Cometary Object Articles
   HOME

TheInfoList



OR:

A comet is an icy,
small Solar System body A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union (IAU) as follows: "All other objects, ...
that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or
coma A coma is a deep state of prolonged unconsciousness in which a person cannot be awakened, fails to respond normally to painful stimuli, light, or sound, lacks a normal wake-sleep cycle and does not initiate voluntary actions. Coma patients exhi ...
, and sometimes also a
tail The tail is the section at the rear end of certain kinds of animals’ bodies; in general, the term refers to a distinct, flexible appendage to the torso. It is the part of the body that corresponds roughly to the sacrum and coccyx in mammals, r ...
. These phenomena are due to the effects of
solar radiation Solar irradiance is the power per unit area (surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre (W/m ...
and the solar wind acting upon the nucleus of the comet.
Comet nuclei The nucleus is the solid, central part of a comet, once termed a ''dirty snowball'' or an ''icy dirtball''. A cometary nucleus is composed of rock, dust, and frozen gases. When heated by the Sun, the gases sublime and produce an atmosphere sur ...
range from a few hundred meters to tens of kilometers across and are composed of loose collections of ice, dust, and small rocky particles. The coma may be up to 15 times Earth's diameter, while the tail may stretch beyond one
astronomical unit The astronomical unit (symbol: au, or or AU) is a unit of length, roughly the distance from Earth to the Sun and approximately equal to or 8.3 light-minutes. The actual distance from Earth to the Sun varies by about 3% as Earth orbits t ...
. If sufficiently bright, a comet may be seen from Earth without the aid of a telescope and may
subtend In geometry, an angle is subtended by an arc, line segment or any other section of a curve when its two rays pass through the endpoints of that arc, line segment or curve section. Conversely, the arc, line segment or curve section confined with ...
an arc of 30° (60 Moons) across the sky. Comets have been observed and recorded since ancient times by many cultures and religions. Comets usually have highly
eccentric Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-center, in geometry * Eccentricity (graph theory) of a v ...
elliptical orbits, and they have a wide range of
orbital period The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets ...
s, ranging from several years to potentially several millions of years.
Short-period comet A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena are ...
s originate in the
Kuiper belt The Kuiper belt () is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 times ...
or its associated scattered disc, which lie beyond the orbit of
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times ...
.
Long-period comet A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena are ...
s are thought to originate in the Oort cloud, a spherical cloud of icy bodies extending from outside the Kuiper belt to halfway to the nearest star. Long-period comets are set in motion towards the Sun from the Oort cloud by gravitational perturbations caused by passing stars and the galactic tide. Hyperbolic comets may pass once through the inner Solar System before being flung to interstellar space. The appearance of a comet is called an apparition. Comets are distinguished from
asteroid An asteroid is a minor planet of the inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere. ...
s by the presence of an extended, gravitationally unbound atmosphere surrounding their central nucleus. This atmosphere has parts termed the coma (the central part immediately surrounding the nucleus) and the tail (a typically linear section consisting of dust or gas blown out from the coma by the Sun's light pressure or outstreaming solar wind plasma). However, extinct comets that have passed close to the Sun many times have lost nearly all of their volatile ices and dust and may come to resemble small asteroids. Asteroids are thought to have a different origin from comets, having formed inside the orbit of Jupiter rather than in the outer Solar System. The discovery of
main-belt comet Active asteroids are small Solar System bodies that have asteroid-like orbits but show comet-like visual characteristics. That is, they show comae, tails, or other visual evidence of mass-loss (like a comet), but their orbit remains within Jup ...
s and active
centaur A centaur ( ; grc, κένταυρος, kéntauros; ), or occasionally hippocentaur, is a creature from Greek mythology with the upper body of a human and the lower body and legs of a horse. Centaurs are thought of in many Greek myths as being ...
minor planets has blurred the distinction between asteroids and comets. In the early 21st century, the discovery of some minor bodies with long-period comet orbits, but characteristics of inner solar system asteroids, were called
Manx comet A Manx comet is a rocky, minor, celestial body that has a long-period comet orbit. Unlike most bodies on a long-period comet orbit which typically sport long, bright tails, the Manx comet is tailless, more typical of an inner Solar System asteroid. ...
s. They are still classified as comets, such as C/2014 S3 (PANSTARRS). Twenty-seven Manx comets were found from 2013 to 2017. there are 4584 known comets. However, this represents a very small fraction of the total potential comet population, as the reservoir of comet-like bodies in the outer Solar System (in the Oort cloud) is about one trillion. Roughly one comet per year is visible to the
naked eye Naked eye, also called bare eye or unaided eye, is the practice of engaging in visual perception unaided by a magnifying, light-collecting optical instrument, such as a telescope or microscope, or eye protection. Vision corrected to normal ...
, though many of those are faint and unspectacular. Particularly bright examples are called "
great comet A great comet is a comet that becomes exceptionally bright. There is no official definition; often the term is attached to comets such as Halley's Comet, which during certain appearances are bright enough to be noticed by casual observers who ar ...
s". Comets have been visited by unmanned probes such as the European Space Agency's ''
Rosetta Rosetta or Rashid (; ar, رشيد ' ; french: Rosette  ; cop, ϯⲣⲁϣⲓⲧ ''ti-Rashit'', Ancient Greek: Βολβιτίνη ''Bolbitinē'') is a port city of the Nile Delta, east of Alexandria, in Egypt's Beheira governorate. The Ro ...
'', which became the first to land a robotic spacecraft on a comet, and NASA's '' Deep Impact'', which blasted a crater on Comet Tempel 1 to study its interior.


Etymology

The word ''comet'' derives from the
Old English Old English (, ), or Anglo-Saxon, is the earliest recorded form of the English language, spoken in England and southern and eastern Scotland in the early Middle Ages. It was brought to Great Britain by Anglo-Saxon settlement of Britain, Anglo ...
from the
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
or . That, in turn, is a
romanization Romanization or romanisation, in linguistics, is the conversion of text from a different writing system to the Roman (Latin) script, or a system for doing so. Methods of romanization include transliteration, for representing written text, and ...
of the Greek 'wearing long hair', and the ''
Oxford English Dictionary The ''Oxford English Dictionary'' (''OED'') is the first and foundational historical dictionary of the English language, published by Oxford University Press (OUP). It traces the historical development of the English language, providing a com ...
'' notes that the term () already meant 'long-haired star, comet' in Greek. was derived from () 'to wear the hair long', which was itself derived from () 'the hair of the head' and was used to mean 'the tail of a comet'. The astronomical symbol for comets (represented in
Unicode Unicode, formally The Unicode Standard,The formal version reference is is an information technology Technical standard, standard for the consistent character encoding, encoding, representation, and handling of Character (computing), text expre ...
) is , consisting of a small disc with three hairlike extensions.


