HOME

TheInfoList



OR:

The shape of the universe, in
physical cosmology Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of f ...
, is the
local Local may refer to: Geography and transportation * Local (train), a train serving local traffic demand * Local, Missouri, a community in the United States * Local government, a form of public administration, usually the lowest tier of administrat ...
and global geometry of the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. ...
. The local features of the geometry of the universe are primarily described by its curvature, whereas the
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
of the universe describes general global properties of its shape as a continuous object. The spatial curvature is defined by
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, which describes how
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
is curved due to the effect of gravity. The spatial topology cannot be determined from its curvature, due to the fact that there exist locally indistinguishable spaces that may be endowed with different topological invariants. Cosmologists distinguish between the
observable universe The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these ob ...
and the entire universe, the former being a ball-shaped portion of the latter that can, in principle, be accessible by astronomical observations. Assuming the
cosmological principle In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is homogeneous and isotropic when viewed on a large enough scale, since the forces are expected to act uniformly throu ...
, the observable universe is similar from all contemporary vantage points, which allows cosmologists to discuss properties of the entire universe with only information from studying their observable universe. The main discussion in this context is whether the universe is finite, like the observable universe, or infinite. Several potential topological and geometric properties of the universe need to be identified. Its topological characterization remains an open problem. Some of these properties are: # Boundedness (whether the universe is finite or infinite) # Flatness (zero curvature), hyperbolic (negative curvature), or spherical (positive curvature) #
Connectivity Connectivity may refer to: Computing and technology * Connectivity (media), the ability of the social media to accumulate economic capital from the users connections and activities * Internet connectivity, the means by which individual terminal ...
: how the universe is put together as a manifold, i.e., a simply connected space or a multiply connected space. There are certain logical connections among these properties. For example, a universe with positive curvature is necessarily finite. Although it is usually assumed in the literature that a flat or negatively curved universe is infinite, this need not be the case if the topology is not the trivial one. For example, a multiply connected space may be flat and finite, as illustrated by the
three-torus The three-dimensional torus, or 3-torus, is defined as any topological space that is homeomorphic to the Cartesian product of three circles, \mathbb^3 = S^1 \times S^1 \times S^1. In contrast, the usual torus is the Cartesian product of only two ...
. Yet, in the case of simply connected spaces, flatness implies infinitude. To this day, the exact shape of the universe remains a matter of debate in
physical cosmology Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of f ...
. In this regard, experimental data from various independent sources (
WMAP The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic mic ...
,
BOOMERanG A boomerang () is a thrown tool, typically constructed with aerofoil sections and designed to spin about an axis perpendicular to the direction of its flight. A returning boomerang is designed to return to the thrower, while a non-returning ...
, and
Planck Max Karl Ernst Ludwig Planck (, ; 23 April 1858 – 4 October 1947) was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial contributions to theoretical p ...
for example) confirm that the universe is flat with only a 0.4% margin of error. Yet, the issue of simple versus multiple connectivity has not yet been decided based on astronomical observation. On the other hand, any non-zero curvature is possible for a sufficiently large curved universe (analogously to how a small portion of a sphere can look flat). Theorists have been trying to construct a formal mathematical model of the shape of the universe relating connectivity, curvature and boundedness. In formal terms, this is a
3-manifold In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds lo ...
model corresponding to the spatial section (in comoving coordinates) of the four-dimensional
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
of the universe. The model most theorists currently use is the Friedmann–Lemaître–Robertson–Walker (FLRW) model. Arguments have been put forward that the observational data best fit with the conclusion that the shape of the global universe is infinite and flat, but the data is also consistent with other possible shapes, such as the so-called Poincaré dodecahedral space, the multiply connected
three-torus The three-dimensional torus, or 3-torus, is defined as any topological space that is homeomorphic to the Cartesian product of three circles, \mathbb^3 = S^1 \times S^1 \times S^1. In contrast, the usual torus is the Cartesian product of only two ...
, and the Sokolov–Starobinskii space (
quotient In arithmetic, a quotient (from lat, quotiens 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a ...
of the upper half-space model of hyperbolic space by a 2-dimensional lattice). Physical cosmology is based on the theory of
General Relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, a physical picture cast in terms of differential equations. Therefore, only the local geometric properties of the universe become theoretically accessible. Thus, Einstein's field equations determine only the local geometry but have absolutely no saying on the topology of the universe. At present, the only possibility to elucidate such global properties relies on observational data, especially the fluctuations (anisotropies) of the temperature gradient field of the Cosmic Microwave Background (CMB).


