HOME

TheInfoList



OR:

When overexpressed ectopically, anticancer genes are those that preferentially kill cancer cells while sparing normal, healthy cells. Apoptosis, necrosis, or apoptosis following a mitotic catastrophe, and autophagy are only a few of the processes that can lead to cell death. In the late 1990s, research on cancer cells led to the identification of anticancer genes. Currently, 291 The human genome contains anti-cancer genes. Base substitutions that lead to insertions, deletions, or alterations in missense amino acids that cause frameshifts that alter the protein that the gene codes for copy number variations or gene rearrangements that lead to their deregulation are all necessary for a gene change in copy number or gene rearrangements. (1)


Anticancer genes as therapeutics

Cancer is classified as a group of
disease A disease is a particular abnormal condition that negatively affects the structure or function of all or part of an organism, and that is not immediately due to any external injury. Diseases are often known to be medical conditions that a ...
s, all of which are characterized by uncontrolled cell proliferation. In normal functioning cells, apoptosis is induced to avoid these proliferative events. However, these processes may continue on to become cancer in the event the processes become dysregulated. Epidemiological studies have shown cancer to be a leading cause of death worldwide (Figure 1). Current advancements in therapeutics have led to a substantial increase in patient survival rates. Below is a non-comprehensive list of common anticancer genes.


Summary of anticancer genes


Common anticancer gene examples


''APOPTIN''


History

''Apoptin'' was the first anticancer gene to be isolated. This gene comes from the single, circular minus-strand DNA found in the
Chicken Anemia Virus ''Chicken anemia virus'', or CAV, is currently a member of the ''Anelloviridae'' family which is found worldwide. The virus only affects chickens. CAV is a non-enveloped icosahedral single stranded DNA virus, which causes bone marrow atrophy, ane ...
(CAV)
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ge ...
. This virus belongs to the ''Gyrovirus'' genus, and is currently being studied as a new cancer therapeutic and diagnostic tool. This protein, also known as viral protein 3 (VP3) was isolated from chickens, and has been shown to cause PCD in transformed human cells. Apoptin: Apoptin, a protein produced from avian viruses, causes p53-deficient tumor-specific apoptosis manner. After attaching to DNA, apoptin behaves Apoptin is mostly nuclear and phosphorylated in tumor cells, whereas it is cytoplasmic and unphosphorylated in normal cells, where it is easily neutralized. It's interesting to note that transfecting the SV40 big T oncogene can momentarily induce apoptosis, nuclear translocation, and apoptin phosphorylation in normal cells, showing that apoptin can detect early oncogenic change. Apoptin seems to detect signals of survival in cancer cells, which it can reroute into impulses for cell death. DEDAF, Nur77, Nmi, Hippi, and APC1 are among the targets for apoptin. Animal tumor models and apoptin-transgenic mice have shown apoptin to be a safe and effective anticancer agent which causes a significant tumor regression. Apoptin may be used as a target for treatment or as an early indicator of druggable tumor-specific processes in future antitumor therapies


Action

This protein encoded for by ''Apoptin'' has the specific capability of attacking transforming cells while leaving untransformed cells unharmed. Independent of
p53 p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often s ...
, Apoptin induces apoptosis through an intrinsic, mitochondrial pathway. And unlike other PCD pathways, the pathway of Apoptin is independent of death receptors. In normal functioning cells, this 13.6-kDa protein resides in the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
, yet in cancerous cells, it travels to the nucleus via phosphorylation at the Thr-108 position via the mitogenic cyclin dependent kinase (CDK2). Additionally, this protein does not act alone. Several Apoptin-interacting molecules are needed in order for Apoptin to be fully functional. These molecules include, but not limited to, DNA, clyclinA-CDK2, and fas-associated death domain protein (
FADD FAS-associated death domain protein, also called MORT1, is encoded by the ''FADD'' gene on the 11q13.3 region of chromosome 11 in humans. FADD is an adaptor protein that bridges members of the tumor necrosis factor receptor superfamily, such a ...
). Current apoptin therapeutic agents have been used to treat Lewis lung carcinomas, and osteosarcomas with future implications in treating liver cancers.


Brevinin-2R

Brevinin 2R: The frog's body's skin Ridibunda Rana was used to isolate the unique non-hemolytic defensin known as brevinin-2R. Malignant cells such as T-cell leukemia Jurkat, B-cell lymphoma BJAB, colon cancers HT29/219, SW742, fibrosarcoma L929, breast cancer MCF-7, and A549 (lung carcinoma) exhibit preferential cytotoxicity towards it in comparison to primary cells such T cells, human lung fibroblasts, and peripheral blood mononuclear cells (PBMC). Jurkat, MCF-7, and L929 overexpressing cells as well as MCF-7 cells overexpressing a dominant-negative mutant of a pro-apoptotic BNIP3 (TM-BNIP3) were largely resistant to Brevinin-2R treatment. (6)


