an observed symbolic configuration. *"(L.2) (Locality) A computor can shift attention from one symbolic configuration to another one, but the new observed configurations must be within a bounded distance of the immediately previously observed configuration. *"(D) (Determinacy) The immediately recognizable (sub-)configuration determines uniquely the next computation step (and id nstantaneous description"; stated another way: "A computor's internal state together with the observed configuration fixes uniquely the next computation step and the next internal state." The matter remains in active discussion within the academic community.


The thesis as a definition

The thesis can be viewed as nothing but an ordinary mathematical definition. Comments by Gödel on the subject suggest this view, e.g. "the correct definition of mechanical computability was established beyond any doubt by Turing". The case for viewing the thesis as nothing more than a definition is made explicitly by Robert I. Soare, where it is also argued that Turing's definition of computability is no less likely to be correct than the epsilon-delta definition of a
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
.


Success of the thesis

Other formalisms (besides recursion, the
λ-calculus Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation tha ...
, and the
Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algori ...
) have been proposed for describing effective calculability/computability. Kleene (1952) adds to the list the functions "''reckonable'' in the system S1" of
Kurt Gödel Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imme ...
1936, and
Emil Post Emil Leon Post (; February 11, 1897 – April 21, 1954) was an American mathematician and logician. He is best known for his work in the field that eventually became known as computability theory. Life Post was born in Augustów, Suwałki Gove ...
's (1943, 1946) "''canonical'' lso called ''normal''''systems''". In the 1950s Hao Wang and Martin Davis greatly simplified the one-tape Turing-machine model (see
Post–Turing machine A Post–Turing machineRajendra Kumar, ''Theory of Automata'', Tata McGraw-Hill Education, 2010, p. 343. is a "program formulation" of a type of Turing machine, comprising a variant of Emil Post's Turing-equivalent model of computation. Post's mode ...
).
Marvin Minsky Marvin Lee Minsky (August 9, 1927 – January 24, 2016) was an American cognitive and computer scientist concerned largely with research of artificial intelligence (AI), co-founder of the Massachusetts Institute of Technology's AI laboratory, ...
expanded the model to two or more tapes and greatly simplified the tapes into "up-down counters", which Melzak and Lambek further evolved into what is now known as the
counter machine A counter machine is an abstract machine used in a formal logic and theoretical computer science to model of computation, model computation. It is the most primitive of the four types of register machines. A counter machine comprises a set of one o ...
model. In the late 1960s and early 1970s researchers expanded the counter machine model into the
register machine In mathematical logic and theoretical computer science a register machine is a generic class of abstract machines used in a manner similar to a Turing machine. All the models are Turing equivalent. Overview The register machine gets its name fro ...
, a close cousin to the modern notion of the
computer A computer is a machine that can be programmed to Execution (computing), carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as C ...
. Other models include
combinatory logic Combinatory logic is a notation to eliminate the need for quantified variables in mathematical logic. It was introduced by Moses Schönfinkel and Haskell Curry, and has more recently been used in computer science as a theoretical model of comput ...
and
Markov algorithm In theoretical computer science, a Markov algorithm is a string rewriting system that uses grammar-like rules to operate on strings of symbols. Markov algorithms have been shown to be Turing-complete, which means that they are suitable as a gener ...
s. Gurevich adds the
pointer machine In theoretical computer science a pointer machine is an "atomistic" ''abstract computational machine'' model akin to the random-access machine. A pointer algorithm is an algorithm restricted to the pointer machine model. Depending on the type, a ...
model of Kolmogorov and Uspensky (1953, 1958): "... they just wanted to ... convince themselves that there is no way to extend the notion of computable function." All these contributions involve proofs that the models are computationally equivalent to the Turing machine; such models are said to be
Turing complete Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical co ...
. Because all these different attempts at formalizing the concept of "effective calculability/computability" have yielded equivalent results, it is now generally assumed that the Church–Turing thesis is correct. In fact, Gödel (1936) proposed something stronger than this; he observed that there was something "absolute" about the concept of "reckonable in S1":