Physical characteristics


Nucleus

The solid, core structure of a comet is known as the nucleus. Cometary nuclei are composed of an amalgamation of
rock Rock most often refers to: * Rock (geology), a naturally occurring solid aggregate of minerals or mineraloids * Rock music, a genre of popular music Rock or Rocks may also refer to: Places United Kingdom * Rock, Caerphilly, a location in Wales ...
,
dust Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian process), volcanic eruptions, and pollution. Dust in homes ...
,
water ice Water ice could refer to: *Ice formed by water (as opposed to other substances) *The alternate term for various similar frozen fruit-flavoured desserts: **Italian ice primarily in Philadelphia and the Delaware Valley **Sorbet Sorbet (), also c ...
, and frozen
carbon dioxide Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
,
carbon monoxide Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
,
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Eart ...
, and
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous was ...
. As such, they are popularly described as "dirty snowballs" after Fred Whipple's model. Comets with a higher dust content have been called "icy dirtballs". The term "icy dirtballs" arose after observation of Comet 9P/Tempel 1 collision with an "impactor" probe sent by NASA Deep Impact mission in July 2005. Research conducted in 2014 suggests that comets are like " deep fried ice cream", in that their surfaces are formed of dense crystalline ice mixed with
organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. The ...
s, while the interior ice is colder and less dense. The surface of the nucleus is generally dry, dusty or rocky, suggesting that the ices are hidden beneath a surface crust several metres thick. In addition to the gases already mentioned, the nuclei contain a variety of organic compounds, which may include
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical and the simplest aliphatic alcohol, with the formula C H3 O H (a methyl group linked to a hydroxyl group, often abbreviated as MeOH). It is a ...
,
hydrogen cyanide Hydrogen cyanide, sometimes called prussic acid, is a chemical compound with the formula HCN and structure . It is a colorless, extremely poisonous, and flammable liquid that boils slightly above room temperature, at . HCN is produced on an ...
,
formaldehyde Formaldehyde ( , ) (systematic name methanal) is a naturally occurring organic compound with the formula and structure . The pure compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde (refer to section F ...
, ethanol, ethane, and perhaps more complex molecules such as long-chain hydrocarbons and amino acids. In 2009, it was confirmed that the amino acid glycine had been found in the comet dust recovered by NASA's
Stardust mission ''Stardust'' was a 385-kilogram robotic space probe launched by NASA on 7 February 1999. Its primary mission was to collect dust samples from the coma of comet Wild 2, as well as samples of cosmic dust, and return them to Earth for analysis ...
. In August 2011, a report, based on NASA studies of
meteorite A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or Natural satellite, moon. When the ...
s found on Earth, was published suggesting DNA and
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
components ( adenine, guanine, and related organic molecules) may have been formed on
asteroid An asteroid is a minor planet of the inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere. ...
s and comets. The outer surfaces of cometary nuclei have a very low albedo, making them among the least reflective objects found in the Solar System. The Giotto space probe found that the nucleus of Halley's Comet (1P/Halley) reflects about four percent of the light that falls on it, and Deep Space 1 discovered that Comet Borrelly's surface reflects less than 3.0%; by comparison, asphalt reflects seven percent. The dark surface material of the nucleus may consist of complex organic compounds. Solar heating drives off lighter volatile compounds, leaving behind larger organic compounds that tend to be very dark, like tar or
crude oil Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name ''petroleum'' covers both naturally occurring unprocessed crude ...
. The low reflectivity of cometary surfaces causes them to absorb the heat that drives their outgassing processes. Comet nuclei with radii of up to have been observed, but ascertaining their exact size is difficult. The nucleus of 322P/SOHO is probably only in diameter. A lack of smaller comets being detected despite the increased sensitivity of instruments has led some to suggest that there is a real lack of comets smaller than across. Known comets have been estimated to have an average density of . Because of their low mass, comet nuclei do not become spherical under their own gravity and therefore have irregular shapes. Roughly six percent of the
near-Earth asteroid A near-Earth object (NEO) is any small Solar System body whose orbit brings it into proximity with Earth. By convention, a Solar System body is a NEO if its closest approach to the Sun (perihelion) is less than 1.3 astronomical units (AU). ...
s are thought to be the extinct nuclei of comets that no longer experience outgassing, including 14827 Hypnos and 3552 Don Quixote. Results from the ''Rosetta'' and ''Philae'' spacecraft show that the nucleus of 67P/Churyumov–Gerasimenko has no magnetic field, which suggests that magnetism may not have played a role in the early formation of planetesimals. Further, the ALICE spectrograph on ''Rosetta'' determined that electrons (within above the comet nucleus) produced from photoionization of water molecules by solar radiation, and not photons from the Sun as thought earlier, are responsible for the degradation of water and
carbon dioxide Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
molecules released from the comet nucleus into its coma. Instruments on the ''Philae'' lander found at least sixteen organic compounds at the comet's surface, four of which ( acetamide, acetone, methyl isocyanate and propionaldehyde) have been detected for the first time on a comet.


Coma

The streams of dust and gas thus released form a huge and extremely thin atmosphere around the comet called the "coma". The force exerted on the coma by the Sun's radiation pressure and solar wind cause an enormous "tail" to form pointing away from the Sun. The coma is generally made of water and dust, with water making up to 90% of the volatiles that outflow from the nucleus when the comet is within 3 to 4
astronomical unit The astronomical unit (symbol: au, or or AU) is a unit of length, roughly the distance from Earth to the Sun and approximately equal to or 8.3 light-minutes. The actual distance from Earth to the Sun varies by about 3% as Earth orbits t ...
s (450,000,000 to 600,000,000 km; 280,000,000 to 370,000,000 mi) of the Sun. The parent molecule is destroyed primarily through
photodissociation Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by photons. It is defined as the interaction of one or more photons with one target molecule. ...
and to a much smaller extent photoionization, with the solar wind playing a minor role in the destruction of water compared to photochemistry. Larger dust particles are left along the comet's orbital path whereas smaller particles are pushed away from the Sun into the comet's tail by light pressure. Although the solid nucleus of comets is generally less than across, the coma may be thousands or millions of kilometers across, sometimes becoming larger than the Sun. For example, about a month after an outburst in October 2007, comet
17P/Holmes Comet Holmes (official designation: 17P/Holmes) is a periodic comet in the Solar System, discovered by the British amateur astronomer Edwin Holmes on November 6, 1892. Although normally a very faint object, Holmes became notable during its Octo ...
briefly had a tenuous dust atmosphere larger than the Sun. The Great Comet of 1811 also had a coma roughly the diameter of the Sun. Even though the coma can become quite large, its size can decrease about the time it crosses the orbit of Mars around from the Sun. At this distance the solar wind becomes strong enough to blow the gas and dust away from the coma, and in doing so enlarging the tail. Ion tails have been observed to extend one astronomical unit (150 million km) or more. Both the coma and tail are illuminated by the Sun and may become visible when a comet passes through the inner Solar System, the dust reflects sunlight directly while the gases glow from ionisation. Most comets are too faint to be visible without the aid of a telescope, but a few each decade become bright enough to be visible to the naked eye. Occasionally a comet may experience a huge and sudden outburst of gas and dust, during which the size of the coma greatly increases for a period of time. This happened in 2007 to Comet Holmes. In 1996, comets were found to emit X-rays. This greatly surprised astronomers because X-ray emission is usually associated with very high-temperature bodies. The X-rays are generated by the interaction between comets and the solar wind: when highly charged solar wind ions fly through a cometary atmosphere, they collide with cometary atoms and molecules, "stealing" one or more electrons from the atom in a process called "charge exchange". This exchange or transfer of an electron to the solar wind ion is followed by its de-excitation into the ground state of the ion by the emission of X-rays and far ultraviolet photons.


Bow shock

Bow shocks form as a result of the interaction between the solar wind and the cometary ionosphere, which is created by the ionization of gases in the coma. As the comet approaches the Sun, increasing outgassing rates cause the coma to expand, and the sunlight ionizes gases in the coma. When the solar wind passes through this ion coma, the bow shock appears. The first observations were made in the 1980s and 1990s as several spacecraft flew by comets
21P/Giacobini–Zinner Comet Giacobini–Zinner (officially designated 21P/Giacobini–Zinner) is a periodic comet in the Solar System. It was discovered by Michel Giacobini, who observed it in the constellation of Aquarius on December 20, 1900. It was recovered two o ...
, 1P/Halley, and
26P/Grigg–Skjellerup Comet Grigg–Skjellerup (formally designated 26P/Grigg–Skjellerup) is a periodic comet. It was visited by the Giotto probe in July 1992. The spacecraft came as close as 200 km, but could not take pictures because some instruments were dam ...
. It was then found that the bow shocks at comets are wider and more gradual than the sharp planetary bow shocks seen at, for example, Earth. These observations were all made near perihelion when the bow shocks already were fully developed. The ''Rosetta'' spacecraft observed the bow shock at comet 67P/Churyumov–Gerasimenko at an early stage of bow shock development when the outgassing increased during the comet's journey toward the Sun. This young bow shock was called the "infant bow shock". The infant bow shock is asymmetric and, relative to the distance to the nucleus, wider than fully developed bow shocks.