Action

These 25 amino acid peptides, in contrast to the majority of peptides within the Brevinine family, has low hemolytic action. Not only does the peptide have a reduced hemolytic action, it also is semi-selective towards cancer cells and leaves non-cancerous cells largely unharmed. This peptide works as to prevent the progression of cancer by arresting the cell cycle at the G2/M phase, resulting in an induction of apoptosis. This defensin traditionally works as a part of the innate immune system, working as an antimicrobial defense. However, this peptide is currently being studied as an anticancer peptide. Brevinin-2R works to trigger cell death by reducing the mitochondrial membrane potential resulting in lower cellular ATP levels while simultaneously increasing the concentration of reactive oxygen species. Currently and somewhat unrelated, Brevinin-2R is being considered for diabetic treatments. In treating type II diabetes, or diabetes mellitus, Brevinins have been shown to promote insulin release. Finally, these peptides even have the capability to increase the rate of tissue regeneration, as seen with the frog in which Brevinin-2R was isolated from.


''E4orf4''


History

Early region 4 open-reading-frame 4 (E4orf4) is an adenovirus protein of 14kDa which regulates growth in all stages of the adenovirus (Ad) infection. E4orf4 partners mainly with
protein phosphatase 2A Protein phosphatase 2A may refer to: * Protein phosphatase 2 Protein phosphatase 2 (PP2), also known as PP2A, is an enzyme that in humans is encoded by the ''PPP2CA'' gene. The PP2A heterotrimeric protein phosphatase is ubiquitously expressed, ...
(PP2A) and Src kinases to induce cell death. Modeling of this protein reveals that it is likely made up of 3 α-helices with N- and C-terminal loops. It has a small stretch of amino acids in positions 66–75, which are highly basic, and likely are a place of nuclear and nucleolar targeting, as well as a place for Src kinases to bind.


Action

E4orf4 is an important regulator of adenoviruses. Additionally, outside of the context of the virus, it causes programmed cell death both in the context of a healthy cellular environment, and cancer. E4orf4 is a key regulator of Ad by down-regulating both viral and cellular genes, which plays an important role in regulating the proliferation of the virus. In turn, the down-regulation also impacts the alternative splicing of the viral RNA and protein translation. In the absence of a viral infection, E4orf4 induces
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
in a
p53 p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often s ...
and caspase-independent manner; however, there is still communication between this pathway and the caspase-dependent apoptosis pathway. In the context of cancer, E4orf4 is even more efficient at inducing cell death than in healthy cells, which could be an important finding for potential cancer therapies. It has been discovered that the mechanisms behind the function of E4orf4 is closely associated with several other proteins including the B55 subunit of PP2A. E4orf4 binds to PP2A to reduce the phosphorylation of the DNA damage response (DDR) proteins. Consequently, this reduces the function of DDR and limits DNA repair. Many cancer cells have defects in the DDR pathways and targeting these cells with E4orf4 can potentially destroy the remaining DDR pathways, resulting in cancer cell death. The main mechanism behind the specificity of cancer cell targeting by E4orf4 is unknown but there are multiple hypotheses that scientists are considering: 1) The activation of the
oncogenic Carcinogenesis, also called oncogenesis or tumorigenesis, is the formation of a cancer, whereby normal cells are transformed into cancer cells. The process is characterized by changes at the cellular, genetic, and epigenetic levels and abno ...
state causes dormant apoptotic signals to be initiated and cause cell death to be more easily achieved by different signals. 2) There has been some indication that cancer cells become addicted to oncogenic pathways. E4orf4 may inhibit these pathways, causing cell death in cancer cells, but not normal cells. 3) E4orf4 may use oncogenes that have been activated in cancer cells, including Src, to cause cell death. 4) Cancer cells have disrupted cell cycle checkpoints and E4orf4 can take advantage of this by disrupting checkpoints in mitosis. 5) A ''Drosophila'' model demonstrated that E4orf4 can inhibit classical apoptosis in healthy tissues. It has been considered that this function of E4orf4 is lost in cancer cells causing a more effective killing of cells. 6) E4orf4 has been shown to cause structural changes in
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
, which could impact metabolic reprogramming and may affect cancer and healthy cells differently.


''HAMLET''


History

HAMLET is known as an anticancer protein complex found in breast milk. One of the two molecules of this complex is multimeric alpha lactalbumin (MAL) (Figure 3), which was first discovered during a study in 1995 that investigated how breast milk affects bacteria transformed with
lung cancer Lung cancer, also known as lung carcinoma (since about 98–99% of all lung cancers are carcinomas), is a malignant lung tumor characterized by uncontrolled cell growth in tissue (biology), tissues of the lung. Lung carcinomas derive from tran ...
. This study found that transformed cells were selected for apoptosis at a much higher rate than the untransformed, healthy cells. A later study in 2000, ascertained that
oleic acid Oleic acid is a fatty acid that occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. In chemical terms, oleic acid is classified as a monounsaturated omega ...
, a C18:1 fatty acid, is a cofactor that binds to MAL forming HAMLET. This complex, in a partially unfolded state, then displays apoptotic activity in cancer cells.