Shape of the observable universe

As stated in the introduction, there are two aspects to consider: # its local geometry, which predominantly concerns the curvature of the universe, particularly the
observable universe The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these ob ...
, and # its global geometry, which concerns the topology of the universe as a whole. The observable universe can be thought of as a sphere that extends outwards from any observation point for 46.5 billion light-years, going farther back in time and more redshifted the more distant away one looks. Ideally, one can continue to look back all the way to the Big Bang; in practice, however, the farthest away one can look using light and other
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) li ...
is the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
(CMB), as anything past that is opaque. Experimental investigations show that the observable universe is very close to isotropic and homogeneous. If the observable universe encompasses the entire universe, it may be possible to determine the structure of the entire universe by observation. However, if the observable universe is smaller than the entire universe, our observations will be limited to only a part of the whole, and we may not be able to determine its global geometry through measurement. From experiments, it is possible to construct different mathematical models of the global geometry of the entire universe, all of which are consistent with current observational data; thus it is currently unknown whether the observable universe is identical to the global universe, or is instead many orders of magnitude smaller. The universe may be small in some dimensions and not in others (analogous to the way a cuboid is longer in the dimension of length than it is in the dimensions of width and depth). To test whether a given mathematical model describes the universe accurately, scientists look for the model's novel implications—phenomena in the universe that have not yet been observed, but that must exist if the model is correct—and they devise experiments to test whether those phenomena occur or not. For example, if the universe is a small closed loop, one would expect to see multiple images of an object in the sky, although not necessarily images of the same age. Cosmologists normally work with a given
space-like In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why diffe ...
slice of spacetime called the comoving coordinates, the existence of a preferred set of which is possible and widely accepted in present-day physical cosmology. The section of spacetime that can be observed is the backward
light cone In special and general relativity, a light cone (or "null cone") is the path that a flash of light, emanating from a single event (localized to a single point in space and a single moment in time) and traveling in all directions, would take thro ...
(all points within the
cosmic light horizon The particle horizon (also called the cosmological horizon, the comoving horizon (in Dodelson's text), or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the univers ...
, given time to reach a given observer), while the related term Hubble volume can be used to describe either the past light cone or comoving space up to the surface of last scattering. To speak of "the shape of the universe (at a point in time)" is
ontological In metaphysics, ontology is the philosophical study of being, as well as related concepts such as existence, becoming, and reality. Ontology addresses questions like how entities are grouped into categories and which of these entities exi ...
ly naive from the point of view of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
alone: due to the relativity of simultaneity, different points in space cannot be said to exist "at the same point in time" nor, therefore, of "the shape of the universe at a point in time". However, the comoving coordinates (if well-defined) provide a strict sense to those by using the time since the Big Bang (measured in the reference of CMB) as a distinguished universal time.


