HOME

TheInfoList



OR:

In statistics, econometrics and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it is used to describe certain time-varying processes in nature, economics, etc. The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term (an imperfectly predictable term); thus the model is in the form of a stochastic difference equation (or recurrence relation which should not be confused with differential equation). Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and
autoregressive integrated moving average In statistics and econometrics, and in particular in time series analysis, an autoregressive integrated moving average (ARIMA) model is a generalization of an autoregressive moving average (ARMA) model. Both of these models are fitted to time ser ...
(ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which consists of a system of more than one interlocking stochastic difference equation in more than one evolving random variable. Contrary to the moving-average (MA) model, the autoregressive model is not always stationary as it may contain a unit root.


Definition

The notation AR(p) indicates an autoregressive model of order ''p''. The AR(''p'') model is defined as : X_t = \sum_^p \varphi_i X_ + \varepsilon_t where \varphi_1, \ldots, \varphi_p are the ''parameters'' of the model, and \varepsilon_t is
white noise In signal processing, white noise is a random signal having equal intensity at different frequencies, giving it a constant power spectral density. The term is used, with this or similar meanings, in many scientific and technical disciplines ...
. This can be equivalently written using the
backshift operator In time series analysis, the lag operator (L) or backshift operator (B) operates on an element of a time series to produce the previous element. For example, given some time series :X= \ then : L X_t = X_ for all t > 1 or similarly in term ...
''B'' as : X_t = \sum_^p \varphi_i B^i X_ + \varepsilon_t so that, moving the summation term to the left side and using polynomial notation, we have :\phi _t= \varepsilon_t An autoregressive model can thus be viewed as the output of an all-
pole Pole may refer to: Astronomy *Celestial pole, the projection of the planet Earth's axis of rotation onto the celestial sphere; also applies to the axis of rotation of other planets *Pole star, a visible star that is approximately aligned with the ...
infinite impulse response Infinite impulse response (IIR) is a property applying to many linear time-invariant systems that are distinguished by having an impulse response h(t) which does not become exactly zero past a certain point, but continues indefinitely. This is in ...
filter whose input is white noise. Some parameter constraints are necessary for the model to remain
wide-sense stationary In mathematics and statistics, a stationary process (or a strict/strictly stationary process or strong/strongly stationary process) is a stochastic process whose unconditional joint probability distribution does not change when shifted in time. Con ...
. For example, processes in the AR(1) model with , \varphi_1 , \geq 1 are not stationary. More generally, for an AR(''p'') model to be wide-sense stationary, the roots of the polynomial \Phi(z):=\textstyle 1 - \sum_^p \varphi_i z^ must lie outside the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
, i.e., each (complex) root z_i must satisfy , z_i , >1 (see pages 89,92 ).


Intertemporal effect of shocks

In an AR process, a one-time shock affects values of the evolving variable infinitely far into the future. For example, consider the AR(1) model X_t = \varphi_1 X_ + \varepsilon_t. A non-zero value for \varepsilon_t at say time ''t''=1 affects X_1 by the amount \varepsilon_1. Then by the AR equation for X_2 in terms of X_1, this affects X_2 by the amount \varphi_1 \varepsilon_1. Then by the AR equation for X_3 in terms of X_2, this affects X_3 by the amount \varphi_1^2 \varepsilon_1. Continuing this process shows that the effect of \varepsilon_1 never ends, although if the process is stationary then the effect diminishes toward zero in the limit. Because each shock affects ''X'' values infinitely far into the future from when they occur, any given value ''X''''t'' is affected by shocks occurring infinitely far into the past. This can also be seen by rewriting the autoregression :\phi (B)X_t= \varepsilon_t \, (where the constant term has been suppressed by assuming that the variable has been measured as deviations from its mean) as :X_t= \frac\varepsilon_t \, . When the
polynomial division In algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalized version of the familiar arithmetic technique called long division. It can be done easily by hand, beca ...
on the right side is carried out, the polynomial in the backshift operator applied to \varepsilon_t has an infinite order—that is, an infinite number of lagged values of \varepsilon_t appear on the right side of the equation.