Tails

In the outer Solar System, comets remain frozen and inactive and are extremely difficult or impossible to detect from Earth due to their small size. Statistical detections of inactive comet nuclei in the
Kuiper belt The Kuiper belt () is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 times ...
have been reported from observations by the Hubble Space Telescope but these detections have been questioned. As a comet approaches the inner Solar System,
solar radiation Solar irradiance is the power per unit area (surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre (W/m ...
causes the volatile materials within the comet to vaporize and stream out of the nucleus, carrying dust away with them. The streams of dust and gas each form their own distinct tail, pointing in slightly different directions. The tail of dust is left behind in the comet's orbit in such a manner that it often forms a curved tail called the type II or dust tail. At the same time, the ion or type I tail, made of gases, always points directly away from the Sun because this gas is more strongly affected by the solar wind than is dust, following magnetic field lines rather than an orbital trajectory. On occasions—such as when Earth passes through a comet's orbital plane, the antitail, pointing in the opposite direction to the ion and dust tails, may be seen. The observation of antitails contributed significantly to the discovery of solar wind. The ion tail is formed as a result of the ionization by solar ultra-violet radiation of particles in the coma. Once the particles have been ionized, they attain a net positive electrical charge, which in turn gives rise to an "induced
magnetosphere In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynam ...
" around the comet. The comet and its induced magnetic field form an obstacle to outward flowing solar wind particles. Because the relative orbital speed of the comet and the solar wind is supersonic, a bow shock is formed upstream of the comet in the flow direction of the solar wind. In this bow shock, large concentrations of cometary ions (called "pick-up ions") congregate and act to "load" the solar magnetic field with plasma, such that the field lines "drape" around the comet forming the ion tail. If the ion tail loading is sufficient, the magnetic field lines are squeezed together to the point where, at some distance along the ion tail, magnetic reconnection occurs. This leads to a "tail disconnection event". This has been observed on a number of occasions, one notable event being recorded on 20 April 2007, when the ion tail of Encke's Comet was completely severed while the comet passed through a coronal mass ejection. This event was observed by the STEREO space probe. In 2013, ESA scientists reported that the
ionosphere The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an ...
of the planet Venus streams outwards in a manner similar to the ion tail seen streaming from a comet under similar conditions."


Jets

Uneven heating can cause newly generated gases to break out of a weak spot on the surface of comet's nucleus, like a geyser. These streams of gas and dust can cause the nucleus to spin, and even split apart. In 2010 it was revealed dry ice (frozen carbon dioxide) can power jets of material flowing out of a comet nucleus. Infrared imaging of Hartley 2 shows such jets exiting and carrying with it dust grains into the coma.


Orbital characteristics

Most comets are small Solar System bodies with elongated elliptical orbits that take them close to the Sun for a part of their orbit and then out into the further reaches of the Solar System for the remainder. Comets are often classified according to the length of their
orbital period The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets ...
s: The longer the period the more elongated the ellipse.


Short period

Periodic comets Periodicity or periodic may refer to: Mathematics * Bott periodicity theorem, addresses Bott periodicity: a modulo-8 recurrence relation in the homotopy groups of classical groups * Periodic function, a function whose output contains values t ...
or short-period comets are generally defined as those having orbital periods of less than 200 years. They usually orbit more-or-less in the ecliptic plane in the same direction as the planets. Their orbits typically take them out to the region of the outer planets ( Jupiter and beyond) at aphelion; for example, the aphelion of Halley's Comet is a little beyond the orbit of
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times ...
. Comets whose aphelia are near a major planet's orbit are called its "family". Such families are thought to arise from the planet capturing formerly long-period comets into shorter orbits. At the shorter orbital period extreme, Encke's Comet has an orbit that does not reach the orbit of Jupiter, and is known as an Encke-type comet. Short-period comets with orbital periods less than 20 years and low inclinations (up to 30 degrees) to the ecliptic are called traditional Jupiter-family comets (JFCs). Those like Halley, with orbital periods of between 20 and 200 years and inclinations extending from zero to more than 90 degrees, are called Halley-type comets (HTCs). , 94 HTCs have been observed, compared with 744 identified JFCs. Recently discovered main-belt comets form a distinct class, orbiting in more circular orbits within the asteroid belt. Because their elliptical orbits frequently take them close to the giant planets, comets are subject to further
gravitational perturbations In astronomy, perturbation is the complex motion of a massive body subjected to forces other than the gravitational attraction of a single other massive body. The other forces can include a third (fourth, fifth, etc.) body, resistance, as from ...
. Short-period comets have a tendency for their aphelia to coincide with a giant planet's semi-major axis, with the JFCs being the largest group. It is clear that comets coming in from the Oort cloud often have their orbits strongly influenced by the gravity of giant planets as a result of a close encounter. Jupiter is the source of the greatest perturbations, being more than twice as massive as all the other planets combined. These perturbations can deflect long-period comets into shorter orbital periods. Based on their orbital characteristics, short-period comets are thought to originate from the centaurs and the Kuiper belt/ scattered disc —a disk of objects in the trans-Neptunian region—whereas the source of long-period comets is thought to be the far more distant spherical Oort cloud (after the Dutch astronomer Jan Hendrik Oort who hypothesized its existence). Vast swarms of comet-like bodies are thought to orbit the Sun in these distant regions in roughly circular orbits. Occasionally the gravitational influence of the outer planets (in the case of Kuiper belt objects) or nearby stars (in the case of Oort cloud objects) may throw one of these bodies into an elliptical orbit that takes it inwards toward the Sun to form a visible comet. Unlike the return of periodic comets, whose orbits have been established by previous observations, the appearance of new comets by this mechanism is unpredictable. When flung into the orbit of the sun, and being continuously dragged towards it, tons of matter are stripped from the comets which greatly influence their lifetime; the more stripped, the shorter they live and vice versa.


