Bow Curve (London)
   HOME

TheInfoList



OR:

In
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
, a quartic plane curve is a plane algebraic curve of the fourth degree. It can be defined by a bivariate quartic equation: :Ax^4+By^4+Cx^3y+Dx^2y^2+Exy^3+Fx^3+Gy^3+Hx^2y+Ixy^2+Jx^2+Ky^2+Lxy+Mx+Ny+P=0, with at least one of not equal to zero. This equation has 15 constants. However, it can be multiplied by any non-zero constant without changing the curve; thus by the choice of an appropriate constant of multiplication, any one of the coefficients can be set to 1, leaving only 14 constants. Therefore, the space of quartic curves can be identified with the real projective space It also follows, from Cramer's theorem on algebraic curves, that there is exactly one quartic curve that passes through a set of 14 distinct points in general position, since a quartic has 14
degrees of freedom Degrees of freedom (often abbreviated df or DOF) refers to the number of independent variables or parameters of a thermodynamic system. In various scientific fields, the word "freedom" is used to describe the limits to which physical movement or ...
. A quartic curve can have a maximum of: * Four connected components * Twenty-eight bi-tangents * Three ordinary
double point In geometry, a singular point on a curve is one where the curve is not given by a smooth embedding of a parameter. The precise definition of a singular point depends on the type of curve being studied. Algebraic curves in the plane Algebraic cu ...
s. One may also consider quartic curves over other fields (or even rings), for instance the complex numbers. In this way, one gets Riemann surfaces, which are one-dimensional objects over but are two-dimensional over An example is the Klein quartic. Additionally, one can look at curves in the projective plane, given by homogeneous polynomials.


Examples

Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. *
Bicorn In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation y^2 \left(a^2 - x^2\right) = \left(x^2 + 2ay - a^2\right)^2. It has two cusps and is symmetric abou ...
* Bullet-nose curve * Cartesian oval * Cassini oval * Deltoid curve * Hippopede * Kampyle of Eudoxus * Klein quartic * Lemniscate ** Lemniscate of Bernoulli ** Lemniscate of Gerono * Limaçon * Lüroth quartic * Spiric section * Squircle ** Lamé's special quartic * Toric section * Trott curve


Ampersand curve

The ampersand curve is a quartic plane curve given by the equation: :\ (y^2-x^2)(x-1)(2x-3)=4(x^2+y^2-2x)^2. It has genus zero, with three ordinary double points, all in the real plane.


Bean curve

The bean curve is a quartic plane curve with the equation: :x^4+x^2y^2+y^4=x(x^2+y^2). \, The bean curve has genus zero. It has one singularity at the origin, an ordinary triple point.


Bicuspid curve

The bicuspid is a quartic plane curve with the equation :(x^2-a^2)(x-a)^2+(y^2-a^2)^2=0 \, where ''a'' determines the size of the curve. The bicuspid has only the two cusps as singularities, and hence is a curve of genus one.


Bow curve

The bow curve is a quartic plane curve with the equation: :x^4=x^2y-y^3. \, The bow curve has a single triple point at ''x''=0, ''y''=0, and consequently is a rational curve, with genus zero.


Cruciform curve

The cruciform curve, or cross curve is a quartic plane curve given by the equation :x^2y^2-b^2x^2-a^2y^2=0 \, where ''a'' and ''b'' are two parameters determining the shape of the curve. The cruciform curve is related by a standard quadratic transformation, ''x'' ↦ 1/''x'', ''y'' ↦ 1/''y'' to the ellipse ''a''2''x''2 + ''b''2''y''2 = 1, and is therefore a rational plane algebraic curve of genus zero. The cruciform curve has three double points in the real projective plane, at ''x''=0 and ''y''=0, ''x''=0 and ''z''=0, and ''y''=0 and ''z''=0. Because the curve is rational, it can be parametrized by rational functions. For instance, if ''a''=1 and ''b''=2, then :x = -\frac,\quad y = \frac parametrizes the points on the curve outside of the exceptional cases where a denominator is zero. The inverse Pythagorean theorem is obtained from the above equation by substituting ''x'' with ''AC'', ''y'' with ''BC'', and each ''a'' and ''b'' with ''CD'', where ''A'', ''B'' are the endpoints of the hypotenuse of a right triangle ''ABC'', and ''D'' is the foot of a perpendicular dropped from ''C'', the vertex of the right angle, to the hypotenuse: :\begin AC^2 BC^2 - CD^2 AC^2 - CD^2 BC^2 &= 0 \\ AC^2 BC^2 &= CD^2 BC^2 + CD^2 AC^2 \\ \frac &= \frac + \frac \\ \therefore \;\; \frac &= \frac + \frac \end


Spiric section

Spiric sections can be defined as bicircular quartic curves that are symmetric with respect to the ''x'' and ''y'' axes. Spiric sections are included in the family of toric sections and include the family of hippopedes and the family of Cassini ovals. The name is from σπειρα meaning torus in ancient Greek. The Cartesian equation can be written as :(x^2+y^2)^2=dx^2+ey^2+f , and the equation in polar coordinates as :r^4=dr^2\cos^2\theta+er^2\sin^2\theta+f. \,


Three-leaved clover (trifolium)

The three-leaved clover or trifolium is the quartic plane curve : x^4+2x^2y^2+y^4-x^3+3xy^2=0. \, By solving for ''y'', the curve can be described by the following function: : y=\pm\sqrt, where the two appearances of ± are independent of each other, giving up to four distinct values of ''y'' for each ''x''. The parametric equation of curve is : x = \cos(3t) \cos t,\quad y = \cos(3t) \sin t. \, Gibson, C. G., ''Elementary Geometry of Algebraic Curves, an Undergraduate Introduction'', Cambridge University Press, Cambridge, 2001, {{isbn, 978-0-521-64641-3. Pages 12 and 78. In polar coordinates (''x'' = ''r'' cos φ, ''y'' = ''r'' sin φ) the equation is :r = \cos(3\varphi). \, It is a special case of rose curve with ''k'' = 3. This curve has a triple point at the origin (0, 0) and has three double tangents.


See also

* Ternary quartic * Bitangents of a quartic


References

Algebraic curves Plane curves