Characteristic polynomial

The
autocorrelation function Autocorrelation, sometimes known as serial correlation in the discrete time case, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a random variabl ...
of an AR(''p'') process can be expressed as :\rho(\tau) = \sum_^p a_k y_k^ , where y_k are the roots of the polynomial : \phi(B) = 1- \sum_^p \varphi_k B^k where ''B'' is the
backshift operator In time series analysis, the lag operator (L) or backshift operator (B) operates on an element of a time series to produce the previous element. For example, given some time series :X= \ then : L X_t = X_ for all t > 1 or similarly in term ...
, where \phi(\cdot) is the function defining the autoregression, and where \varphi_k are the coefficients in the autoregression. The formula is valid only if all the roots have multiplicity 1. The autocorrelation function of an AR(''p'') process is a sum of decaying exponentials. * Each real root contributes a component to the autocorrelation function that decays exponentially. * Similarly, each pair of complex conjugate roots contributes an exponentially damped oscillation.


Graphs of AR(''p'') processes

The simplest AR process is AR(0), which has no dependence between the terms. Only the error/innovation/noise term contributes to the output of the process, so in the figure, AR(0) corresponds to white noise. For an AR(1) process with a positive \varphi, only the previous term in the process and the noise term contribute to the output. If \varphi is close to 0, then the process still looks like white noise, but as \varphi approaches 1, the output gets a larger contribution from the previous term relative to the noise. This results in a "smoothing" or integration of the output, similar to a
low pass filter A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filter des ...
. For an AR(2) process, the previous two terms and the noise term contribute to the output. If both \varphi_1 and \varphi_2 are positive, the output will resemble a low pass filter, with the high frequency part of the noise decreased. If \varphi_1 is positive while \varphi_2 is negative, then the process favors changes in sign between terms of the process. The output oscillates. This can be likened to edge detection or detection of change in direction.


Example: An AR(1) process

An AR(1) process is given by:X_t = \varphi X_+\varepsilon_t\,where \varepsilon_t is a white noise process with zero mean and constant variance \sigma_\varepsilon^2. (Note: The subscript on \varphi_1 has been dropped.) The process is
wide-sense stationary In mathematics and statistics, a stationary process (or a strict/strictly stationary process or strong/strongly stationary process) is a stochastic process whose unconditional joint probability distribution does not change when shifted in time. Con ...
if , \varphi, <1 since it is obtained as the output of a stable filter whose input is white noise. (If \varphi=1 then the variance of X_t depends on time lag t, so that the variance of the series diverges to infinity as t goes to infinity, and is therefore not wide sense stationary.) Assuming , \varphi, <1, the mean \operatorname (X_t) is identical for all values of ''t'' by the very definition of wide sense stationarity. If the mean is denoted by \mu, it follows from\operatorname (X_t)=\varphi\operatorname (X_)+\operatorname(\varepsilon_t), that \mu=\varphi\mu+0,and hence :\mu=0. The
variance In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbe ...
is :\textrm(X_t)=\operatorname(X_t^2)-\mu^2=\frac, where \sigma_\varepsilon is the standard deviation of \varepsilon_t. This can be shown by noting that :\textrm(X_t) = \varphi^2\textrm(X_) + \sigma_\varepsilon^2, and then by noticing that the quantity above is a stable fixed point of this relation. The
autocovariance In probability theory and statistics, given a stochastic process, the autocovariance is a function that gives the covariance of the process with itself at pairs of time points. Autocovariance is closely related to the autocorrelation of the process ...
is given by :B_n=\operatorname(X_X_t)-\mu^2=\frac\,\,\varphi^. It can be seen that the autocovariance function decays with a decay time (also called
time constant In physics and engineering, the time constant, usually denoted by the Greek letter (tau), is the parameter characterizing the response to a step input of a first-order, linear time-invariant (LTI) system.Concretely, a first-order LTI system is a s ...
) of \tau=-1/\ln(\varphi) o see this, write B_n=K\varphi^ where K is independent of n. Then note that \varphi^=e^ and match this to the exponential decay law e^ The
spectral density The power spectrum S_(f) of a time series x(t) describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, ...
function is the Fourier transform of the autocovariance function. In discrete terms this will be the discrete-time Fourier transform: :\Phi(\omega)= \frac\,\sum_^\infty B_n e^ =\frac\,\left(\frac\right). This expression is periodic due to the discrete nature of the X_j, which is manifested as the cosine term in the denominator. If we assume that the sampling time (\Delta t=1) is much smaller than the decay time (\tau), then we can use a continuum approximation to B_n: :B(t)\approx \frac\,\,\varphi^ which yields a Lorentzian profile for the spectral density: :\Phi(\omega)= \frac\,\frac\,\frac where \gamma=1/\tau is the angular frequency associated with the decay time \tau. An alternative expression for X_t can be derived by first substituting \varphi X_+\varepsilon_ for X_ in the defining equation. Continuing this process ''N'' times yields :X_t=\varphi^NX_+\sum_^\varphi^k\varepsilon_. For ''N'' approaching infinity, \varphi^N will approach zero and: :X_t=\sum_^\infty\varphi^k\varepsilon_. It is seen that X_t is white noise convolved with the \varphi^k kernel plus the constant mean. If the white noise \varepsilon_t is a Gaussian process then X_t is also a Gaussian process. In other cases, the
central limit theorem In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themsel ...
indicates that X_t will be approximately normally distributed when \varphi is close to one. For \varepsilon_t = 0, the process X_t = \varphi X_ will be a
geometric progression In mathematics, a geometric progression, also known as a geometric sequence, is a sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the ''common ratio''. For ex ...
(''exponential'' growth or decay). In this case, the solution can be found analytically: X_t = a \varphi^t whereby a is an unknown constant ( initial condition).