Long period

Long-period comets have highly
eccentric Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-center, in geometry * Eccentricity (graph theory) of a v ...
orbits and periods ranging from 200 years to thousands or even millions of years. An eccentricity greater than 1 when near perihelion does not necessarily mean that a comet will leave the Solar System. For example,
Comet McNaught Comet McNaught, also known as the Great Comet of 2007 and given the designation C/2006 P1, is a non-periodic comet discovered on 7 August 2006 by British-Australian astronomer Robert H. McNaught using the Uppsala Southern Schmidt Telescope. ...
had a heliocentric osculating eccentricity of 1.000019 near its perihelion passage epoch in January 2007 but is bound to the Sun with roughly a 92,600-year orbit because the eccentricity drops below 1 as it moves farther from the Sun. The future orbit of a long-period comet is properly obtained when the osculating orbit is computed at an epoch after leaving the planetary region and is calculated with respect to the center of mass of the Solar System. By definition long-period comets remain gravitationally bound to the Sun; those comets that are ejected from the Solar System due to close passes by major planets are no longer properly considered as having "periods". The orbits of long-period comets take them far beyond the outer planets at aphelia, and the plane of their orbits need not lie near the ecliptic. Long-period comets such as C/1999 F1 and C/2017 T2 (PANSTARRS) can have aphelion distances of nearly with orbital periods estimated around 6 million years. Single-apparition or non-periodic comets are similar to long-period comets because they also have parabolic or slightly hyperbolic trajectories when near perihelion in the inner Solar System. However, gravitational perturbations from giant planets cause their orbits to change. Single-apparition comets have a hyperbolic or parabolic osculating orbit which allows them to permanently exit the Solar System after a single pass of the Sun. The Sun's Hill sphere has an unstable maximum boundary of . Only a few hundred comets have been seen to reach a hyperbolic orbit (e > 1) when near perihelion that using a heliocentric unperturbed two-body best-fit suggests they may escape the Solar System. , only two objects have been discovered with an eccentricity significantly greater than one: 1I/ʻOumuamua and
2I/Borisov 2I/Borisov, originally designated C/2019 Q4 (Borisov), is the first observed rogue comet and the second observed interstellar interloper after ʻOumuamua. It was discovered by the Crimean amateur astronomer and telescope maker Gennadiy Borisov ...
, indicating an origin outside the Solar System. While ʻOumuamua, with an eccentricity of about 1.2, showed no optical signs of cometary activity during its passage through the inner Solar System in October 2017, changes to its trajectory—which suggests outgassing—indicate that it is probably a comet. On the other hand, 2I/Borisov, with an estimated eccentricity of about 3.36, has been observed to have the coma feature of comets, and is considered the first detected interstellar comet. Comet C/1980 E1 had an orbital period of roughly 7.1 million years before the 1982 perihelion passage, but a 1980 encounter with Jupiter accelerated the comet giving it the largest eccentricity (1.057) of any known solar comet with a reasonable observation arc. Comets not expected to return to the inner Solar System include C/1980 E1, C/2000 U5, C/2001 Q4 (NEAT), C/2009 R1, C/1956 R1, and C/2007 F1 (LONEOS). Some authorities use the term "periodic comet" to refer to any comet with a periodic orbit (that is, all short-period comets plus all long-period comets), whereas others use it to mean exclusively short-period comets. Similarly, although the literal meaning of "non-periodic comet" is the same as "single-apparition comet", some use it to mean all comets that are not "periodic" in the second sense (that is, to also include all comets with a period greater than 200 years). Early observations have revealed a few genuinely hyperbolic (i.e. non-periodic) trajectories, but no more than could be accounted for by perturbations from Jupiter. Comets from interstellar space are moving with velocities of the same order as the relative velocities of stars near the Sun (a few tens of km per second). When such objects enter the Solar System, they have a positive specific orbital energy resulting in a positive velocity at infinity (v_\!) and have notably hyperbolic trajectories. A rough calculation shows that there might be four hyperbolic comets per century within Jupiter's orbit, give or take one and perhaps two orders of magnitude.


Oort cloud and Hills cloud

The Oort cloud is thought to occupy a vast space starting from between to as far as from the Sun. This cloud encases the celestial bodies that start at the middle of our solar system—the sun, all the way to outer limits of the Kuiper Belt. The Oort cloud consists of viable materials necessary for the creation of celestial bodies. The planets we have today, exist only because of the planetesimals (chunks of leftover space that assisted in the creation of planets) that were condensed and formed by the gravity of the sun. The eccentric made from these trapped planetesimals is why the Oort Cloud even exists. Some estimates place the outer edge at between . The region can be subdivided into a spherical outer Oort cloud of , and a doughnut-shaped inner cloud, the Hills cloud, of . The outer cloud is only weakly bound to the Sun and supplies the long-period (and possibly Halley-type) comets that fall to inside the orbit of
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times ...
. The inner Oort cloud is also known as the Hills cloud, named after J. G. Hills, who proposed its existence in 1981. Models predict that the inner cloud should have tens or hundreds of times as many cometary nuclei as the outer halo; it is seen as a possible source of new comets that resupply the relatively tenuous outer cloud as the latter's numbers are gradually depleted. The Hills cloud explains the continued existence of the Oort cloud after billions of years.


Exocomets

Exocomets beyond the Solar System have also been detected and may be common in the Milky Way. The first exocomet system detected was around
Beta Pictoris Beta Pictoris (abbreviated β Pictoris or β Pic) is the second brightest star in the constellation Pictor. It is located from the Solar System, and is 1.75 times as massive and 8.7 times as luminous as the Sun. The Beta Pictoris sy ...
, a very young
A-type main-sequence star An A-type main-sequence star (A V) or A dwarf star is a main-sequence (hydrogen-burning) star of spectral type A and luminosity class V (five). These stars have spectra defined by strong hydrogen Balmer absorption lines. They measure between 1 ...
, in 1987. A total of 11 such exocomet systems have been identified , using the
absorption spectrum Absorption spectroscopy refers to spectroscopic techniques that measure the absorption of radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating f ...
caused by the large clouds of gas emitted by comets when passing close to their star. For ten years the Kepler space telescope was responsible for searching for planets and other forms outside of the solar system. The first transiting exocomets were found in February 2018 by a group consisting of professional astronomers and
citizen scientists Citizen science (CS) (similar to community science, crowd science, crowd-sourced science, civic science, participatory monitoring, or volunteer monitoring) is scientific research conducted with participation from the public (who are sometimes re ...
in light curves recorded by the Kepler Space Telescope. After Kepler Space Telescope retired in October 2018, a new telescope called TESS Telescope has taken over Kepler's mission. Since the launch of TESS, astronomers have discovered the transits of comets around the star Beta Pictoris using a light curve from TESS. Since TESS has taken over, astronomers have since been able to better distinguish exocomets with the spectroscopic method. New planets are detected by the white light curve method which is viewed as a symmetrical dip in the charts readings when a planet overshadows its parent star. However, after further evaluation of these light curves, it has been discovered that the asymmetrical patterns of the dips presented are caused by the tail of a comet or of hundreds of comets.


Effects of comets


Connection to meteor showers

As a comet is heated during close passes to the Sun, outgassing of its icy components also releases solid debris too large to be swept away by radiation pressure and the solar wind. If Earth's orbit sends it through that trail of debris, which is composed mostly of fine grains of rocky material, there is likely to be a
meteor shower A meteor shower is a celestial event in which a number of meteors are observed to radiate, or originate, from one point in the night sky. These meteors are caused by streams of cosmic debris called meteoroids entering Earth's atmosphere at extre ...
as Earth passes through. Denser trails of debris produce quick but intense meteor showers and less dense trails create longer but less intense showers. Typically, the density of the debris trail is related to how long ago the parent comet released the material. The
Perseid meteor shower The Perseids are a prolific meteor shower associated with the comet Swift–Tuttle. The meteors are called the Perseids because the point from which they appear to hail (called the radiant) lies in the constellation Perseus. Etymology The name ...
, for example, occurs every year between 9 and 13 August, when Earth passes through the orbit of Comet Swift–Tuttle. Halley's Comet is the source of the Orionid shower in October.


Comets and impact on life

Many comets and asteroids collided with Earth in its early stages. Many scientists think that comets bombarding the young Earth about 4 billion years ago brought the vast quantities of water that now fill Earth's oceans, or at least a significant portion of it. Others have cast doubt on this idea. The detection of organic molecules, including polycyclic aromatic hydrocarbons, in significant quantities in comets has led to speculation that comets or
meteorite A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or Natural satellite, moon. When the ...
s may have brought the precursors of life—or even life itself—to Earth. In 2013 it was suggested that impacts between rocky and icy surfaces, such as comets, had the potential to create the amino acids that make up proteins through
shock synthesis Shock synthesis is the process of complex organic chemical creation through high velocity impact on simple amino acids, theorized to take place when a comet strikes a planetary body, or through the shock-wave created by a thunder clap. Hyper-vel ...
. The speed at which the comets entered the atmosphere, combined with the magnitude of energy created after initial contact, allowed smaller molecules to condense into the larger macro-molecules that served as the foundation for life. In 2015, scientists found significant amounts of molecular oxygen in the outgassings of comet 67P, suggesting that the molecule may occur more often than had been thought, and thus less an indicator of life as has been supposed. It is suspected that comet impacts have, over long timescales, also delivered significant quantities of water to Earth's Moon, some of which may have survived as lunar ice. Comet and meteoroid impacts are also thought to be responsible for the existence of tektites and
australite Australites are tektites found in Australia. They are mostly dark or black, and have shapes including discs and bowls that are not seen in other tektites. NASA used the shape of "flanged button" australites in designing re-entry modules for the Ap ...
s.


