Analysis is the branch of
mathematics dealing with
continuous functions,
limit
Limit or Limits may refer to:
Arts and media
* ''Limit'' (manga), a manga by Keiko Suenobu
* ''Limit'' (film), a South Korean film
* Limit (music), a way to characterize harmony
* "Limit" (song), a 2016 single by Luna Sea
* "Limits", a 2019 ...
s, and related theories, such as
differentiation,
integration
Integration may refer to:
Biology
* Multisensory integration
* Path integration
* Pre-integration complex, viral genetic material used to insert a viral genome into a host genome
*DNA integration, by means of site-specific recombinase technolo ...
,
measure,
infinite sequences,
series, and
analytic function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex ...
s.
These theories are usually studied in the context of
real and
complex numbers and
functions. Analysis evolved from
calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
, which involves the elementary concepts and techniques of analysis.
Analysis may be distinguished from
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
; however, it can be applied to any
space
Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually con ...
of
mathematical object
A mathematical object is an abstract concept arising in mathematics.
In the usual language of mathematics, an ''object'' is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical ...
s that has a definition of nearness (a
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
) or specific distances between objects (a
metric space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general sett ...
).
History
Ancient
Mathematical analysis formally developed in the 17th century during the
Scientific Revolution
The Scientific Revolution was a series of events that marked the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology (including human anatomy) and chemistry transformed ...
,
but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were implicitly present in the early days of
ancient Greek mathematics. For instance, an
infinite geometric sum is implicit in
Zeno's paradox of the dichotomy.
(Strictly speaking, the point of the paradox is to deny that the infinite sum exists.) Later,
Greek mathematicians such as
Eudoxus and
Archimedes
Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scienti ...
made more explicit, but informal, use of the concepts of limits and convergence when they used the
method of exhaustion
The method of exhaustion (; ) is a method of finding the area of a shape by inscribing inside it a sequence of polygons whose areas converge to the area of the containing shape. If the sequence is correctly constructed, the difference in area b ...
to compute the area and volume of regions and solids.
The explicit use of
infinitesimals appears in Archimedes' ''
The Method of Mechanical Theorems'', a work rediscovered in the 20th century. In Asia, the
Chinese mathematician Liu Hui
Liu Hui () was a Chinese mathematician who published a commentary in 263 CE on ''Jiu Zhang Suan Shu ( The Nine Chapters on the Mathematical Art).'' He was a descendant of the Marquis of Zixiang of the Eastern Han dynasty and lived in the state ...
used the method of exhaustion in the 3rd century AD to find the area of a circle. From Jain literature, it appears that Hindus were in possession of the formulae for the sum of the
arithmetic
Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th c ...
and
geometric series as early as the 4th century B.C.
Ācārya Bhadrabāhu uses the sum of a geometric series in his Kalpasūtra in 433 B.C. In
Indian mathematics, particular instances of arithmetic series have been found to implicitly occur in Vedic Literature as early as 2000 B.C.
Medieval
Zu Chongzhi established a method that would later be called
Cavalieri's principle to find the volume of a
sphere
A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
in the 5th century. In the 12th century, the
Indian mathematician Bhāskara II gave examples of
derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
s and used what is now known as
Rolle's theorem.
In the 14th century,
Madhava of Sangamagrama developed
infinite series expansions, now called
Taylor series, of functions such as
sine,
cosine,
tangent
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. Mo ...
and
arctangent.
[
] Alongside his development of Taylor series of
trigonometric functions, he also estimated the magnitude of the error terms resulting of truncating these series, and gave a rational approximation of some infinite series. His followers at the
Kerala School of Astronomy and Mathematics
The Kerala school of astronomy and mathematics or the Kerala school was a school of Indian mathematics, mathematics and Indian astronomy, astronomy founded by Madhava of Sangamagrama in Kingdom of Tanur, Tirur, Malappuram district, Malappuram, K ...
further expanded his works, up to the 16th century.