Informal usage in proofs

Proofs in computability theory often invoke the Church–Turing thesis in an informal way to establish the computability of functions while avoiding the (often very long) details which would be involved in a rigorous, formal proof. To establish that a function is computable by Turing machine, it is usually considered sufficient to give an informal English description of how the function can be effectively computed, and then conclude "by the Church–Turing thesis" that the function is Turing computable (equivalently, partial recursive). Dirk van Dalen gives the following example for the sake of illustrating this informal use of the Church–Turing thesis: In order to make the above example completely rigorous, one would have to carefully construct a Turing machine, or λ-function, or carefully invoke recursion axioms, or at best, cleverly invoke various theorems of computability theory. But because the computability theorist believes that Turing computability correctly captures what can be computed effectively, and because an effective procedure is spelled out in English for deciding the set B, the computability theorist accepts this as proof that the set is indeed recursive.


Variations

The success of the Church–Turing thesis prompted variations of the thesis to be proposed. For example, the physical Church–Turing thesis states: "All physically computable functions are Turing-computable." The Church–Turing thesis says nothing about the efficiency with which one model of computation can simulate another. It has been proved for instance that a (multi-tape)
universal Turing machine In computer science, a universal Turing machine (UTM) is a Turing machine that can simulate an arbitrary Turing machine on arbitrary input. The universal machine essentially achieves this by reading both the description of the machine to be simu ...
only suffers a logarithmic slowdown factor in simulating any Turing machine. A variation of the Church–Turing thesis addresses whether an arbitrary but "reasonable" model of computation can be efficiently simulated. This is called the feasibility thesis, also known as the (classical) complexity-theoretic Church–Turing thesis or the extended Church–Turing thesis, which is not due to Church or Turing, but rather was realized gradually in the development of complexity theory. It states: "A
probabilistic Turing machine In theoretical computer science, a probabilistic Turing machine is a non-deterministic Turing machine that chooses between the available transitions at each point according to some probability distribution. As a consequence, a probabilistic Turi ...
can efficiently simulate any realistic model of computation." The word 'efficiently' here means up to
polynomial-time reduction In computational complexity theory, a polynomial-time reduction is a method for solving one problem using another. One shows that if a hypothetical subroutine solving the second problem exists, then the first problem can be solved by transforming ...
s. This thesis was originally called computational complexity-theoretic Church–Turing thesis by Ethan Bernstein and
Umesh Vazirani Umesh Virkumar Vazirani is an Indian-American academic who is the Roger A. Strauch Professor of Electrical Engineering and Computer Science at the University of California, Berkeley, and the director of the Berkeley Quantum Computation Center. Hi ...
(1997). The complexity-theoretic Church–Turing thesis, then, posits that all 'reasonable' models of computation yield the same class of problems that can be computed in polynomial time. Assuming the conjecture that probabilistic polynomial time (
BPP BPP may refer to: Education * BPP Holdings, a holding company based in the United Kingdom * BPP Law School, a law school based in the United Kingdom and a constituent school of BPP University * BPP University, a private university based in the ...
) equals deterministic polynomial time ( P), the word 'probabilistic' is optional in the complexity-theoretic Church–Turing thesis. A similar thesis, called the invariance thesis, was introduced by Cees F. Slot and Peter van Emde Boas. It states: Reasonable' machines can simulate each other within a polynomially bounded overhead in time and a constant-factor overhead in space." The thesis originally appeared in a paper at STOC'84, which was the first paper to show that polynomial-time overhead and constant-space overhead could be ''simultaneously'' achieved for a simulation of a
Random Access Machine In computer science, random-access machine (RAM) is an abstract machine in the general class of register machines. The RAM is very similar to the counter machine but with the added capability of 'indirect addressing' of its registers. Like the cou ...
on a Turing machine. If BQP is shown to be a strict superset of
BPP BPP may refer to: Education * BPP Holdings, a holding company based in the United Kingdom * BPP Law School, a law school based in the United Kingdom and a constituent school of BPP University * BPP University, a private university based in the ...
, it would invalidate the complexity-theoretic Church–Turing thesis. In other words, there would be efficient
quantum algorithms In quantum computing, a quantum algorithm is an algorithm which runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical (or non-quantum) algorithm is a finite se ...
that perform tasks that do not have efficient probabilistic algorithms. This would not however invalidate the original Church–Turing thesis, since a quantum computer can always be simulated by a Turing machine, but it would invalidate the classical complexity-theoretic Church–Turing thesis for efficiency reasons. Consequently, the quantum complexity-theoretic Church–Turing thesis states: "A
quantum Turing machine A quantum Turing machine (QTM) or universal quantum computer is an abstract machine used to model the effects of a quantum computer. It provides a simple model that captures all of the power of quantum computation—that is, any quantum algori ...
can efficiently simulate any realistic model of computation." Eugene Eberbach and Peter Wegner claim that the Church–Turing thesis is sometimes interpreted too broadly, stating "Though ..Turing machines express the behavior of algorithms, the broader assertion that algorithms precisely capture what can be computed is invalid". They claim that forms of computation not captured by the thesis are relevant today, terms which they call super-Turing computation.