Fear of comets

Fear of comets as acts of God and signs of impending doom was highest in Europe from AD 1200 to 1650. The year after the Great Comet of 1618, for example,
Gotthard Arthusius Gotthard Arthus or Gotardus Artusius Dantiscanus (1568–1628) was a schoolmaster, historian and translator in early seventeenth-century Frankfurt. Life Gotthard Arthus was born in Danzig on 11 January 1568. In 1589 he matriculated at the Universi ...
published a pamphlet stating that it was a sign that the Day of Judgment was near. He listed ten pages of comet-related disasters, including "earthquakes, floods, changes in river courses, hail storms, hot and dry weather, poor harvests, epidemics, war and treason and high prices". By 1700 most scholars concluded that such events occurred whether a comet was seen or not. Using Edmond Halley's records of comet sightings, however, William Whiston in 1711 wrote that the Great Comet of 1680 had a periodicity of 574 years and was responsible for the worldwide flood in the Book of Genesis, by pouring water on Earth. His announcement revived for another century fear of comets, now as direct threats to the world instead of signs of disasters. Spectroscopic analysis in 1910 found the toxic gas cyanogen in the tail of Halley's Comet, causing panicked buying of gas masks and quack "anti-comet pills" and "anti-comet umbrellas" by the public.


Fate of comets


Departure (ejection) from Solar System

If a comet is traveling fast enough, it may leave the Solar System. Such comets follow the open path of a hyperbola, and as such, they are called hyperbolic comets. Solar comets are only known to be ejected by interacting with another object in the Solar System, such as Jupiter. An example of this is Comet C/1980 E1, which was shifted from an orbit of 7.1 million years around the Sun, to a hyperbolic trajectory, after a 1980 close pass by the planet Jupiter. (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0) Interstellar comets such as 1I/ʻOumuamua and
2I/Borisov 2I/Borisov, originally designated C/2019 Q4 (Borisov), is the first observed rogue comet and the second observed interstellar interloper after ʻOumuamua. It was discovered by the Crimean amateur astronomer and telescope maker Gennadiy Borisov ...
never orbited the Sun and therefore do not require a 3rd-body interaction to be ejected from the Solar System.


Volatiles exhausted

Jupiter-family comets and long-period comets appear to follow very different fading laws. The JFCs are active over a lifetime of about 10,000 years or ~1,000 orbits whereas long-period comets fade much faster. Only 10% of the long-period comets survive more than 50 passages to small perihelion and only 1% of them survive more than 2,000 passages. Eventually most of the volatile material contained in a comet nucleus evaporates, and the comet becomes a small, dark, inert lump of rock or rubble that can resemble an asteroid. Some asteroids in elliptical orbits are now identified as extinct comets. Roughly six percent of the near-Earth asteroids are thought to be extinct comet nuclei.


Breakup and collisions

The nucleus of some comets may be fragile, a conclusion supported by the observation of comets splitting apart. A significant cometary disruption was that of Comet Shoemaker–Levy 9, which was discovered in 1993. A close encounter in July 1992 had broken it into pieces, and over a period of six days in July 1994, these pieces fell into Jupiter's atmosphere—the first time astronomers had observed a collision between two objects in the Solar System. Other splitting comets include
3D/Biela Biela's Comet or Comet Biela (official designation: 3D/Biela) was a periodic Jupiter-family comet first recorded in 1772 by Montaigne and Messier and finally identified as periodic in 1826 by Wilhelm von Biela. It was subsequently observed to ...
in 1846 and 73P/Schwassmann–Wachmann from 1995 to 2006. Greek historian Ephorus reported that a comet split apart as far back as the winter of 372–373 BC. Comets are suspected of splitting due to thermal stress, internal gas pressure, or impact. Comets
42P/Neujmin 42P/Neujmin, also known as Neujmin 3, is a periodic comet 2 km in diameter. This comet and 53P/Van Biesbroeck are fragments of a parent comet that split in March 1845.53P/Van Biesbroeck appear to be fragments of a parent comet. Numerical integrations have shown that both comets had a rather close approach to Jupiter in January 1850, and that, before 1850, the two orbits were nearly identical. Some comets have been observed to break up during their perihelion passage, including great comets West and Ikeya–Seki. Biela's Comet was one significant example when it broke into two pieces during its passage through the perihelion in 1846. These two comets were seen separately in 1852, but never again afterward. Instead, spectacular
meteor showers A meteor shower is a celestial event in which a number of meteors are observed to radiate, or originate, from one point in the night sky. These meteors are caused by streams of cosmic debris called meteoroids entering Earth's atmosphere at extre ...
were seen in 1872 and 1885 when the comet should have been visible. A minor meteor shower, the Andromedids, occurs annually in November, and it is caused when Earth crosses the orbit of Biela's Comet. Some comets meet a more spectacular end – either falling into the Sun or smashing into a planet or other body. Collisions between comets and planets or moons were common in the early Solar System: some of the many craters on the Moon, for example, may have been caused by comets. A recent collision of a comet with a planet occurred in July 1994 when Comet Shoemaker–Levy 9 broke up into pieces and collided with Jupiter.


Nomenclature

The names given to comets have followed several different conventions over the past two centuries. Prior to the early 20th century, most comets were referred to by the year when they appeared, sometimes with additional adjectives for particularly bright comets; thus, the "Great Comet of 1680", the " Great Comet of 1882", and the "
Great January Comet of 1910 The Great January Comet of 1910, formally designated C/1910 A1 and often referred to as the Daylight Comet,. was a comet which appeared in January 1910. It was already visible to the naked eye when it was first noticed, and many people independent ...
". After Edmond Halley demonstrated that the comets of 1531, 1607, and 1682 were the same body and successfully predicted its return in 1759 by calculating its orbit, that comet became known as Halley's Comet. Similarly, the second and third known periodic comets, Encke's Comet and Biela's Comet, were named after the astronomers who calculated their orbits rather than their original discoverers. Later, periodic comets were usually named after their discoverers, but comets that had appeared only once continued to be referred to by the year of their appearance. In the early 20th century, the convention of naming comets after their discoverers became common, and this remains so today. A comet can be named after its discoverers or an instrument or program that helped to find it. For example, in 2019, astronomer
Gennadiy Borisov Gennadiy Vladimirovich Borisov (russian: Генна́дий Влади́мирович Бори́сов; born in 1962 in Kramatorsk) is a Crimean amateur telescope making, telescope maker and amateur astronomy, amateur astronomer who discovered ...
observed a comet that appeared to have originated outside of the solar system; the comet was named
2I/Borisov 2I/Borisov, originally designated C/2019 Q4 (Borisov), is the first observed rogue comet and the second observed interstellar interloper after ʻOumuamua. It was discovered by the Crimean amateur astronomer and telescope maker Gennadiy Borisov ...
after him.