Modern
Foundations
The modern foundations of mathematical analysis were established in 17th century Europe.
[ This began when Fermat and Descartes developed analytic geometry, which is the precursor to modern calculus. Fermat's method of adequality allowed him to determine the maxima and minima of functions and the tangents of curves.] Descartes's publication of '' La Géométrie'' in 1637, which introduced the Cartesian coordinate system
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured ...
, is considered to be the establishment of mathematical analysis. It would be a few decades later that Newton and Leibniz independently developed infinitesimal calculus, which grew, with the stimulus of applied work that continued through the 18th century, into analysis topics such as the calculus of variations
The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions
and functionals, to find maxima and minima of functionals: mappings from a set of functions t ...
, ordinary
Ordinary or The Ordinary often refer to:
Music
* ''Ordinary'' (EP) (2015), by South Korean group Beast
* ''Ordinary'' (Every Little Thing album) (2011)
* "Ordinary" (Two Door Cinema Club song) (2016)
* "Ordinary" (Wayne Brady song) (2008)
* ...
and partial differential equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function.
The function is often thought of as an "unknown" to be solved for, similarly to ...
s, Fourier analysis, and generating function
In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary ser ...
s. During this period, calculus techniques were applied to approximate discrete problems by continuous ones.
Modernization
In the 18th century, Euler introduced the notion of mathematical function. Real analysis began to emerge as an independent subject when Bernard Bolzano introduced the modern definition of continuity in 1816, but Bolzano's work did not become widely known until the 1870s. In 1821, Cauchy began to put calculus on a firm logical foundation by rejecting the principle of the generality of algebra widely used in earlier work, particularly by Euler. Instead, Cauchy formulated calculus in terms of geometric ideas and infinitesimals. Thus, his definition of continuity required an infinitesimal change in ''x'' to correspond to an infinitesimal change in ''y''. He also introduced the concept of the Cauchy sequence
In mathematics, a Cauchy sequence (; ), named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a finite numbe ...
, and started the formal theory of complex analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebra ...
. Poisson, Liouville
Joseph Liouville (; ; 24 March 1809 – 8 September 1882) was a French mathematician and engineer.
Life and work
He was born in Saint-Omer in France on 24 March 1809. His parents were Claude-Joseph Liouville (an army officer) and Thérès ...
, Fourier and others studied partial differential equations and harmonic analysis. The contributions of these mathematicians and others, such as Weierstrass, developed the (ε, δ)-definition of limit
Although the function (sin ''x'')/''x'' is not defined at zero, as ''x'' becomes closer and closer to zero, (sin ''x'')/''x'' becomes arbitrarily close to 1. In other words, the limit of (sin ''x'')/''x'', as ''x'' approaches z ...
approach, thus founding the modern field of mathematical analysis. Around the same time, Riemann introduced his theory of integration
Integration may refer to:
Biology
* Multisensory integration
* Path integration
* Pre-integration complex, viral genetic material used to insert a viral genome into a host genome
*DNA integration, by means of site-specific recombinase technolo ...
, and made significant advances in complex analysis.
Towards the end of the 19th century, mathematicians started worrying that they were assuming the existence of a continuum of real number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s without proof. Dedekind then constructed the real numbers by Dedekind cut
In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind but previously considered by Joseph Bertrand, are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of the ...
s, in which irrational numbers are formally defined, which serve to fill the "gaps" between rational numbers, thereby creating a complete set: the continuum of real numbers, which had already been developed by Simon Stevin in terms of decimal expansions. Around that time, the attempts to refine the theorem
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of ...
s of Riemann integration led to the study of the "size" of the set of discontinuities of real functions.