Philosophical implications

Philosophers have interpreted the Church–Turing thesis as having implications for the
philosophy of mind Philosophy of mind is a branch of philosophy that studies the ontology and nature of the mind and its relationship with the body. The mind–body problem is a paradigmatic issue in philosophy of mind, although a number of other issues are addre ...
.
B. Jack Copeland Brian John Copeland (born 1950) is Professor of Philosophy at the University of Canterbury, Christchurch, New Zealand, and author of books on the computing pioneer Alan Turing. Education Copeland was educated at the University of Oxford, obt ...
states that it is an open empirical question whether there are actual deterministic physical processes that, in the long run, elude simulation by a Turing machine; furthermore, he states that it is an open empirical question whether any such processes are involved in the working of the human brain. There are also some important open questions which cover the relationship between the Church–Turing thesis and physics, and the possibility of
hypercomputation Hypercomputation or super-Turing computation refers to models of computation that can provide outputs that are not Turing-computable. Super-Turing computing, introduced at the early 1990's by Hava Siegelmann, refers to such neurological inspired, b ...
. When applied to physics, the thesis has several possible meanings: #The universe is equivalent to a Turing machine; thus, computing non-recursive functions is physically impossible. This has been termed the strong Church–Turing thesis, or
Church–Turing–Deutsch principle In computer science and quantum physics, the Church–Turing–Deutsch principle (CTD principle) is a stronger, physical form of the Church–Turing thesis formulated by David Deutsch in 1985. The principle states that a universal computing d ...
, and is a foundation of
digital physics Digital physics is a speculative idea that the universe can be conceived of as a vast, digital computation device, or as the output of a deterministic or probabilistic computer program. The hypothesis that the universe is a digital computer was p ...
. #The universe is not equivalent to a Turing machine (i.e., the laws of physics are not Turing-computable), but incomputable physical events are not "harnessable" for the construction of a
hypercomputer Hypercomputation or super-Turing computation refers to models of computation that can provide outputs that are not Turing-computable. Super-Turing computing, introduced at the early 1990's by Hava Siegelmann, refers to such neurological inspired, ...
. For example, a universe in which physics involves random
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
, as opposed to
computable real In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers or the computable reals or recursive ...
s, would fall into this category. #The universe is a
hypercomputer Hypercomputation or super-Turing computation refers to models of computation that can provide outputs that are not Turing-computable. Super-Turing computing, introduced at the early 1990's by Hava Siegelmann, refers to such neurological inspired, ...
, and it is possible to build physical devices to harness this property and calculate non-recursive functions. For example, it is an open question whether all
quantum mechanical Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qua ...
events are Turing-computable, although it is known that rigorous models such as
quantum Turing machine A quantum Turing machine (QTM) or universal quantum computer is an abstract machine used to model the effects of a quantum computer. It provides a simple model that captures all of the power of quantum computation—that is, any quantum algori ...
s are equivalent to deterministic Turing machines. (They are not necessarily efficiently equivalent; see above.) John Lucas and
Roger Penrose Sir Roger Penrose (born 8 August 1931) is an English mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus fello ...
have suggested that the human mind might be the result of some kind of quantum-mechanically enhanced, "non-algorithmic" computation. There are many other technical possibilities which fall outside or between these three categories, but these serve to illustrate the range of the concept. Philosophical aspects of the thesis, regarding both physical and biological computers, are also discussed in Odifreddi's 1989 textbook on recursion theory.