History of study


Early observations and thought

From ancient sources, such as Chinese oracle bones, it is known that comets have been noticed by humans for millennia. Until the sixteenth century, comets were usually considered bad
omen An omen (also called ''portent'') is a phenomenon that is believed to foretell the future, often signifying the advent of change. It was commonly believed in ancient times, and still believed by some today, that omens bring divine messages fr ...
s of deaths of kings or noble men, or coming catastrophes, or even interpreted as attacks by heavenly beings against terrestrial inhabitants. Aristotle (384–322 BC) was the first known scientist to use various theories and observational facts to employ a consistent, structured cosmological theory of comets. He believed that comets were atmospheric phenomena, due to the fact that they could appear outside of the zodiac and vary in brightness over the course of a few days. Aristotle's cometary theory arose from his observations and cosmological theory that everything in the cosmos is arranged in a distinct configuration. Part of this configuration was a clear separation between the celestial and terrestrial, believing comets to be strictly associated with the latter. According to Aristotle, comets must be within the sphere of the moon and clearly separated from the heavens. Also in the 4th century BC,
Apollonius of Myndus Apollonius ( grc, Απολλώνιος) of Myndus lived at the time of Alexander the Great, that is, the 4th century BCE, and was particularly skilled in explaining horoscopes. He professed to have learned his art from the Chaldeans. His statemen ...
supported the idea that comets moved like the planets. Aristotelian theory on comets continued to be widely accepted throughout the Middle Ages, despite several discoveries from various individuals challenging aspects of it. In the 1st century AD, Seneca the Younger questioned Aristotle's logic concerning comets. Because of their regular movement and imperviousness to wind, they cannot be atmospheric, and are more permanent than suggested by their brief flashes across the sky. He pointed out that only the tails are transparent and thus cloudlike, and argued that there is no reason to confine their orbits to the zodiac. In criticizing Apollonius of Myndus, Seneca argues, "A comet cuts through the upper regions of the universe and then finally becomes visible when it reaches the lowest point of its orbit." While Seneca did not author a substantial theory of his own, his arguments would spark much debate among Aristotle's critics in the 16th and 17th centuries. Also in the 1st century, Pliny the Elder believed that comets were connected with political unrest and death. Pliny observed comets as "human like", often describing their tails with "long hair" or "long beard". His system for classifying comets according to their color and shape was used for centuries. In India, by the 6th century astronomers believed that comets were celestial bodies that re-appeared periodically. This was the view expressed in the 6th century by the astronomers Varāhamihira and
Bhadrabahu Ācārya Bhadrabāhu (c. 367 - c. 298 BC) was, according to the ''Digambara'' sect of Jainism, the last '' Shruta Kevalin'' (all knowing by hearsay, that is indirectly) in Jainism . He was the last ''acharya'' of the undivided Jain ''sangha''. ...
, and the 10th-century astronomer Bhaṭṭotpala listed the names and estimated periods of certain comets, but it is not known how these figures were calculated or how accurate they were. In 1301, the Italian painter Giotto was the first person to accurately and anatomically portray a comet. In his work '' Adoration of the Magi,'' Giotto's depiction of Halley's Comet in the place of the Star of Bethlehem would go unmatched in accuracy until the 19th century and be bested only with the invention of photography. Astrological interpretations of comets proceeded to take precedence clear into the 15th century, despite the presence of modern scientific astronomy beginning to take root. Comets continued to forewarn of disaster, as seen in the '' Luzerner Schilling'' chronicles and in the warnings of Pope Callixtus III. In 1578, German Lutheran bishop Andreas Celichius defined comets as "the thick smoke of human sins ... kindled by the hot and fiery anger of the Supreme Heavenly Judge". The next year,
Andreas Dudith Andreas Dudith ( hr, Andrija Dudić Orehovički), also András Dudith de Horahovicza (February 5, 1533 in Buda - February 22, 1589 in Wrocław), was a Hungarian nobleman of Croatian and Italian origin, bishop, humanist and diplomat in the Kingdo ...
stated that "If comets were caused by the sins of mortals, they would never be absent from the sky."


Scientific approach

Crude attempts at a
parallax Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby objects ...
measurement of Halley's Comet were made in 1456, but were erroneous. Regiomontanus was the first to attempt to calculate diurnal parallax by observing the great comet of 1472. His predictions were not very accurate, but they were conducted in the hopes of estimating the distance of a comet from the Earth. In the 16th century, Tycho Brahe and Michael Maestlin demonstrated that comets must exist outside of Earth's atmosphere by measuring the parallax of the
Great Comet of 1577 The Great Comet of 1577 (official designation: C/1577 V1) is a non-periodic comet that passed close to Earth during the year 1577 AD. Having an official designation beginning with "C" classes it as a non-periodic comet, and so it is not expected t ...
. Within the precision of the measurements, this implied the comet must be at least four times more distant than from Earth to the Moon. Based on observations in 1664, Giovanni Borelli recorded the longitudes and latitudes of comets that he observed, and suggested that cometary orbits may be parabolic. Galileo Galilei, one of the most renowned astronomers to date, even attempted writings on comets in '' The Assayer''. He rejected Brahe's theories on the parallax of comets and claimed that they may be a mere optical illusion. Intrigued as early scientists were about the nature of comets, Galileo could not help but throw about his own theories despite little personal observation. Maestlin's student
Johannes Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
responded to these unjust criticisms in his work ''Hyperaspistes.'' Jakob Bernoulli published another attempt to explain comets (Conamen Novi Systematis Cometarum) in 1682. Also occurring in the early modern period was the study of comets and their astrological significance in medical disciplines. Many healers of this time considered medicine and astronomy to be inter-disciplinary and employed their knowledge of comets and other astrological signs for diagnosing and treating patients. Isaac Newton, in his '' Principia Mathematica'' of 1687, proved that an object moving under the influence of gravity by an inverse square law must trace out an orbit shaped like one of the conic sections, and he demonstrated how to fit a comet's path through the sky to a parabolic orbit, using the comet of 1680 as an example. He describes comets as compact and durable solid bodies moving in oblique orbit and their tails as thin streams of vapor emitted by their nuclei, ignited or heated by the Sun. He suspected that comets were the origin of the life-supporting component of air. He also pointed out that comets usually appear near the Sun, and therefore most likely orbit it. On their luminosity, he stated, "The comets shine by the Sun's light, which they reflect," with their tails illuminated by "the Sun's light reflected by a smoke arising from he coma. In 1705, Edmond Halley (1656–1742) applied Newton's method to 23 cometary apparitions that had occurred between 1337 and 1698. He noted that three of these, the comets of 1531, 1607, and 1682, had very similar orbital elements, and he was further able to account for the slight differences in their orbits in terms of gravitational perturbation caused by Jupiter and
Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
. Confident that these three apparitions had been three appearances of the same comet, he predicted that it would appear again in 1758–9. Halley's predicted return date was later refined by a team of three French mathematicians: Alexis Clairaut,
Joseph Lalande Joseph is a common male given name, derived from the Hebrew Yosef (יוֹסֵף). "Joseph" is used, along with "Josef", mostly in English, French and partially German languages. This spelling is also found as a variant in the languages of the mo ...
, and Nicole-Reine Lepaute, who predicted the date of the comet's 1759 perihelion to within one month's accuracy. When the comet returned as predicted, it became known as Halley's Comet. As early as the 18th century, some scientists had made correct hypotheses as to comets' physical composition. In 1755, Immanuel Kant hypothesized in his '' Universal Natural History'' that comets were condensed from "primitive matter" beyond the known planets, which is "feebly moved" by gravity, then orbit at arbitrary inclinations, and are partially vaporized by the Sun's heat as they near perihelion. In 1836, the German mathematician Friedrich Wilhelm Bessel, after observing streams of vapor during the appearance of Halley's Comet in 1835, proposed that the jet forces of evaporating material could be great enough to significantly alter a comet's orbit, and he argued that the non-gravitational movements of Encke's Comet resulted from this phenomenon. In the 19th century, the Astronomical Observatory of Padova was an epicenter in the observational study of comets. Led by
Giovanni Santini Giovanni Sante Gaspero Santini (b. Caprese in Tuscany, 30 June 1786; d. Noventa Padovana, 26 June 1877) was an Italian astronomer and mathematician. He received his first instruction from his parental uncle, the Abbot Giovanni Battista Santi ...
(1787–1877) and followed by Giuseppe Lorenzoni (1843–1914), this observatory was devoted to classical astronomy, mainly to the new comets and planets orbit calculation, with the goal of compiling a catalog of almost ten thousand stars. Situated in the Northern portion of Italy, observations from this observatory were key in establishing important geodetic, geographic, and astronomical calculations, such as the difference of longitude between Milan and Padua as well as Padua to Fiume. In addition to these geographic observations, correspondence within the observatory, particularly between Santini and another astronomer Giuseppe Toaldo, about the importance of comet and planetary orbital observations. In 1950, Fred Lawrence Whipple proposed that rather than being rocky objects containing some ice, comets were icy objects containing some dust and rock. This "dirty snowball" model soon became accepted and appeared to be supported by the observations of an armada of spacecraft (including the
European Space Agency , owners = , headquarters = Paris, Île-de-France, France , coordinates = , spaceport = Guiana Space Centre , seal = File:ESA emblem seal.png , seal_size = 130px , image = Views in the Main Control Room (1205 ...
's '' Giotto'' probe and the Soviet Union's '' Vega 1'' and '' Vega 2'') that flew through the coma of Halley's Comet in 1986, photographed the nucleus, and observed jets of evaporating material. On 22 January 2014, ESA scientists reported the detection, for the first definitive time, of water vapor on the dwarf planet Ceres, the largest object in the asteroid belt. The detection was made by using the far-infrared abilities of the
Herschel Space Observatory The Herschel Space Observatory was a space observatory built and operated by the European Space Agency (ESA). It was active from 2009 to 2013, and was the largest infrared telescope ever launched until the launch of the James Webb Space Telesc ...
. The finding is unexpected because comets, not asteroids, are typically considered to "sprout jets and plumes". According to one of the scientists, "The lines are becoming more and more blurred between comets and asteroids." On 11 August 2014, astronomers released studies, using the Atacama Large Millimeter/Submillimeter Array (ALMA) for the first time, that detailed the distribution of HCN, HNC, , and dust inside the comae of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON).


