Systems Of Logic Based On Ordinals
   HOME
*





Systems Of Logic Based On Ordinals
''Systems of Logic Based on Ordinals'' was the PhD dissertation of the mathematician Alan Turing. Turing's thesis is not about a new type of formal logic, nor was he interested in so-called ‘ranked logic’ systems derived from ordinal or relative numbering, in which comparisons can be made between truth-states on the basis of relative veracity. Instead, Turing investigated the possibility of resolving the Godelian incompleteness condition using Cantor's method of infinites. This condition can be stated thus—in all systems with finite sets of axioms, an exclusive-or condition applies to expressive power and provability; i.e. one can have power and no proof, or proof and no power, but not both. The thesis is an exploration of formal mathematical systems after Gödel's theorem. Gödel showed that for any formal system S powerful enough to represent arithmetic, there is a theorem G which is true but the system is unable to prove. G could be added as an additional axiom to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, structure, space, models, and change. History One of the earliest known mathematicians were Thales of Miletus (c. 624–c.546 BC); he has been hailed as the first true mathematician and the first known individual to whom a mathematical discovery has been attributed. He is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales' Theorem. The number of known mathematicians grew when Pythagoras of Samos (c. 582–c. 507 BC) established the Pythagorean School, whose doctrine it was that mathematics ruled the universe and whose motto was "All is number". It was the Pythagoreans who coined the term "mathematics", and with whom the study of mathematics for its own sake begins. The first woman mathematician recorded by history was Hypati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alan Turing
Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical computer science, providing a formalisation of the concepts of algorithm and computation with the Turing machine, which can be considered a model of a general-purpose computer. He is widely considered to be the father of theoretical computer science and artificial intelligence. Born in Maida Vale, London, Turing was raised in southern England. He graduated at King's College, Cambridge, with a degree in mathematics. Whilst he was a fellow at Cambridge, he published a proof demonstrating that some purely mathematical yes–no questions can never be answered by computation and defined a Turing machine, and went on to prove that the halting problem for Turing machines is undecidable. In 1938, he obtained his PhD from the Department of Mathemati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kurt Gödel
Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an immense effect upon scientific and philosophical thinking in the 20th century, a time when others such as Bertrand Russell,For instance, in their "Principia Mathematica' (''Stanford Encyclopedia of Philosophy'' edition). Alfred North Whitehead, and David Hilbert were using logic and set theory to investigate the foundations of mathematics, building on earlier work by the likes of Richard Dedekind, Georg Cantor and Frege. Gödel published his first incompleteness theorem in 1931 when he was 25 years old, one year after finishing his doctorate at the University of Vienna. The first incompleteness theorem states that for any ω-consistent recursive axiomatic system powerful enough to describe the arithmetic of the natural numbers (for example P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Georg Cantor
Georg Ferdinand Ludwig Philipp Cantor ( , ;  – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of one-to-one correspondence between the members of two sets, defined infinite and well-ordered sets, and proved that the real numbers are more numerous than the natural numbers. In fact, Cantor's method of proof of this theorem implies the existence of an infinity of infinities. He defined the cardinal and ordinal numbers and their arithmetic. Cantor's work is of great philosophical interest, a fact he was well aware of. Originally, Cantor's theory of transfinite numbers was regarded as counter-intuitive – even shocking. This caused it to encounter resistance from mathematical contemporaries such as Leopold Kronecker and Henri Poincaré and later from Hermann Weyl and L. E. J. Brouwer, while Ludwig Wittgenstein raised ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gödel's Incompleteness Theorems
Gödel's incompleteness theorems are two theorems of mathematical logic Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of for ... that are concerned with the limits of in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible. The first incompleteness theorem states that no consistency, consistent system of axioms whose theorems can be listed by an effective procedure (i.e., an algorithm) is capable of proving all truths about the arithmetic of natural numbers. For any such consistent formal system, there will always b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transfinite Induction
Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for all ordinals \alpha. Suppose that whenever P(\beta) is true for all \beta < \alpha, then P(\alpha) is also true. Then transfinite induction tells us that P is true for all ordinals. Usually the proof is broken down into three cases: * Zero case: Prove that P(0) is true. * Successor case: Prove that for any \alpha+1, P(\alpha+1) follows from P(\alpha) (and, if necessary, P(\beta) for all \beta < \alpha). * Limit case: Prove that for any