Curvature of the universe

The curvature is a quantity describing how the geometry of a space differs locally from the one of the
flat space In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a Surface (mathematics), surface deviates from being a plane (g ...
. The curvature of any locally
isotropic space In mathematics, an isotropic manifold is a manifold in which the geometry does not depend on directions. Formally, we say that a Riemannian manifold (M,g) is isotropic if for any point p\in M and unit vectors v,w\in T_pM, there is an isometry \va ...
(and hence of a locally isotropic universe) falls into one of the three following cases: # Zero curvature (flat); a drawn triangle's angles add up to 180° and the Pythagorean theorem holds; such 3-dimensional space is locally modeled by
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
. # Positive curvature; a drawn triangle's angles add up to more than 180°; such 3-dimensional space is locally modeled by a region of a
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensio ...
. # Negative curvature; a drawn triangle's angles add up to less than 180°; such 3-dimensional space is locally modeled by a region of a
hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. The ...
. Curved geometries are in the domain of
Non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean g ...
. An example of a positively curved space would be the surface of a sphere such as the Earth. A triangle drawn from the equator to a pole will have at least two angles equal 90°, which makes the sum of the 3 angles greater than 180°. An example of a negatively curved surface would be the shape of a
saddle The saddle is a supportive structure for a rider of an animal, fastened to an animal's back by a girth. The most common type is equestrian. However, specialized saddles have been created for oxen, camels and other animals. It is not k ...
or mountain pass. A triangle drawn on a saddle surface will have the sum of the angles adding up to less than 180°.
General relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
explains that mass and energy bend the curvature of spacetime and is used to determine what curvature the universe has by using a value called the
density parameter The Friedmann equations are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedma ...
, represented with Omega (). The density parameter is the average density of the universe divided by the critical energy density, that is, the mass energy needed for a universe to be flat. Put another way, * If , the universe is flat. * If , there is positive curvature. * If there is negative curvature. One can experimentally calculate this to determine the curvature two ways. One is to count up all the mass-energy in the universe and take its average density then divide that average by the critical energy density. Data from Wilkinson Microwave Anisotropy Probe (WMAP) as well as the
Planck spacecraft ''Planck'' was a space observatory operated by the European Space Agency (ESA) from 2009 to 2013, which mapped the anisotropies of the cosmic microwave background (CMB) at microwave and infrared frequencies, with high sensitivity and small angu ...
give values for the three constituents of all the mass-energy in the universe – normal mass (
baryonic matter In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classifie ...
and
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
), relativistic particles (
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
s and
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s), and
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univ ...
or the
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
: Ωmass ≈ 0.315±0.018 Ωrelativistic ≈ 9.24×10−5 ΩΛ ≈ 0.6817±0.0018 Ωtotal = Ωmass + Ωrelativistic + ΩΛ = 1.00±0.02 The actual value for critical density value is measured as ρcritical = 9.47×10−27 kg m−3. From these values, within experimental error, the universe seems to be flat. Another way to measure Ω is to do so geometrically by measuring an angle across the observable universe. We can do this by using the CMB and measuring the power spectrum and temperature anisotropy. For instance, one can imagine finding a gas cloud that is not in thermal equilibrium due to being so large that light speed cannot propagate the thermal information. Knowing this propagation speed, we then know the size of the gas cloud as well as the distance to the gas cloud, we then have two sides of a triangle and can then determine the angles. Using a method similar to this, the BOOMERanG experiment has determined that the sum of the angles to 180° within experimental error, corresponding to an Ωtotal ≈ 1.00±0.12. These and other astronomical measurements constrain the spatial curvature to be very close to zero, although they do not constrain its sign. This means that although the local geometries of spacetime are generated by the theory of relativity based on
spacetime interval In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
s, we can approximate ''3-space'' by the familiar
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
. The Friedmann–Lemaître–Robertson–Walker (FLRW) model using
Friedmann equations The Friedmann equations are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann ...
is commonly used to model the universe. The FLRW model provides a curvature of the universe based on the mathematics of fluid dynamics, that is, modeling the matter within the universe as a perfect fluid. Although stars and structures of mass can be introduced into an "almost FLRW" model, a strictly FLRW model is used to approximate the local geometry of the observable universe. Another way of saying this is that if all forms of
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univ ...
are ignored, then the curvature of the universe can be determined by measuring the average density of matter within it, assuming that all matter is evenly distributed (rather than the distortions caused by 'dense' objects such as galaxies). This assumption is justified by the observations that, while the universe is "weakly"
inhomogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
and anisotropic (see the
large-scale structure of the cosmos The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these obj ...
), it is on average homogeneous and isotropic.