Spacecraft missions

*The Halley Armada describes the collection of spacecraft missions that visited and/or made observations of Halley's Comet 1980s perihelion. The space shuttle ''Challenger'' was intended to do a study of Halley's Comet in 1986, but exploded shortly after being launched. *Deep Impact. Debate continues about how much ice is in a comet. In 2001, the '' Deep Space 1'' spacecraft obtained high-resolution images of the surface of Comet Borrelly. It was found that the surface of comet Borrelly is hot and dry, with a temperature of between , and extremely dark, suggesting that the ice has been removed by solar heating and maturation, or is hidden by the soot-like material that covers Borrelly. In July 2005, the '' Deep Impact'' probe blasted a crater on Comet Tempel 1 to study its interior. The mission yielded results suggesting that the majority of a comet's water ice is below the surface and that these reservoirs feed the jets of vaporized water that form the coma of Tempel 1. Renamed EPOXI, it made a flyby of Comet Hartley 2 on 4 November 2010. *Ulysses. In 2007, the Ulysses probe unexpectedly passed through the tail of the comet C/2006 P1 (McNaught) which was discovered in 2006. Ulysses was launched in 1990 and the intended mission was for Ulysses to orbit around the sun for further study at all latitudes. *Stardust. Data from the ''Stardust'' mission show that materials retrieved from the tail of Wild 2 were crystalline and could only have been "born in fire", at extremely high temperatures of over . Although comets formed in the outer Solar System, radial mixing of material during the early formation of the Solar System is thought to have redistributed material throughout the proto-planetary disk. As a result, comets also contain crystalline grains that formed in the early, hot inner Solar System. This is seen in comet spectra as well as in sample return missions. More recent still, the materials retrieved demonstrate that the "comet dust resembles asteroid materials". These new results have forced scientists to rethink the nature of comets and their distinction from asteroids. *Rosetta. The ''
Rosetta Rosetta or Rashid (; ar, رشيد ' ; french: Rosette  ; cop, ϯⲣⲁϣⲓⲧ ''ti-Rashit'', Ancient Greek: Βολβιτίνη ''Bolbitinē'') is a port city of the Nile Delta, east of Alexandria, in Egypt's Beheira governorate. The Ro ...
'' probe orbited Comet Churyumov–Gerasimenko. On 12 November 2014, its lander ''Philae'' successfully landed on the comet's surface, the first time a spacecraft has ever landed on such an object in history.


Classification


Great comets

Approximately once a decade, a comet becomes bright enough to be noticed by a casual observer, leading such comets to be designated as great comets. Predicting whether a comet will become a great comet is notoriously difficult, as many factors may cause a comet's brightness to depart drastically from predictions. Broadly speaking, if a comet has a large and active nucleus, will pass close to the Sun, and is not obscured by the Sun as seen from Earth when at its brightest, it has a chance of becoming a great comet. However, Comet Kohoutek in 1973 fulfilled all the criteria and was expected to become spectacular but failed to do so. Comet West, which appeared three years later, had much lower expectations but became an extremely impressive comet. The Great Comet of 1577 is a well-known example of a great comet. It passed near Earth as a non-periodic comet and was seen by many, including well-known astronomers Tycho Brahe and Taqi ad-Din. Observations of this comet led to several significant findings regarding cometary science, especially for Brahe. The late 20th century saw a lengthy gap without the appearance of any great comets, followed by the arrival of two in quick succession— Comet Hyakutake in 1996, followed by Hale–Bopp, which reached maximum brightness in 1997 having been discovered two years earlier. The first great comet of the 21st century was C/2006 P1 (McNaught), which became visible to naked eye observers in January 2007. It was the brightest in over 40 years.


Sungrazing comets

A sungrazing comet is a comet that passes extremely close to the Sun at perihelion, generally within a few million kilometers. Although small sungrazers can be completely evaporated during such a close approach to the Sun, larger sungrazers can survive many perihelion passages. However, the strong tidal forces they experience often lead to their fragmentation. About 90% of the sungrazers observed with SOHO are members of the Kreutz group, which all originate from one giant comet that broke up into many smaller comets during its first passage through the inner Solar System. The remainder contains some sporadic sungrazers, but four other related groups of comets have been identified among them: the Kracht, Kracht 2a, Marsden, and Meyer groups. The Marsden and Kracht groups both appear to be related to Comet 96P/Machholz, which is also the parent of two meteor streams, the Quadrantids and the
Arietids The Arietids are a strong meteor shower that lasts from May 22 to July 2 each year, and peaks on June 7. The Arietids, along with the Zeta Perseids, are the most intense daylight meteor showers of the year. The source of the shower is unknown, but ...
.


Unusual comets

Of the thousands of known comets, some exhibit unusual properties. Comet Encke (2P/Encke) orbits from outside the asteroid belt to just inside the orbit of the planet
Mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
whereas the Comet
29P/Schwassmann–Wachmann Comet 29P/Schwassmann–Wachmann, also known as Schwassmann–Wachmann 1, was discovered on November 15, 1927, by Arnold Schwassmann and Arno Arthur Wachmann at the Hamburg Observatory in Bergedorf, Germany. It was discovered photographically, w ...
currently travels in a nearly circular orbit entirely between the orbits of Jupiter and Saturn.
2060 Chiron 2060 Chiron is a small Solar System body in the outer Solar System, orbiting the Sun between Saturn and Uranus. Discovered in 1977 by Charles Kowal, it was the first-identified member of a new class of objects now known as centaurs—bodies orb ...
, whose unstable orbit is between Saturn and Uranus, was originally classified as an asteroid until a faint coma was noticed. Similarly, Comet Shoemaker–Levy 2 was originally designated asteroid .