picture info

Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega that is greater than every natural number, along with ordinal numbers \omega + 1, \omega + 2, etc., which are even greater than \omega. A linear order such that every subset has a least element is called a well-order. The axiom of choice implies that every set can be well-ordered, and given two well-ordered sets, one is isomorphic to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alonzo Church
Alonzo Church (June 14, 1903 – August 11, 1995) was an American mathematician, computer scientist, logician, philosopher, professor and editor who made major contributions to mathematical logic and the foundations of theoretical computer science. He is best known for the lambda calculus, the Church–Turing thesis, proving the unsolvability of the Entscheidungsproblem, the Frege–Church ontology, and the Church–Rosser theorem. He also worked on philosophy of language (see e.g. Church 1970). Alongside his student Alan Turing, Church is considered one of the founders of computer science. Life Alonzo Church was born on June 14, 1903, in Washington, D.C., where his father, Samuel Robbins Church, was a Justice of the Peace and the judge of the Municipal Court for the District of Columbia. He was the grandson of Alonzo Webster Church (1829-1909), United States Senate Librarian from 1881-1901, and great grandson of Alonzo Church, a Professor of Mathematics and Astronomy and 6th Pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordinal Logic
In mathematics, ordinal logic is a logic associated with an ordinal number by recursively adding elements to a sequence of previous logics.Solomon Feferman, ''Turing in the Land of O(z)'' in "The universal Turing machine: a half-century survey" by Rolf Herken 1995 page 111''Concise Routledge encyclopedia of philosophy'' 2000 page 647 The concept was introduced in 1938 by Alan Turing in his PhD dissertation at Princeton in view of Gödel's incompleteness theorems Gödel's incompleteness theorems are two theorems of mathematical logic Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research i ....Alan Turing, ''Systems of Logic Based on Ordinals'' Proceedings London Mathematical Society Volumes 2–45, Issue 1, pp. 161–22/ref> While Gödel showed that every logic system suffers from some form of incompleteness, Turing focused on a method so that a complete system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Martin Davis (mathematician)
Martin David Davis (March 8, 1928 – January 1, 2023) was an American mathematician, known for his work on Hilbert's tenth problem.. Biography Davis's parents were Jewish immigrants to the US from Łódź, Poland, and married after they met again in New York City. Davis grew up in the Bronx, where his parents encouraged him to obtain a full education. Davis received his Ph.D. from Princeton University in 1950, where his advisor was Alonzo Church. During a research instructorship at the University of Illinois at Urbana-Champaign in the early 1950s, he joined the ''Control Systems Lab'' and became one of the early programmers of the ORDVAC. He was Professor Emeritus at New York University. Davis died on January 1, 2023, at the age of 94. Contributions Davis was the co-inventor of the Davis–Putnam algorithm and the DPLL algorithms. He is also known for his model of Post–Turing machines, and his work on Hilbert's tenth problem leading to the MRDP theorem. Awards and honors In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Oracle Machine
In complexity theory and computability theory, an oracle machine is an abstract machine used to study decision problems. It can be visualized as a Turing machine with a black box, called an oracle, which is able to solve certain problems in a single operation. The problem can be of any complexity class. Even undecidable problems, such as the halting problem, can be used. Oracles An oracle machine can be conceived as a Turing machine connected to an oracle. The oracle, in this context, is an entity capable of solving some problem, which for example may be a decision problem or a function problem. The problem does not have to be computable; the oracle is not assumed to be a Turing machine or computer program. The oracle is simply a "black box" that is able to produce a solution for any instance of a given computational problem: * A decision problem is represented as a set ''A'' of natural numbers (or strings). An instance of the problem is an arbitrary natural number (or string ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Computer Science
Theoretical computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory. It is difficult to circumscribe the theoretical areas precisely. The Association for Computing Machinery, ACM's ACM SIGACT, Special Interest Group on Algorithms and Computation Theory (SIGACT) provides the following description: History While logical inference and mathematical proof had existed previously, in 1931 Kurt Gödel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved. Information theory was added to the field with a 1948 mathematical theory of communication by Claude Shannon. In the same decade, Donald Hebb introduced a mathematical model of Hebbian learning, learning in the brain. With mounting biological data supporting this hypothesis with some modification, the fields of n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]