Action

Apoptosis, or programmed cell death, can occur through activation of three different pathways,
intrinsic In science and engineering, an intrinsic property is a property of a specified subject that exists itself or within the subject. An extrinsic property is not essential or inherent to the subject that is being characterized. For example, mass ...
, extrinsic, or
tumor necrosis factor Tumor necrosis factor (TNF, cachexin, or cachectin; formerly known as tumor necrosis factor alpha or TNF-α) is an adipokine and a cytokine. TNF is a member of the TNF superfamily, which consists of various transmembrane proteins with a homolog ...
. HAMLET proceeds by both a multifaceted intrinsic pathway and the
caspase cascade Caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent aspartate-directed proteases) are a family of protease enzymes playing essential roles in programmed cell death. They are named caspases due to their specific cystei ...
, a subsection of the TNF pathway, through targeting many different cell components. First, after uptake by the cell, HAMLET proceeds to the mitochondria and depolarize the membranes at cytochrome c. Consequently, mitochondria dependent apoptosis factors are released as well as the caspase cascade is activated. Second,
proteasome Proteasomes are protein complexes which degrade unneeded or damaged proteins by proteolysis, a chemical reaction that breaks peptide bonds. Enzymes that help such reactions are called proteases. Proteasomes are part of a major mechanism by w ...
s are targeted by HAMLET through a mechanism that is less understood. Research does suggest that HAMLET directly binds to the proteasome leading to its inhibition. Third, HAMLET has been found to target the nucleus, specifically
histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn a ...
s. HAMLET irreversibly binds to
histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn a ...
s leading to the inactivation of
transcription Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including: Genetics * Transcription (biology), the copying of DNA into RNA, the fir ...
and
chromatin Chromatin is a complex of DNA and protein found in eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in r ...
condensation, which inevitably causes apoptosis. Lastly, studies show that cells treated by HAMLET exhibit behaviors common to
macroautophagy Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
. This includes presence of cytoplasmic
vacuole A vacuole () is a membrane-bound organelle which is present in plant and fungal cells and some protist, animal, and bacterial cells. Vacuoles are essentially enclosed compartments which are filled with water containing inorganic and organic m ...
s, double-membrane vesicles, and a dose-dependent decrease in ATP levels.


''MDA-7''


History

Melanoma differentiation associated gene-7 (''mda-7''), and also known as IL-24, was discovered in the mid-1900s using subtraction hybridization. ''mda-7'' is classified in the interleukin IL-10 family because of similar structure and amino acid sequence to other interleukins in that class, the chromosomal location ( human chromosome 1q32-33), and the shared properties it has with cytokines. Protein structural studies reveal that it is a
dimer Dimer may refer to: * Dimer (chemistry), a chemical structure formed from two similar sub-units ** Protein dimer, a protein quaternary structure ** d-dimer * Dimer model, an item in statistical mechanics, based on ''domino tiling'' * Julius Dimer ...
and
glycosylated Glycosylation is the reaction in which a carbohydrate (or ' glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not ...
. It has been found that its expression is either not present or present at very low levels in tumor cells, including advanced stage
melanoma Melanoma, also redundantly known as malignant melanoma, is a type of skin cancer that develops from the pigment-producing cells known as melanocytes. Melanomas typically occur in the skin, but may rarely occur in the mouth, intestines, or eye ( ...
and metastatic disease, compared to normal non- transformed cells. Multiple studies within the past 15 years have demonstrated that increasing ''mda-7'' expression in tumor cells results in growth arrest and cell death in many different cell lines. When ''mda-7'' is over-expressed in normal cells, no change in growth or cell viability is detected. ''mda-7'' is also considered a radio-sensitizing cytokine because it generates a
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () p ...
and causes stress in endoplasmic reticulum. ''mda-7'' has been used in several clinical trials because of its ability to induce apoptosis, prevent tumor angiogenesis, cause immune-regulation, and increase radiation lethality. It was seen in one Phase I clinical trial that injecting ''mda-7'' via an adenovirus directly into a tumor resulted in safe tumor regulation and immune activation.