Largest

The largest known periodic comet is 95P/Chiron at 200 km in diameter that comes to perihelion every 50 years just inside of Saturn's orbit at 8 AU. The largest known Oort cloud comet is suspected of being
Comet Bernardinelli-Bernstein A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena are ...
at ≈150 km that will not come to perihelion until January 2031 just outside of Saturn's orbit at 11 AU. The Comet of 1729 is estimated to have been ≈100 km in diameter and came to perihelion inside of Jupiter's orbit at 4 AU.


Centaurs

Centaurs typically behave with characteristics of both asteroids and comets. Centaurs can be classified as comets such as 60558 Echeclus, and 166P/NEAT. 166P/NEAT was discovered while it exhibited a coma, and so is classified as a comet despite its orbit, and 60558 Echeclus was discovered without a coma but later became active, Y-J. Choi, P.R. Weissman, and D. Polishook ''(60558) 2000 EC_98'', IAU Circ., 8656 (Jan. 2006), 2. and was then classified as both a comet and an asteroid (174P/Echeclus). One plan for '' Cassini'' involved sending it to a centaur, but NASA decided to destroy it instead.


Observation

A comet may be discovered photographically using a wide-field telescope or visually with
binoculars Binoculars or field glasses are two refracting telescopes mounted side-by-side and aligned to point in the same direction, allowing the viewer to use both eyes (binocular vision) when viewing distant objects. Most binoculars are sized to be held ...
. However, even without access to optical equipment, it is still possible for the amateur astronomer to discover a sungrazing comet online by downloading images accumulated by some satellite observatories such as SOHO. SOHO's 2000th comet was discovered by Polish amateur astronomer Michał Kusiak on 26 December 2010 and both discoverers of Hale–Bopp used amateur equipment (although Hale was not an amateur).


Lost

A number of periodic comets discovered in earlier decades or previous centuries are now lost comets. Their orbits were never known well enough to predict future appearances or the comets have disintegrated. However, occasionally a "new" comet is discovered, and calculation of its orbit shows it to be an old "lost" comet. An example is Comet 11P/Tempel–Swift–LINEAR, discovered in 1869 but unobservable after 1908 because of perturbations by Jupiter. It was not found again until accidentally rediscovered by LINEAR in 2001. There are at least 18 comets that fit this category.


In popular culture

The depiction of comets in popular culture is firmly rooted in the long Western tradition of seeing comets as harbingers of doom and as omens of world-altering change. Halley's Comet alone has caused a slew of sensationalist publications of all sorts at each of its reappearances. It was especially noted that the birth and death of some notable persons coincided with separate appearances of the comet, such as with writers
Mark Twain Samuel Langhorne Clemens (November 30, 1835 – April 21, 1910), known by his pen name Mark Twain, was an American writer, humorist, entrepreneur, publisher, and lecturer. He was praised as the "greatest humorist the United States has p ...
(who correctly speculated that he'd "go out with the comet" in 1910) and Eudora Welty, to whose life Mary Chapin Carpenter dedicated the song "
Halley Came to Jackson ''Shooting Straight in the Dark'' is the third studio album by American country music artist Mary Chapin Carpenter. It was a #11 Country Album on the Billboard Country Albums chart. Four of its tracks became Billboard Hot Country Songs hits: "You ...
". In times past, bright comets often inspired panic and hysteria in the general population, being thought of as bad omens. More recently, during the passage of Halley's Comet in 1910, Earth passed through the comet's tail, and erroneous newspaper reports inspired a fear that cyanogen in the tail might poison millions, whereas the appearance of Comet Hale–Bopp in 1997 triggered the mass suicide of the Heaven's Gate cult. In science fiction, the impact of comets has been depicted as a threat overcome by technology and heroism (as in the 1998 films '' Deep Impact'' and '' Armageddon''), or as a trigger of global apocalypse ('' Lucifer's Hammer'', 1979) or zombies ('' Night of the Comet'', 1984). In
Jules Verne Jules Gabriel Verne (;''Longman Pronunciation Dictionary''. ; 8 February 1828 – 24 March 1905) was a French novelist, poet, and playwright. His collaboration with the publisher Pierre-Jules Hetzel led to the creation of the ''Voyages extraor ...
's '' Off on a Comet'' a group of people are stranded on a comet orbiting the Sun, while a large crewed space expedition visits Halley's Comet in Sir
Arthur C. Clarke Sir Arthur Charles Clarke (16 December 191719 March 2008) was an English science-fiction writer, science writer, futurist, inventor, undersea explorer, and television series host. He co-wrote the screenplay for the 1968 film '' 2001: A Spac ...
's novel '' 2061: Odyssey Three''.


In Literature

The long-period comet first recorded by Pons in Florence on 15 July 1825 inspired Lydia Sigourney's humorous poem in which all the celestial bodies argue over the comet's appearance and purpose.


Gallery

File:Comet_C2020F3_NEOWISE_over_California_desert_landscape.png, Comet C/2020 F3 NEOWISE File:Comet P1 McNaught02 - 23-01-07-edited.jpg, Comet C/2006 P1 (McNaught) taken from Victoria, Australia 2007 File:Great Comet of 1882.jpg, The Great Comet of 1882 is a member of the Kreutz group File:Great Comet 1861.jpg, Great Comet 1861 File:X-rays from Hyakutake.jpg, Comet Hyakutake ( X-ray, ROSAT satellite) File:Asteroid P2013 P5 v2.jpg, "Active asteroid" 311P/PANSTARRS with several tails File:NASA-14090-Comet-C2013A1-SidingSpring-Hubble-20140311.jpg, Comet Siding Spring (
Hubble The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versa ...
; 11 March 2014) File:Comets WISE.jpg, Mosaic of 20 comets discovered by the
WISE WISE may refer to: Arts, entertainment, and media * WISE (AM), a radio station licensed to Asheville, North Carolina *WISE-FM, a radio station licensed to Wise, Virginia * WISE-TV, a television station licensed to Fort Wayne, Indiana Education * ...
space telescope File:PIA22419-Neowise-1stFourYearsDataFromDec2013-20180420.gif, NEOWISE – first four years of data starting in December 2013 File:Lovejoy-hi1a srem dec12 14.gif, C/2011 W3 (Lovejoy) heads towards the Sun File:ITS Impact.gif, View from the impactor in its last moments before hitting Comet Tempel 1 during the ''Deep Impact'' mission
;Videos File:NASA Developing Comet Harpoon for Sample Return.ogv, NASA is developing a comet harpoon for returning samples to Earth File:Encke tail rip off.ogg, Comet Encke loses its tail


See also

* '' The Big Splash'' * Comet vintages * List of impact craters on Earth * List of possible impact structures on Earth *
Lists of comets Non-periodic comets are seen only once. They are usually on near-parabolic orbits that will not return to the vicinity of the Sun for thousands of years, if ever. Periodic comets usually have elongated elliptical orbits, and usually return to th ...


References


Footnotes


Citations


Bibliography

*


Further reading

* *


External links

*
Comets
at NASA's Solar System Exploration
International Comet Quarterly
by Harvard University
Catalogue of the Solar System Small Bodies Orbital Evolution

Science Demos: Make a Comet
by the National High Magnetic Field Laboratory
Comets: from myths to reality
exhibition on
Paris Observatory The Paris Observatory (french: Observatoire de Paris ), a research institution of the Paris Sciences et Lettres University, is the foremost astronomical observatory of France, and one of the largest astronomical centers in the world. Its histor ...
digital library {{Authority control Astronomical objects Articles containing video clips Ice Extraterrestrial water Concepts in astronomy