Global universe structure

Global structure covers the
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
and the
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
of the whole universe—both the observable universe and beyond. While the local geometry does not determine the global geometry completely, it does limit the possibilities, particularly a geometry of a constant curvature. The universe is often taken to be a
geodesic manifold In mathematics, a complete manifold (or geodesically complete manifold) is a (pseudo-) Riemannian manifold for which, starting at any point , you can follow a "straight" line indefinitely along any direction. More formally, the exponential map a ...
, free of
topological defects In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
; relaxing either of these complicates the analysis considerably. A global geometry is a local geometry plus a topology. It follows that a topology alone does not give a global geometry: for instance, Euclidean 3-space and hyperbolic 3-space have the same topology but different global geometries. As stated in the introduction, investigations within the study of the global structure of the universe include: * whether the universe is
infinite Infinite may refer to: Mathematics * Infinite set, a set that is not a finite set *Infinity, an abstract concept describing something without any limit Music *Infinite (group), a South Korean boy band *''Infinite'' (EP), debut EP of American m ...
or finite in extent, * whether the geometry of the global universe is flat, positively curved, or negatively curved, and, * whether the topology is simply connected like a sphere or multiply connected, like a torus.


Infinite or finite

One of the presently unanswered questions about the universe is whether it is infinite or finite in extent. For intuition, it can be understood that a finite universe has a finite volume that, for example, could be in theory filled up with a finite amount of material, while an infinite universe is unbounded and no numerical volume could possibly fill it. Mathematically, the question of whether the universe is infinite or finite is referred to as boundedness. An infinite universe (unbounded metric space) means that there are points arbitrarily far apart: for any distance , there are points that are of a distance at least apart. A finite universe is a bounded metric space, where there is some distance such that all points are within distance of each other. The smallest such is called the diameter of the universe, in which case the universe has a well-defined "volume" or "scale."


With or without boundary

Assuming a finite universe, the universe can either have an edge or no edge. Many finite mathematical spaces, e.g., a disc, have an edge or boundary. Spaces that have an edge are difficult to treat, both conceptually and mathematically. Namely, it is very difficult to state what would happen at the edge of such a universe. For this reason, spaces that have an edge are typically excluded from consideration. However, there exist many finite spaces, such as the
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensio ...
and 3-torus, which have no edges. Mathematically, these spaces are referred to as being
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
without boundary. The term compact means that it is finite in extent ("bounded") and complete. The term "without boundary" means that the space has no edges. Moreover, so that calculus can be applied, the universe is typically assumed to be a differentiable manifold. A mathematical object that possesses all these properties, compact without boundary and differentiable, is termed a closed manifold. The 3-sphere and 3-torus are both closed manifolds. If space were infinite (flat, simply connected), perturbations in the temperature of the CMB radiation would exist on all scales. If, however, space is finite, then there are those wavelengths missing that are larger than the size of the space. Maps of the CMB perturbation spectrum made with satellites like NASA's WMAP and the ESA's Planck have shown a striking amount of missing perturbations at large scales. The properties of the observed fluctuations of the CMB show a 'missing power' on scales beyond the size of the universe. That would imply that our universe is multiply-connected and finite. The spectrum of the CMB fits much better with the universe as a gigantic three-torus, a cosmos connected to itself in all three dimensions.


Curvature

The curvature of the universe places constraints on the topology. If the spatial geometry is
spherical A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ce ...
, i.e., possess positive curvature, the topology is compact. For a flat (zero curvature) or a hyperbolic (negative curvature) spatial geometry, the topology can be either compact or infinite. Many textbooks erroneously state that a flat universe implies an infinite universe; however, the correct statement is that a flat universe that is also simply connected implies an infinite universe. For example,
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
is flat, simply connected, and infinite, but there are tori which are flat, multiply connected, finite, and compact (see
flat torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not tou ...
). In general, local to global theorems in
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to point ...
relate the local geometry to the global geometry. If the local geometry has constant curvature, the global geometry is very constrained, as described in Thurston geometries. The latest research shows that even the most powerful future experiments (like the
SKA Ska (; ) is a music genre that originated in Jamaica in the late 1950s and was the precursor to rocksteady and reggae. It combined elements of Caribbean mento and calypso with American jazz and rhythm and blues. Ska is characterized by a walki ...
) will not be able to distinguish between flat, open and closed universe if the true value of cosmological curvature parameter is smaller than 10−4. If the true value of the cosmological curvature parameter is larger than 10−3 we will be able to distinguish between these three models even now. Final results of the ''Planck'' mission, released in 2018 show the cosmological curvature parameter, 1 – Ω = Ω''K'' = –''K c²/a²H²'', to be 0.0007±0.0019, consistent with a flat universe. (i.e. positive curvature: ''K = +1, Ωκ < 0'', Ω > 1, negative curvature: ''K = −1, Ωκ > 0, Ω < 1'', zero curvature: ''K = 0, Ωκ = 0, Ω = 1'').