Action

''mda-7'' interacts with two of the type II cytokine hetero-dymeric receptor complexes IL-20R1/IL-20R2 and IL-22R1/IL-20R2. It has been seen that in some contexts, ''mda-7'' activates
STAT STAT, Stat. , or stat may refer to: * Stat (system call), a Unix system call that returns file attributes of an inode * ''Stat'' (TV series), an American sitcom that aired in 1991 * Stat (website), a health-oriented news website * STAT protein, a ...
transcription factors. However, the STAT pathway is not always activated and is not required for ''mda-7'' cell growth arrest and cell death. ''mda-7'' can be placed into tumor cell lines via
transfection Transfection is the process of deliberately introducing naked or purified nucleic acids into eukaryotic cells. It may also refer to other methods and cell types, although other terms are often preferred: " transformation" is typically used to des ...
or adenovirus- transduction; it has been seen that following this, apoptosis is induced only in the tumor cells and results in no toxicity in the healthy cells. Its function as a tumor suppressor is not fully understood, but it has been observed that in the context of
melanoma Melanoma, also redundantly known as malignant melanoma, is a type of skin cancer that develops from the pigment-producing cells known as melanocytes. Melanomas typically occur in the skin, but may rarely occur in the mouth, intestines, or eye ( ...
, ''mda-7'' expression is drastically decreased. While there are no official studies published backing this claim, it is thought that ''mda-7'' could potentially act as a paracrine factor, be involved in signaling short-range, and immune function in skin. ''mda-7'' is also thought to have a pro-inflammatory purpose. It is also possible that ''mda-7'' induces cytokine secretion, which causes antigen-presenting cells to present tumor antigens, resulting in an immune response against tumors. It has also been discovered that ''mda-7,'' and its translated protein MDA-7, interacts with kinases including serine/threonine
protein kinase A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fu ...
(PKR). Further studies will need to be performed to better understand the mechanisms of ''mda-7'' action.


''NOXA''


History

Noxa, isolated from mice, is a member of the
Bcl-2 family The Bcl-2 familyTC# 1.A.21 consists of a number of evolutionarily-conserved proteins that share Bcl-2 homology (BH) domains. The Bcl-2 family is most notable for their regulation of apoptosis, a form of programmed cell death, at the mitochondrion ...
and is able to regulate cell death through a variety of intracellular stress signals. Having been discovered nearly three decades ago in 1990 by Hijikata et al., this gene product was isolated this protein from an adult T-cell leukemia (ATL) library This gene, and its protein in which it encodes for, has been studied as a potential therapeutic in chronic lymphocytic leukemia (CLL), the most common
leukemia Leukemia ( also spelled leukaemia and pronounced ) is a group of blood cancers that usually begin in the bone marrow and result in high numbers of abnormal blood cells. These blood cells are not fully developed and are called ''blasts'' or ...
found in adults in the
Western world The Western world, also known as the West, primarily refers to the various nations and state (polity), states in the regions of Europe, North America, and Oceania.
. In humans, the Noxa homologue is known as APR/PMAIP1.


Action

Upon receiving intrinsic death signals, the gene NOXA encodes for the protein Noxa through a three-exon transcript. This protein binds to anti-apoptotic proteins resulting in these proteins' inhibition. As a p53 inducible gene, NOXA is transcribed and translated to Noxa in response to DNA damage and hypoxia induced apoptosis. A constitutive gene found in the
brain A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a ve ...
,
thymus The thymus is a specialized primary lymphoid organ of the immune system. Within the thymus, thymus cell lymphocytes or ''T cells'' mature. T cells are critical to the adaptive immune system, where the body adapts to specific foreign invaders. ...
,
spleen The spleen is an organ found in almost all vertebrates. Similar in structure to a large lymph node, it acts primarily as a blood filter. The word spleen comes .
, and several other organs, it initiates apoptosis through Bax-mediated mitochondrial-dysfunction through the inhibition of the Bcl2 family's antiapoptotic members. Through gene knockout studies, it was shown that double deficient Noxa there was no spontaneous tumor development as commonly observed with knockout of p53. Noxa has been shown to be involved in the maintenance of memory
CD4+ In molecular biology, CD4 (cluster of differentiation 4) is a glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). CD4 is found on the surface of immune cells such as T helper cells, monocytes, macrophages, and dendritic ...
T Th1/Th2 cell homeostasis where in the absence of Noxa, Th2 memory T-cell death results.


''NS1''


History

In the 1960s rodent
parvovirus Parvoviruses are a family of animal viruses that constitute the family ''Parvoviridae''. They have linear, single-stranded DNA (ssDNA) genomes that typically contain two genes encoding for a replication initiator protein, called NS1, and the p ...
was discovered by Dr. Helene Toolan to have an oncosuppressive activity. However, the specific gene found in the parvovirus genome, which is called NS1, that causes the oncosuppressive activity was not characterized until later. NS1 is a small protein (only 672 amino acids) with 5 distinct domains that exert different functions that inevitably lead to apoptosis and cell death. NS1 activates cell death through two different pathways, apoptosis/lysosomal-like programmed cell death and necrosis/
cytolysis Cytolysis, or osmotic lysis, occurs when a cell bursts due to an osmotic imbalance that has caused excess water to diffuse into the cell. Water can enter the cell by diffusion through the cell membrane or through selective membrane channels ...
.


