HOME
*



picture info

Function Composition
In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and are composed to yield a function that maps in domain to in codomain . Intuitively, if is a function of , and is a function of , then is a function of . The resulting ''composite'' function is denoted , defined by for all in . The notation is read as " of ", " after ", " circle ", " round ", " about ", " composed with ", " following ", " then ", or " on ", or "the composition of and ". Intuitively, composing functions is a chaining process in which the output of function feeds the input of function . The composition of functions is a special case of the composition of relations, sometimes also denoted by \circ. As a result, all properties of composition of relations are true of composition of functions, such as t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and mathematical analysis, analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of mathematical object, abstract objects and the use of pure reason to proof (mathematics), prove them. These objects consist of either abstraction (mathematics), abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of inference rule, deductive rules to already established results. These results include previously proved theorems, axioms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




One-to-one Function
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an is also called a . However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see for more details. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Full Transformation Semigroup
In algebra, a transformation semigroup (or composition semigroup) is a collection of transformations ( functions from a set to itself) that is closed under function composition. If it includes the identity function, it is a monoid, called a transformation (or composition) monoid. This is the semigroup analogue of a permutation group. A transformation semigroup of a set has a tautological semigroup action on that set. Such actions are characterized by being faithful, i.e., if two elements of the semigroup have the same action, then they are equal. An analogue of Cayley's theorem shows that any semigroup can be realized as a transformation semigroup of some set. In automata theory, some authors use the term ''transformation semigroup'' to refer to a semigroup semigroup action, acting faithfully on a set of "states" different from the semigroup's base set. There is Semigroup action#Transformation semigroups, a correspondence between the two notions. Transformation semigroups and mon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


De Rham Curve
In mathematics, a de Rham curve is a certain type of fractal curve named in honor of Georges de Rham. The Cantor function, Cesàro curve, Minkowski's question mark function, the Lévy C curve, the blancmange curve, and Koch curve are all special cases of the general de Rham curve. Construction Consider some complete metric space (M,d) (generally \mathbb2 with the usual euclidean distance), and a pair of contracting maps on M: :d_0:\ M \to M :d_1:\ M \to M. By the Banach fixed-point theorem, these have fixed points p_0 and p_1 respectively. Let ''x'' be a real number in the interval ,1/math>, having binary expansion :x = \sum_^\infty \frac, where each b_k is 0 or 1. Consider the map :c_x:\ M \to M defined by :c_x = d_ \circ d_ \circ \cdots \circ d_ \circ \cdots, where \circ denotes function composition. It can be shown that each c_x will map the common basin of attraction of d_0 and d_1 to a single point p_x in M. The collection of points p_x, parameterized by a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transformation Monoid
In algebra, a transformation semigroup (or composition semigroup) is a collection of transformations ( functions from a set to itself) that is closed under function composition. If it includes the identity function, it is a monoid, called a transformation (or composition) monoid. This is the semigroup analogue of a permutation group. A transformation semigroup of a set has a tautological semigroup action on that set. Such actions are characterized by being faithful, i.e., if two elements of the semigroup have the same action, then they are equal. An analogue of Cayley's theorem shows that any semigroup can be realized as a transformation semigroup of some set. In automata theory, some authors use the term ''transformation semigroup'' to refer to a semigroup acting faithfully on a set of "states" different from the semigroup's base set. There is a correspondence between the two notions. Transformation semigroups and monoids A transformation semigroup is a pair (''X'',''S''), w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monoid
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in category theory, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object. In computer science and computer programming, the set of strings built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finite-state machines. Trace monoids and history monoids provide a foundation for process calculi and concurrent computing. In theoretical computer science, the study of monoids is fundamental ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algebraic Structure
In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities, known as axioms, that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called ''scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structures of the same type (homomor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transformation (function)
In mathematics, a transformation is a function ''f'', usually with some geometrical underpinning, that maps a set ''X'' to itself, i.e. . Examples include linear transformations of vector spaces and geometric transformations, which include projective transformations, affine transformations, and specific affine transformations, such as rotations, reflections and translations. Partial transformations While it is common to use the term transformation for any function of a set into itself (especially in terms like " transformation semigroup" and similar), there exists an alternative form of terminological convention in which the term "transformation" is reserved only for bijections. When such a narrow notion of transformation is generalized to partial functions, then a partial transformation is a function ''f'': ''A'' → ''B'', where both ''A'' and ''B'' are subsets of some set ''X''. Algebraic structures The set of all transformations on a given base set, together with fun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Faà Di Bruno's Formula
Faà di Bruno's formula is an identity in mathematics generalizing the chain rule to higher derivatives. It is named after , although he was not the first to state or prove the formula. In 1800, more than 50 years before Faà di Bruno, the French mathematician Louis François Antoine Arbogast had stated the formula in a calculus textbook, which is considered to be the first published reference on the subject. Perhaps the most well-known form of Faà di Bruno's formula says that f(g(x))=\sum \frac\cdot f^(g(x))\cdot \prod_^n\left(g^(x)\right)^, where the sum is over all ''n''-tuples of nonnegative integers (''m''1, ..., ''m''''n'') satisfying the constraint 1\cdot m_1+2\cdot m_2+3\cdot m_3+\cdots+n\cdot m_n=n. Sometimes, to give it a memorable pattern, it is written in a way in which the coefficients that have the combinatorial interpretation discussed below are less explicit: : f(g(x)) =\sum \frac\cdot f^(g(x))\cdot \prod_^n\left(\frac\right)^. Combining the terms with the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Higher Derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the "instantaneous rate of change", the ratio of the instantaneous change in the dependent variable to that of the independent variable. Derivatives can be generalized to functions of several real variables. In this generalization, the derivat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chain Rule
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x)=f(g(x)) for every , then the chain rule is, in Lagrange's notation, :h'(x) = f'(g(x)) g'(x). or, equivalently, :h'=(f\circ g)'=(f'\circ g)\cdot g'. The chain rule may also be expressed in Leibniz's notation. If a variable depends on the variable , which itself depends on the variable (that is, and are dependent variables), then depends on as well, via the intermediate variable . In this case, the chain rule is expressed as :\frac = \frac \cdot \frac, and : \left.\frac\_ = \left.\frac\_ \cdot \left. \frac\_ , for indicating at which points the derivatives have to be evaluated. In integration, the counterpart to the chain rule is the substitution rule. Intuitive explanation Intuitively, the chain rule states that knowing the instantaneous rate of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the "instantaneous rate of change", the ratio of the instantaneous change in the dependent variable to that of the independent variable. Derivatives can be generalized to functions of several real variables. In this generalization, the de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]