Explicit mean/difference form of AR(1) process

The AR(1) model is the discrete time analogy of the continuous Ornstein-Uhlenbeck process. It is therefore sometimes useful to understand the properties of the AR(1) model cast in an equivalent form. In this form, the AR(1) model, with process parameter \theta is given by: :X_ = X_t + (1-\theta)(\mu - X_t) + \varepsilon_, where , \theta, < 1 \, and \mu is the model mean. By putting this in the form X_ = \phi X_t +\varepsilon_ , and then expanding the series for X_, one can show that: : \operatorname(X_ , X_t) = \mu\left -\theta^n\right+ X_t\theta^n, and : \operatorname (X_ , X_t) = \sigma^2 \frac.


Choosing the maximum lag

The partial autocorrelation of an AR(p) process equals zero at lag which is not bigger than order of p and provides a good model for the correlation between X_1 and X_ , so the appropriate maximum lag is the one beyond which the partial autocorrelations are all zero.


Calculation of the AR parameters

There are many ways to estimate the coefficients, such as the
ordinary least squares In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one effects of a linear function of a set of explanatory variables) by the ...
procedure or method of moments (through Yule–Walker equations). The AR(''p'') model is given by the equation : X_t = \sum_^p \varphi_i X_+ \varepsilon_t.\, It is based on parameters \varphi_i where ''i'' = 1, ..., ''p''. There is a direct correspondence between these parameters and the covariance function of the process, and this correspondence can be inverted to determine the parameters from the autocorrelation function (which is itself obtained from the covariances). This is done using the Yule–Walker equations.