Action

NS1 is considered a regulatory protein due to its activity in transcription, translation, and protein-protein interactions, which allows the parvovirus to replicate unhindered. However, scientists are primarily interested in utilizing its cytolytic activity since this has been proven to be active in cancerous cells. The first way NS1 propagates cell death through cytolysis is by interrupting the cell cycle at the S/ G2 junction, causing a stress response in the cell. Specifically, NS1 interacts with many molecules and compounds important in the transition and inhibits their activity. When NS1 expression reaches a certain threshold, the triggered stress response finally causes caspase 3/9-mediated programmed cell death. Another way that NS1 causes cytolysis is through degradation of the
cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is compos ...
of the cell. NS1 specifically targets and degrades the microfilament
tropomyosin Tropomyosin is a two-stranded alpha-helical, coiled coil protein found in actin-based cytoskeletons. Tropomyosin and the actin skeleton All organisms contain organelles that provide physical integrity to their cells. These type of organelles a ...
using casein kinase II, actin filaments through activation of actin-severing protein gelsolin, and
vimentin Vimentin is a structural protein that in humans is encoded by the ''VIM'' gene. Its name comes from the Latin ''vimentum'' which refers to an array of flexible rods. Vimentin is a type III intermediate filament (IF) protein that is expresse ...
through an unknown mechanism. The last NS1-mediated mechanism of cytolysis involves the depolarization of the mitochondria. This results in the release of many
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () p ...
, causing DNA damage. When DNA is damaged, a DNA damage response occurs, which in this case results in cell death.


''ORCTL3''


History

Organic Cation Transporter Like-3 (ORCTL3) was first discovered as a result of a large-scale
DNA sequencing DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. Th ...
project in search of genes with a tumor-specific apoptosis activity. The name ORCTL3 was decided upon because of its structural homology to proteins belonging to the family of organic cation transporters. However, the name is a misnomer as after examining the properties of ORCTL3, it was revealed that ORCTL3 is a transporter for
urate Uric acid is a heterocyclic compound of carbon, nitrogen, oxygen, and hydrogen with the formula C5H4N4O3. It forms ions and salts known as urates and acid urates, such as ammonium acid urate. Uric acid is a product of the metabolic breakdown of ...
. The ORCTL3 gene spans around 12 kb of genomic DNA and consists of ten exons. It was shown that the 2.4 kb transcript of this gene is universally expressed in all human tissues. Additionally, ORCTL3 transfection into numerous tumorigenic cells induced apoptosis, while normal and primary cells remained healthy.


Action

ORCTL3 is a 90 kDa protein composed of 351 amino acids. It is suggested that the protein spans the cell membrane several times, based on computational methods. Overexpressed ORCTL3 is localized to the endoplasmic reticulum (ER), Golgi and the plasma membrane but not to mitochondria. ORCTL3 was identified as the first high-affinity
nicotinate Niacin, also known as nicotinic acid, is an organic compound and a form of vitamin B3, an essential human nutrient. It can be manufactured by plants and animals from the amino acid tryptophan. Niacin is obtained in the diet from a variet ...
exchanger in kidneys and intestine. Nicotinate is an essential vitamin (
Vitamin B3 Vitamin B3, colloquially referred to as niacin, is a vitamin family that includes three forms or vitamers: niacin (nicotinic acid), nicotinamide (niacinamide), and nicotinamide riboside. All three forms of vitamin B3 are converted within the bo ...
) that is involved in NAD+ synthesis, which in turn is important for energetic processes,
signal transduction Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellula ...
pathways, and the activation of the NAD+ -dependent histone deacetylase
SIRT1 Sirtuin 1, also known as NAD-dependent deacetylase sirtuin-1, is a protein that in humans is encoded by the SIRT1 gene. SIRT1 stands for sirtuin (silent mating type information regulation 2 homolog) 1 ('' S. cerevisiae''), referring to the fact ...
. ORCTL3 has been shown to be activated for apoptosis induction in renal cells ''
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called " test-tube experiments", these studies in biology ...
'', ''
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, and ...
'' and ''
ex vivo ''Ex vivo'' (Latin: "out of the living") literally means that which takes place outside an organism. In science, ''ex vivo'' refers to experimentation or measurements done in or on tissue from an organism in an external environment with minimal ...
''. For its apoptosis effect ORCTL3 targets stearoyl-CoA desaturase (SCD), an enzyme that introduces a
double bond In chemistry, a double bond is a covalent bond between two atoms involving four bonding electrons as opposed to two in a single bond. Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist betwee ...
in the fatty acid
stearic acid Stearic acid ( , ) is a saturated fatty acid with an 18-carbon chain. The IUPAC name is octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "''stéar''", which means tallow. ...
. The fact that SCD is commonly overexpressed in
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
and
oncogene An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels.
transformed cells might explain the tumor-specificity of ORCTL3 to some extent, however, the existence of other additional targets of ORCTL3 cannot formally be ruled out.