Non-computable functions

One can formally define functions that are not computable. A well-known example of such a function is the Busy Beaver function. This function takes an input ''n'' and returns the largest number of symbols that a
Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algori ...
with ''n'' states can print before halting, when run with no input. Finding an upper bound on the busy beaver function is equivalent to solving the
halting problem In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. Alan Turing proved in 1936 that a g ...
, a problem known to be unsolvable by Turing machines. Since the busy beaver function cannot be computed by Turing machines, the Church–Turing thesis states that this function cannot be effectively computed by any method. Several computational models allow for the computation of (Church-Turing) non-computable functions. These are known as hypercomputers. Mark Burgin argues that super-recursive algorithms such as inductive Turing machines disprove the Church–Turing thesis. His argument relies on a definition of algorithm broader than the ordinary one, so that non-computable functions obtained from some inductive Turing machines are called computable. This interpretation of the Church–Turing thesis differs from the interpretation commonly accepted in computability theory, discussed above. The argument that super-recursive algorithms are indeed algorithms in the sense of the Church–Turing thesis has not found broad acceptance within the computability research community.


See also

*
Abstract machine An abstract machine is a computer science theoretical model that allows for a detailed and precise analysis of how a computer system functions. It is analogous to a mathematical function in that it receives inputs and produces outputs based on pr ...
* Church's thesis in constructive mathematics *
Church–Turing–Deutsch principle In computer science and quantum physics, the Church–Turing–Deutsch principle (CTD principle) is a stronger, physical form of the Church–Turing thesis formulated by David Deutsch in 1985. The principle states that a universal computing d ...
, which states that every
physical process Physical changes are changes affecting the form of a chemical substance, but not its chemical composition. Physical changes are used to separate mixtures into their component compounds, but can not usually be used to separate compounds into chem ...
can be simulated by a universal computing device *
Computability logic Computability logic (CoL) is a research program and mathematical framework for redeveloping logic as a systematic formal theory of computability, as opposed to classical logic which is a formal theory of truth. It was introduced and so named by G ...
*
Computability theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since e ...
* Decidability *
Hypercomputation Hypercomputation or super-Turing computation refers to models of computation that can provide outputs that are not Turing-computable. Super-Turing computing, introduced at the early 1990's by Hava Siegelmann, refers to such neurological inspired, b ...
*
Model of computation In computer science, and more specifically in computability theory and computational complexity theory, a model of computation is a model which describes how an output of a mathematical function is computed given an input. A model describes how ...
*
Oracle (computer science) In complexity theory and computability theory, an oracle machine is an abstract machine used to study decision problems. It can be visualized as a Turing machine with a black box, called an oracle, which is able to solve certain problems in a ...
* Super-recursive algorithm * Turing completeness


Footnotes


References

* * * * * * * * * * * * Includes original papers by Gödel, Church, Turing, Rosser, Kleene, and Post mentioned in this section. * * * * * * * Cited by . * * * * * * * Reprinted in #, ''The Undecidable'', p. 255ff. Kleene refined his definition of "general recursion" and proceeded in his chapter "12. Algorithmic theories" to posit "Thesis I" (p. 274); he would later repeat this thesis (in ) and name it "Church's Thesis" (i.e., the Church thesis). * * * * * * * * * * * * and (See also: ) *


External links

* . * —a comprehensive philosophical treatment of relevant issues. * *
special issue
(Vol. 28, No. 4, 1987) of the ''Notre Dame Journal of Formal Logic'' was devoted to the Church–Turing thesis. {{DEFAULTSORT:Church-Turing Thesis Computability theory Alan Turing Theory of computation Philosophy of computer science