Universe with zero curvature

In a universe with zero curvature, the local geometry is
flat Flat or flats may refer to: Architecture * Flat (housing), an apartment in the United Kingdom, Ireland, Australia and other Commonwealth countries Arts and entertainment * Flat (music), a symbol () which denotes a lower pitch * Flat (soldier), ...
. The most obvious global structure is that of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
, which is infinite in extent. Flat universes that are finite in extent include the
torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not tou ...
and Klein bottle. Moreover, in three dimensions, there are 10 finite closed flat 3-manifolds, of which 6 are orientable and 4 are non-orientable. These are the Bieberbach manifolds. The most familiar is the aforementioned 3-torus universe. In the absence of dark energy, a flat universe expands forever but at a continually decelerating rate, with expansion asymptotically approaching zero. With dark energy, the expansion rate of the universe initially slows down, due to the effect of gravity, but eventually increases. The
ultimate fate of the universe The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational e ...
is the same as that of an open universe. A flat universe can have zero total energy.


Universe with positive curvature

A positively curved universe is described by
elliptic geometry Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
, and can be thought of as a three-dimensional
hypersphere In mathematics, an -sphere or a hypersphere is a topological space that is homeomorphic to a ''standard'' -''sphere'', which is the set of points in -dimensional Euclidean space that are situated at a constant distance from a fixed point, call ...
, or some other
spherical 3-manifold In mathematics, a spherical 3-manifold ''M'' is a 3-manifold of the form :M=S^3/\Gamma where \Gamma is a finite subgroup of SO(4) acting freely by rotations on the 3-sphere S^3. All such manifolds are prime, orientable, and closed. Spherical 3-ma ...
(such as the Poincaré dodecahedral space), all of which are
quotient In arithmetic, a quotient (from lat, quotiens 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a ...
s of the 3-sphere. Poincaré dodecahedral space is a positively curved space, colloquially described as "soccerball-shaped", as it is the
quotient In arithmetic, a quotient (from lat, quotiens 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a ...
of the 3-sphere by the
binary icosahedral group In mathematics, the binary icosahedral group 2''I'' or Coxeter&Moser: Generators and Relations for discrete groups: : Rl = Sm = Tn = RST is a certain nonabelian group of order 120. It is an extension of the icosahedral group ''I'' or (2,3,5) of o ...
, which is very close to
icosahedral symmetry In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual polyhedr ...
, the symmetry of a soccer ball. This was proposed by Jean-Pierre Luminet and colleagues in 2003"Is the universe a dodecahedron?"
article at PhysicsWeb.
and an optimal orientation on the sky for the model was estimated in 2008.


Universe with negative curvature

A hyperbolic universe, one of a negative spatial curvature, is described by
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P ...
, and can be thought of locally as a three-dimensional analog of an infinitely extended saddle shape. There are a great variety of
hyperbolic 3-manifold In mathematics, more precisely in topology and differential geometry, a hyperbolic 3–manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to -1. It ...
s, and their classification is not completely understood. Those of finite volume can be understood via the Mostow rigidity theorem. For hyperbolic local geometry, many of the possible three-dimensional spaces are informally called "horn topologies", so called because of the shape of the
pseudosphere In geometry, a pseudosphere is a surface with constant negative Gaussian curvature. A pseudosphere of radius is a surface in \mathbb^3 having curvature in each point. Its name comes from the analogy with the sphere of radius , which is a surface ...
, a canonical model of hyperbolic geometry. An example is the
Picard horn A Picard horn, also called the Picard topology or Picard model, is one of the oldest known hyperbolic 3-manifolds, first described by Émile Picard in 1884. The manifold is the quotient of the upper half-plane model of hyperbolic 3-space by the pro ...
, a negatively curved space, colloquially described as "funnel-shaped".