''Par-4''


History

Prostate apoptosis response-4 ( Par-4) is a tumor suppressor protein with a pro-apoptotic function. Par-4 was first discovered in rat prostate cancer cells as part of an effort determined in discovering genes that were induced in response to increased Ca2+ in cells, although it is now known to be ubiquitously expressed in a wide variety of tissues across many different species. The Par-4 gene is located on the minus strand of chromosome 12q21.2, spanning 99.06 kb of DNA and containing seven exons and six introns. Par-4 is known to be downregulated in certain terminally differentiated cells such as
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. N ...
s, specific retinal cells, and smooth muscle cells as well as in certain cancer cells such as renal cancers,
neuroblastoma Neuroblastoma (NB) is a type of cancer that forms in certain types of nerve tissue. It most frequently starts from one of the adrenal glands but can also develop in the neck, chest, abdomen, or spine. Symptoms may include bone pain, a lump in th ...
, and
leukemia Leukemia ( also spelled leukaemia and pronounced ) is a group of blood cancers that usually begin in the bone marrow and result in high numbers of abnormal blood cells. These blood cells are not fully developed and are called ''blasts'' or ...
. Par-4 has also been shown to be generally higher in dying cells, consistent with its pro-apoptotic functions.


Action

Par-4 is a 38 kDa multi-domain protein composed of about 340 amino acids. Conserved domains among human, mouse, and rat homologs include the leucine zipper (LZ) domain at the C-terminal region, two nuclear localization sequences, NLS1 and NLS2, in the N-terminal region, and a nuclear export sequence within the LZ domain. Although Par-4 mutations are rare, it was identified that an A to T point mutation affecting residue 189 localized in exon 3 causes premature termination of Par-4 in human endometrial carcinoma. Knockout of Par-4 in mice leads to the development of spontaneous tumors in various tissues revealed by increased proliferative response of peripheral
T cell A T cell is a type of lymphocyte. T cells are one of the important white blood cells of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell r ...
s, inhibition of apoptosis, increased
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a protein complex that controls transcription of DNA, cytokine production and cell survival. NF-κB is found in almost all animal cell types and is involved in cellular ...
activity, and decreased
JNK c-Jun N-terminal kinases (JNKs), were originally identified as kinases that bind and phosphorylate c-Jun on Ser-63 and Ser-73 within its transcriptional activation domain. They belong to the mitogen-activated protein kinase family, and ar ...
activity. Par-4 overexpression is sufficient to induce apoptosis in most cancer cells in the absence of a second apoptotic signal, but does not induce apoptosis in normal or immortalized cells. The anticancer function of Par-4 is achieved by two distinct means: activating the molecular components of the cell-death machinery and inhibiting pro-survival factors. One essential apoptotic function of Par-4 is inhibiting the NF-κB pathway, which is a key contributing factor in many tumors and prevents cell death by activating the expression of pro-survival genes. Par-4 also assists in PCD by enabling the trafficking of specific ligands such and cell surface death receptors, such as
FasL Fas ligand (FasL or CD95L or CD178) is a type-II transmembrane protein that belongs to the tumor necrosis factor (TNF) family. Its binding with its receptor induces apoptosis. Fas ligand/receptor interactions play an important role in the regula ...
and Fas, respectively, to the plasma membrane thus activating the extrinsic death pathway. Overexpression of Par-4 selectively induces apoptosis in cancer cells, attributed to the selective activation via phosphorylation of the T155 residue by
protein kinase A In cell biology, protein kinase A (PKA) is a family of enzymes whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase (). PKA has several functions in the cell, including regulatio ...
(PKA). It has been shown that two events are required for Par-4 activation: nuclear entry and phosphorylation by PKA.


''

TRAIL A trail, also known as a path or track, is an unpaved lane or small road usually passing through a natural area. In the United Kingdom and the Republic of Ireland, a path or footpath is the preferred term for a pedestrian or hiking trail. ...
''


History

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) (Figure 5) is a member of the tumor necrosis factor (TNF) family that also includes Fas ligands,
TNFα Tumor necrosis factor (TNF, cachexin, or cachectin; formerly known as tumor necrosis factor alpha or TNF-α) is an adipokine and a cytokine. TNF is a member of the TNF superfamily, which consists of various transmembrane proteins with a homolog ...
, and
TL1A Vascular endothelial growth inhibitor (VEGI), also known as TNF-like ligand 1A (TL1A) and TNF superfamily member 15 (TNFSF15), is protein that in humans is encoded by the ''TNFSF15'' gene. VEGI is an anti-angiogenic protein. It belongs to tumor ne ...
. It was discovered in 1995 by Wiley et al. and then further characterized in 1996 by Pitti et al. The former study discovered that TRAIL is localized to surfaces of cells in most human tissues, excluding the brain, liver, and testes, while the latter study was able to elicit that the protein is a type II membrane protein that can also be cleaved into a soluble form.