Yule–Walker equations

The Yule–Walker equations, named for
Udny Yule George Udny Yule FRS (18 February 1871 – 26 June 1951), usually known as Udny Yule, was a British statistician, particularly known for the Yule distribution. Personal life Yule was born at Beech Hill, a house in Morham near Haddingto ...
and Gilbert Walker, are the following set of equations. :\gamma_m = \sum_^p \varphi_k \gamma_ + \sigma_\varepsilon^2\delta_, where , yielding equations. Here \gamma_m is the autocovariance function of Xt, \sigma_\varepsilon is the standard deviation of the input noise process, and \delta_ is the Kronecker delta function. Because the last part of an individual equation is non-zero only if , the set of equations can be solved by representing the equations for in matrix form, thus getting the equation :\begin \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \vdots \\ \gamma_p \\ \end = \begin \gamma_0 & \gamma_ & \gamma_ & \cdots \\ \gamma_1 & \gamma_0 & \gamma_ & \cdots \\ \gamma_2 & \gamma_1 & \gamma_0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ \gamma_ & \gamma_ & \gamma_ & \cdots \\ \end \begin \varphi_ \\ \varphi_ \\ \varphi_ \\ \vdots \\ \varphi_ \\ \end which can be solved for all \. The remaining equation for ''m'' = 0 is :\gamma_0 = \sum_^p \varphi_k \gamma_ + \sigma_\varepsilon^2 , which, once \ are known, can be solved for \sigma_\varepsilon^2 . An alternative formulation is in terms of the
autocorrelation function Autocorrelation, sometimes known as serial correlation in the discrete time case, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a random variabl ...
. The AR parameters are determined by the first ''p''+1 elements \rho(\tau) of the autocorrelation function. The full autocorrelation function can then be derived by recursively calculating : \rho(\tau) = \sum_^p \varphi_k \rho(k-\tau) Examples for some Low-order AR(''p'') processes * ''p''=1 ** \gamma_1 = \varphi_1 \gamma_0 ** Hence \rho_1 = \gamma_1 / \gamma_0 = \varphi_1 * ''p''=2 ** The Yule–Walker equations for an AR(2) process are **: \gamma_1 = \varphi_1 \gamma_0 + \varphi_2 \gamma_ **: \gamma_2 = \varphi_1 \gamma_1 + \varphi_2 \gamma_0 *** Remember that \gamma_ = \gamma_k *** Using the first equation yields \rho_1 = \gamma_1 / \gamma_0 = \frac *** Using the recursion formula yields \rho_2 = \gamma_2 / \gamma_0 = \frac


Estimation of AR parameters

The above equations (the Yule–Walker equations) provide several routes to estimating the parameters of an AR(''p'') model, by replacing the theoretical covariances with estimated values. Some of these variants can be described as follows: *Estimation of autocovariances or autocorrelations. Here each of these terms is estimated separately, using conventional estimates. There are different ways of doing this and the choice between these affects the properties of the estimation scheme. For example, negative estimates of the variance can be produced by some choices. *Formulation as a
least squares regression Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and ...
problem in which an ordinary least squares prediction problem is constructed, basing prediction of values of ''X''''t'' on the ''p'' previous values of the same series. This can be thought of as a forward-prediction scheme. The normal equations for this problem can be seen to correspond to an approximation of the matrix form of the Yule–Walker equations in which each appearance of an autocovariance of the same lag is replaced by a slightly different estimate. *Formulation as an extended form of ordinary least squares prediction problem. Here two sets of prediction equations are combined into a single estimation scheme and a single set of normal equations. One set is the set of forward-prediction equations and the other is a corresponding set of backward prediction equations, relating to the backward representation of the AR model: :: X_t = \sum_^p \varphi_i X_+ \varepsilon^*_t \,. :Here predicted values of ''X''''t'' would be based on the ''p'' future values of the same series. This way of estimating the AR parameters is due to Burg, and is called the Burg method: Burg and later authors called these particular estimates "maximum entropy estimates", but the reasoning behind this applies to the use of any set of estimated AR parameters. Compared to the estimation scheme using only the forward prediction equations, different estimates of the autocovariances are produced, and the estimates have different stability properties. Burg estimates are particularly associated with
maximum entropy spectral estimation Maximum entropy spectral estimation is a method of spectral density estimation. The goal is to improve the spectral quality based on the principle of maximum entropy. The method is based on choosing the spectrum which corresponds to the most rando ...
. Other possible approaches to estimation include
maximum likelihood estimation In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed stati ...
. Two distinct variants of maximum likelihood are available: in one (broadly equivalent to the forward prediction least squares scheme) the likelihood function considered is that corresponding to the conditional distribution of later values in the series given the initial ''p'' values in the series; in the second, the likelihood function considered is that corresponding to the unconditional joint distribution of all the values in the observed series. Substantial differences in the results of these approaches can occur if the observed series is short, or if the process is close to non-stationarity.