Curvature: open or closed

When cosmologists speak of the universe as being "open" or "closed", they most commonly are referring to whether the curvature is negative or positive, respectively. These meanings of open and closed are different from the mathematical meaning of open and closed used for sets in topological spaces and for the mathematical meaning of open and closed manifolds, which gives rise to ambiguity and confusion. In mathematics, there are definitions for a closed manifold (i.e., compact without boundary) and open manifold (i.e., one that is not compact and without boundary). A "closed universe" is necessarily a closed manifold. An "open universe" can be either a closed or open manifold. For example, in the Friedmann–Lemaître–Robertson–Walker (FLRW) model the universe is considered to be without boundaries, in which case "compact universe" could describe a universe that is a closed manifold.


Milne model (hyperbolic expanding)

If one applies
Minkowski space In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the iner ...
-based
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
to expansion of the universe, without resorting to the concept of a curved spacetime, then one obtains the Milne model. Any spatial section of the universe of a constant age (the
proper time In relativity, proper time (from Latin, meaning ''own time'') along a timelike world line is defined as the time as measured by a clock following that line. It is thus independent of coordinates, and is a Lorentz scalar. The proper time interval ...
elapsed from the Big Bang) will have a negative curvature; this is merely a pseudo-Euclidean geometric fact analogous to one that concentric spheres in the ''flat''
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
are nevertheless curved. Spatial geometry of this model is an unbounded
hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. The ...
. The entire universe in this model can be modelled by embedding it in Minkowski spacetime, in which case the universe is included inside a future
light cone In special and general relativity, a light cone (or "null cone") is the path that a flash of light, emanating from a single event (localized to a single point in space and a single moment in time) and traveling in all directions, would take thro ...
of a Minkowski spacetime. The Milne model in this case is the future interior of the light cone and the light cone itself is the Big Bang. For any given moment of
coordinate time In the theory of relativity, it is convenient to express results in terms of a spacetime coordinate system relative to an implied observer. In many (but not all) coordinate systems, an event is specified by one time coordinate and three spatial ...
within the Milne model (assuming the Big Bang has ), any cross-section of the universe at constant in the Minkowski spacetime is bounded by a
sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is th ...
of radius . The apparent paradox of an infinite universe "contained" within a sphere is an effect of the mismatch between coordinate systems of the Milne model and the Minkowski spacetime in which it is embedded. This model is essentially a
degenerate Degeneracy, degenerate, or degeneration may refer to: Arts and entertainment * Degenerate (album), ''Degenerate'' (album), a 2010 album by the British band Trigger the Bloodshed * Degenerate art, a term adopted in the 1920s by the Nazi Party i ...
FLRW for . It is incompatible with observations that definitely rule out such a large negative spatial curvature. However, as a background in which gravitational fields (or gravitons) can operate, due to diffeomorphism invariance, the space on the macroscopic scale, is equivalent to any other (open) solution of Einstein's field equations.


See also

* *—A string-theory-related model depicting a five-dimensional,
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. ...
-shaped universe; an alternative to the Hot Big Bang Model, whereby the universe is described to have originated when two membranes collided at the fifth dimension * for 6 or 7 extra space-like dimensions all with a ''compact'' topology * * * *—The "remarkable theorem" discovered by
Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
, which showed there is an intrinsic notion of curvature for surfaces. This is used by
Riemann Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rig ...
to generalize the (intrinsic) notion of curvature to higher-dimensional spaces * *


References


External links


Geometry of the Universe
at icosmos.co.uk * * *

Possible wrap-around dodecahedral shape of the universe *Classification o

in the
Lambda-CDM The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda (Greek Λ) associated with ...
model. * *
What do you mean the universe is flat?
Scientific American Blog explanation of a flat universe and the curved spacetime in the universe. {{Portal bar, Astronomy, Stars, Spaceflight, Outer space, Solar System, Physics Physical cosmology Differential geometry General relativity Unsolved problems in astronomy Big Bang