Action

The intrigue surrounding TRAIL is all due to this protein's ability both in vivo and in vitro to specifically target tumor cells for apoptosis while leaving healthy cells intact. This activity proceeds by both the intrinsic and extrinsic pathway. First, the homotrimer of TRAIL binds three molecules of either TRAIL-receptor 1 or 2, which are transmembrane proteins that contain a cytoplasmic death domain. Once TRAIL is bound, Fas, caspase-8, and caspase-10 associate with the death domain forming death-inducing signaling complex (DISC) that proceeds through two different mechanisms depending on the cell type. In one cell type, DISC can directly activate the effector caspase leading to apoptosis, while in the other the complex activates a bcl-2-mediated pathway in a similar fashion as HAMLET that results in the release of cytochrome c from the mitochondria, which then causes the activation of effector caspase. The latter mechanism is the focus of many oncogenic therapies because p53, the tumor suppressor gene, activates the same pathway. Since cancer is commonly caused by the inactivation of p53, TRAIL could mediate this effect by still activating the apoptotic pathway.


''TP53''


History

TP-53 (Figure 6) is a gene that encodes for the protein
p53 p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often s ...
; this protein is a tumor suppressor. p53 was discovered in 1979 stemming from a study involving cancer immunology and the role of viruses in some cancers. The protein was so named because it was measured to have a weight of 53 kDa. This study was conducted by David Philip Lane and technician Alan K. Roberts, in Lionel V. Crawford's lab in London. It was seen in this study that p53 could bind to viral tumor
antigen In immunology, an antigen (Ag) is a molecule or molecular structure or any foreign particulate matter or a pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune respons ...
s. This information was corroborated during the same year when a separate study found that p53 had immunoreactivity with serum from tumors containing antibodies. This later study was run by Daniel I. H. Linzer and Arnold J. Levine out of Princeton University. Further papers came out around the same time all mentioning the discovery of a tumor suppressing protein. While p53 was first officially identified in 1979, many labs in previous years had come across the same protein, without knowing what it was. In the mid-1970s, a scientist by the name of Peter Tegtmeyer happened upon a protein with an approximate size of 50 kDa. However, because he was focusing his studies on
SV40 SV40 is an abbreviation for simian vacuolating virus 40 or simian virus 40, a polyomavirus that is found in both monkeys and humans. Like other polyomaviruses, SV40 is a DNA virus that has the potential to cause tumors in animals, but most often ...
, a tumor-causing virus affecting monkeys and humans, he did not pay much attention to this protein.