Spectrum

The
power spectral density The power spectrum S_(f) of a time series x(t) describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, ...
(PSD) of an AR(''p'') process with noise variance \mathrm(Z_t) = \sigma_Z^2 is : S(f) = \frac.


AR(0)

For white noise (AR(0)) : S(f) = \sigma_Z^2.


AR(1)

For AR(1) : S(f) = \frac = \frac *If \varphi_1 > 0 there is a single spectral peak at f=0, often referred to as red noise. As \varphi_1 becomes nearer 1, there is stronger power at low frequencies, i.e. larger time lags. This is then a low-pass filter, when applied to full spectrum light, everything except for the red light will be filtered. *If \varphi_1 < 0 there is a minimum at f=0, often referred to as blue noise. This similarly acts as a high-pass filter, everything except for blue light will be filtered.


AR(2)

AR(2) processes can be split into three groups depending on the characteristics of their roots: :z_1,z_2 = -\frac\left(\varphi_1 \pm \sqrt\right) * When \varphi_1^2 + 4\varphi_2 < 0, the process has a pair of complex-conjugate roots, creating a mid-frequency peak at: :f^* = \frac\cos^\left(\frac\right) Otherwise the process has real roots, and: * When \varphi_1 > 0 it acts as a low-pass filter on the white noise with a spectral peak at f=0 * When \varphi_1 < 0 it acts as a high-pass filter on the white noise with a spectral peak at f=1/2. The process is non-stationary when the roots are outside the unit circle. The process is stable when the roots are within the unit circle, or equivalently when the coefficients are in the triangle -1 \le \varphi_2 \le 1 - , \varphi_1, . The full PSD function can be expressed in real form as: :S(f) = \frac


Implementations in statistics packages

* R, the ''stats'' package includes an ''ar'' function. *
MATLAB MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementa ...
's Econometrics Toolbox and System Identification Toolbox includes autoregressive models *
Matlab MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementa ...
and Octave: the ''TSA toolbox'' contains several estimation functions for uni-variate,
multivariate Multivariate may refer to: In mathematics * Multivariable calculus * Multivariate function * Multivariate polynomial In computing * Multivariate cryptography * Multivariate division algorithm * Multivariate interpolation * Multivariate optical c ...
and adaptive autoregressive models. * PyMC3: the Bayesian statistics and probabilistic programming framework supports autoregressive modes with ''p'' lags. * ''bayesloop'' supports parameter inference and model selection for the AR-1 process with time-varying parameters. *
Python Python may refer to: Snakes * Pythonidae, a family of nonvenomous snakes found in Africa, Asia, and Australia ** ''Python'' (genus), a genus of Pythonidae found in Africa and Asia * Python (mythology), a mythical serpent Computing * Python (pro ...
: implementation in statsmodels.


Impulse response

The impulse response of a system is the change in an evolving variable in response to a change in the value of a shock term ''k'' periods earlier, as a function of ''k''. Since the AR model is a special case of the vector autoregressive model, the computation of the impulse response in vector autoregression#impulse response applies here.


''n''-step-ahead forecasting

Once the parameters of the autoregression : X_t = \sum_^p \varphi_i X_+ \varepsilon_t \, have been estimated, the autoregression can be used to forecast an arbitrary number of periods into the future. First use ''t'' to refer to the first period for which data is not yet available; substitute the known preceding values ''X''''t-i'' for ''i=''1, ..., ''p'' into the autoregressive equation while setting the error term \varepsilon_t equal to zero (because we forecast ''X''''t'' to equal its expected value, and the expected value of the unobserved error term is zero). The output of the autoregressive equation is the forecast for the first unobserved period. Next, use ''t'' to refer to the ''next'' period for which data is not yet available; again the autoregressive equation is used to make the forecast, with one difference: the value of ''X'' one period prior to the one now being forecast is not known, so its expected value—the predicted value arising from the previous forecasting step—is used instead. Then for future periods the same procedure is used, each time using one more forecast value on the right side of the predictive equation until, after ''p'' predictions, all ''p'' right-side values are predicted values from preceding steps. There are four sources of uncertainty regarding predictions obtained in this manner: (1) uncertainty as to whether the autoregressive model is the correct model; (2) uncertainty about the accuracy of the forecasted values that are used as lagged values in the right side of the autoregressive equation; (3) uncertainty about the true values of the autoregressive coefficients; and (4) uncertainty about the value of the error term \varepsilon_t \, for the period being predicted. Each of the last three can be quantified and combined to give a confidence interval for the ''n''-step-ahead predictions; the confidence interval will become wider as ''n'' increases because of the use of an increasing number of estimated values for the right-side variables.