Action

The p53 protein is a tumor-suppressing transcription factor (TF), which can recognize when there is an alteration in a cell's DNA caused by factors including chemical toxins, radiation, ultraviolet (UV) rays, and other damaging agents. Crucially, p53 plays a role in determining whether the damaged genetic material in the cell can be repaired, or if the cell should be destroyed through apoptosis. The individual topologically associating domains (TADs) target different genes and unique effector pathways. It has been observed that inactivating both of the TADs detrimentally affects the ability of p53 to suppress tumor growth and interact with target genes. When only one TAD is inactivated, p53 can still suppress specific tumors; however, it can no longer successfully engage in transactivation. The C-terminal domain (CTD) is an intrinsically disordered domain (IDD), which can take on different conformations depending on what it is binding with and is a location of many
post-translational modifications Post-translational modification (PTM) is the covalent and generally enzymatic modification of proteins following protein biosynthesis. This process occurs in the endoplasmic reticulum and the golgi apparatus. Proteins are synthesized by ribosom ...
, resulting in its ability to regulate p53 function depending on what it is bound to and what modifications are linked with the CTD. This domain also aids in the binding of the central DNA-binding domain (DBD) to specific DNA sequences; the CTD is a positive regulator of DNA binding and stabilizes the interaction of the DNA with the DBD. p53 is unique as a transcription factor in that it can recognize and bind response elements (RE) in many different environments and doesn't need other transcription factors to cooperatively bind with it like many other TFs. Mutations in the p53 pathway have been observed in almost all cancer types including
breast cancer Breast cancer is cancer that develops from breast tissue. Signs of breast cancer may include a lump in the breast, a change in breast shape, dimpling of the skin, milk rejection, fluid coming from the nipple, a newly inverted nipple, or a r ...
,
bladder cancer Bladder cancer is any of several types of cancer arising from the tissues of the urinary bladder. Symptoms include blood in the urine, pain with urination, and low back pain. It is caused when epithelial cells that line the bladder become ma ...
,
lung cancer Lung cancer, also known as lung carcinoma (since about 98–99% of all lung cancers are carcinomas), is a malignant lung tumor characterized by uncontrolled cell growth in tissue (biology), tissues of the lung. Lung carcinomas derive from tran ...
,
ovarian cancer Ovarian cancer is a cancerous tumor of an ovary. It may originate from the ovary itself or more commonly from communicating nearby structures such as fallopian tubes or the inner lining of the abdomen. The ovary is made up of three different c ...
, cholangiocarcinoma,
head and neck squamous cell carcinoma Head and neck cancer develops from tissues in the lip and oral cavity (mouth), larynx (throat), salivary glands, nose, sinuses or the skin of the face. The most common types of head and neck cancers occur in the lip, mouth, and larynx. Symptoms ...
,
melanoma Melanoma, also redundantly known as malignant melanoma, is a type of skin cancer that develops from the pigment-producing cells known as melanocytes. Melanomas typically occur in the skin, but may rarely occur in the mouth, intestines, or eye ( ...
,
wilms tumor Wilms' tumor or Wilms tumor, also known as nephroblastoma, is a cancer of the kidneys that typically occurs in children, rarely in adults.; and occurs most commonly as a renal tumor in child patients. It is named after Max Wilms, the German ...
, and other cancers often due to a single point mutation in p53. Li-Fraumeni Syndrome is a condition linked to inherited mutations, at least 140 mutations, in the TP-53 gene. This condition largely increases the risk of developing cancers like breast cancer, bone cancer, and soft tissue sarcomas. Specifically, this impacts children and young adults. A majority of these mutations in the TP-53 gene are single amino acid changes, but other mutations cause a small portion of the DNA to be absent. This leads to a faulty p53 protein that fails to recognize DNA damage in cells, control cell growth, and initiate apoptosis in cells with damaged DNA. Consequently, cells containing erroneous DNA can uncontrollably divide. CHEMOTHERAPY FOR CANCER: Chemotherapy, which involves administering specialized drugs to cancer patients, works to prevent cancer cells from proliferating, dividing, and producing new cells. Chemotherapy has a variety of uses, including, To combat a specific form of cancer. When a cure is not achievable, to slow tumor development. To reduce tumor size prior to surgery or radiation treatment. To get rid of signs like pain. Once a tumor has been surgically removed, to prevent a potential cancer return and eradicate any little cancer cells that may have persisted (2) CANCER GENE TYPES There are three main categories of cancer genes that regulate cell division and have the potential to result in cancer. Oncogenes are altered genes that can cause cancer by causing cells to expand out of control. Normal genes that regulate cell growth are called proto-oncogenes, though if they undergo mutation, they could develop into oncogenes and proto-oncogenes function as switches. Typically, a proto-oncogene is turned off the activation of a proto-oncogene instructs a cell to divide or expand. However, oncogenes are perpetually active, causing uncontrolled cell growth. (51) Normal genes that act as tumor suppressors slow down cell division and growth, correct DNA errors, and indicate when cells should die. (Apoptosis, likewise, referred to as "programmed cell death,", is a normal process). They support our defense against cancer. When turned on, tumor suppressor genes function appropriately. They limit the excessive cell division. However, these genes are disabled when they are altered. This results in uncontrolled cell growth, which can cause cancer. (52) CANCER CAUSING GENES: The impact of genetic variations on human health and the chance of developing cancer has received a significant lot of attention from scientists. The following genetic alterations have been connected for cancer. BRCA gene mutations: The tumor suppressing BRCA genes frequently help in cancer prevention. They control how cells divide and develop and help repair DNA damage BRCA gene abnormalities, however, can the likelihood of having specific cancers is raised. Cancers BRCA1 and BRCA2 are the two BRCA recognized cancer-causing gene alterations. The likelihood that a woman may develop ovarian and breast cancer is increased by certain gene abnormalities. Male breast cancer and prostate cancer risk are both increased by BRCA2 gene mutations Men and women with BRCA2 gene mutations have a marginally increased chance of acquiring pancreatic cancer. (53)


Common misconceptions

Often, genes are confused with the proteins in which they code for (Figure 7). Genes are composed of
nucleotide Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules wi ...
s, while proteins are composed of
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
s. The genes serve as codes and blueprints to create either proteins of interest, or various non-coding ribonucleic acids ( ncRNAs), which exhibit various effects, such as working to prevent cancer within cells.


See also

*
Oncogene An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels.
* Gene therapy for cancer *
Tumour suppressor gene A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell during cell division and replication. If the cell grows uncontrollably, it will result in cancer. When a tumor suppressor gene is mutated, it results in a loss or red ...
*
Cell Cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
* Cell Cycle Checkpoints *
Gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
s *
Protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
s *
Apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
*
HAMLET ''The Tragedy of Hamlet, Prince of Denmark'', often shortened to ''Hamlet'' (), is a tragedy written by William Shakespeare sometime between 1599 and 1601. It is Shakespeare's longest play, with 29,551 words. Set in Denmark, the play depicts ...
* Par-4


References

1.    ''Futreal, P. Andrew (2009). "A census of human cancer genes". Nature Reviews    Cancer. 4 (3): 177–183. doi:10.1038/nrc1299. PMC 2665285.'' {{reflistDr Joyce MWATONOKThe American Cancer Society. Cancer and genes. https://www.cancer.org/, as of 2014.       The American Society for Clinical Oncology. Cancer Genetics in 2015: http://www.cancer.net/navigating-cancer-care/cancer-basics/genetics/cancer-genetics.       DOI: 10.1146/annurev.pharmtox.48.121806.154910      DoI: 10.1111/j.1582-4934.2008. 00129.x       Cancer Research UK. ''Genes, DNA and Cancer''. Cancer Research UK; 2014: http://www.cancerresearchuk.org/about-cancer/what-is-cancer/genes-dna-and-cancer.         Oncology Genes associated with cancer