Evaluating the quality of forecasts

The predictive performance of the autoregressive model can be assessed as soon as estimation has been done if cross-validation is used. In this approach, some of the initially available data was used for parameter estimation purposes, and some (from available observations later in the data set) was held back for out-of-sample testing. Alternatively, after some time has passed after the parameter estimation was conducted, more data will have become available and predictive performance can be evaluated then using the new data. In either case, there are two aspects of predictive performance that can be evaluated: one-step-ahead and ''n''-step-ahead performance. For one-step-ahead performance, the estimated parameters are used in the autoregressive equation along with observed values of ''X'' for all periods prior to the one being predicted, and the output of the equation is the one-step-ahead forecast; this procedure is used to obtain forecasts for each of the out-of-sample observations. To evaluate the quality of ''n''-step-ahead forecasts, the forecasting procedure in the previous section is employed to obtain the predictions. Given a set of predicted values and a corresponding set of actual values for ''X'' for various time periods, a common evaluation technique is to use the
mean squared prediction error In statistics the mean squared prediction error or mean squared error of the predictions of a smoothing or curve fitting procedure is the expected value of the squared difference between the fitted values implied by the predictive function \wid ...
; other measures are also available (see forecasting#forecasting accuracy). The question of how to interpret the measured forecasting accuracy arises—for example, what is a "high" (bad) or a "low" (good) value for the mean squared prediction error? There are two possible points of comparison. First, the forecasting accuracy of an alternative model, estimated under different modeling assumptions or different estimation techniques, can be used for comparison purposes. Second, the out-of-sample accuracy measure can be compared to the same measure computed for the in-sample data points (that were used for parameter estimation) for which enough prior data values are available (that is, dropping the first ''p'' data points, for which ''p'' prior data points are not available). Since the model was estimated specifically to fit the in-sample points as well as possible, it will usually be the case that the out-of-sample predictive performance will be poorer than the in-sample predictive performance. But if the predictive quality deteriorates out-of-sample by "not very much" (which is not precisely definable), then the forecaster may be satisfied with the performance.


See also

*
Moving average model In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. The moving-average model specifies that the output variable is cross-correlated with a ...
*
Linear difference equation Linearity is the property of a mathematical relationship ('' function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear ...
*
Predictive analytics Predictive analytics encompasses a variety of statistical techniques from data mining, predictive modeling, and machine learning that analyze current and historical facts to make predictions about future or otherwise unknown events. In busine ...
*
Linear predictive coding Linear predictive coding (LPC) is a method used mostly in audio signal processing and speech processing for representing the spectral envelope of a digital signal of speech in compressed form, using the information of a linear predictive mod ...
*
Resonance Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied Periodic function, periodic force (or a Fourier analysis, Fourier component of it) is equal or close to a natural frequency of the system ...
*
Levinson recursion Levinson recursion or Levinson–Durbin recursion is a procedure in linear algebra to recursively calculate the solution to an equation involving a Toeplitz matrix. The algorithm runs in time, which is a strong improvement over Gauss–Jordan eli ...
*
Ornstein–Uhlenbeck process In mathematics, the Ornstein–Uhlenbeck process is a stochastic process with applications in financial mathematics and the physical sciences. Its original application in physics was as a model for the velocity of a massive Brownian particle ...


Notes


References

* * *


External links


AutoRegression Analysis (AR)
by Paul Bourke * by
Mark Thoma Mark Allen Thoma (born December 15, 1956) is a macroeconomist and econometrician and a professor of economics at the Department of Economics of the University of Oregon. Thoma is best known as a regular columnist for ''The Fiscal Times'' throug ...
{{Stochastic processes, state=collapsed Autocorrelation Signal processing