Also, various pathological objects, (such as nowhere continuous functions, continuous but nowhere differentiable functions, and space-filling curves), commonly known as "monsters", began to be investigated. In this context, Jordan
Jordan ( ar, الأردن; tr. ' ), officially the Hashemite Kingdom of Jordan,; tr. ' is a country in Western Asia. It is situated at the crossroads of Asia, Africa, and Europe, within the Levant region, on the East Bank of the Jordan Ri ...
developed his theory of measure, Cantor developed what is now called naive set theory
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics.
Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language. It ...
, and Baire proved the Baire category theorem. In the early 20th century, calculus was formalized using an axiomatic set theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
. Lebesgue greatly improved measure theory, and introduced his own theory of integration, now known as Lebesgue integration, which proved to be a big improvement over Riemann's. Hilbert introduced Hilbert space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natu ...
s to solve integral equations. The idea of normed vector space
In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "leng ...
was in the air, and in the 1920s Banach
Banach (pronounced in German, in Slavic Languages, and or in English) is a Jewish surname of Ashkenazi origin believed to stem from the translation of the phrase " son of man", combining the Hebrew word ''ben'' ("son of") and Arameic ''nash ...
created functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined ...
.
Important concepts
Metric spaces
In mathematics, a metric space is a set where a notion of distance (called a metric) between elements of the set is defined.
Much of analysis happens in some metric space; the most commonly used are the real line
In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a po ...
, the complex plane, Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
, other vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
s, and the integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s. Examples of analysis without a metric include measure theory (which describes size rather than distance) and functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined ...
(which studies topological vector spaces that need not have any sense of distance).
Formally, a metric space is an ordered pair where is a set and is a metric on , i.e., a function
:
such that for any , the following holds:
# , with equality if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bi ...
('' identity of indiscernibles''),
# (''symmetry''), and
# (''triangle inequality
In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side.
This statement permits the inclusion of degenerate triangles, bu ...
'').
By taking the third property and letting , it can be shown that (''non-negative'').
Sequences and limits
A sequence is an ordered list. Like a set, it contains members
Member may refer to:
* Military jury, referred to as "Members" in military jargon
* Element (mathematics), an object that belongs to a mathematical set
* In object-oriented programming, a member of a class
** Field (computer science), entries in ...
(also called ''elements'', or ''terms''). Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Most precisely, a sequence can be defined as a function whose domain is a countable totally ordered set, such as the natural numbers.
One of the most important properties of a sequence is ''convergence''. Informally, a sequence converges if it has a ''limit''. Continuing informally, a ( singly-infinite) sequence has a limit if it approaches some point ''x'', called the limit, as ''n'' becomes very large. That is, for an abstract sequence (''a''''n'') (with ''n'' running from 1 to infinity understood) the distance between ''a''''n'' and ''x'' approaches 0 as ''n'' → ∞, denoted
:
Main branches
Real analysis
Real analysis (traditionally, the theory of functions of a real variable) is a branch of mathematical analysis dealing with the real number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s and real-valued functions of a real variable. In particular, it deals with the analytic properties of real functions and sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
s, including convergence and limits of sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
s of real numbers, the calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
of the real numbers, and continuity, smoothness and related properties of real-valued functions.
Complex analysis
Complex analysis (traditionally known as the theory of functions of a complex variable) is the branch of mathematical analysis that investigates functions of complex numbers. It is useful in many branches of mathematics, including algebraic geometry, number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
, applied mathematics
Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathemat ...
; as well as in physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
, including hydrodynamics, thermodynamics
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws o ...
, mechanical engineering
Mechanical engineering is the study of physical machines that may involve force and movement. It is an engineering branch that combines engineering physics and mathematics principles with materials science, to design, analyze, manufacture, ...
, electrical engineering, and particularly, quantum field theory.
Complex analysis is particularly concerned with the analytic function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex ...
s of complex variables (or, more generally, meromorphic function
In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are poles of the function. ...
s). Because the separate real and imaginary parts of any analytic function must satisfy Laplace's equation, complex analysis is widely applicable to two-dimensional problems in physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
.
Functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
s endowed with some kind of limit-related structure (e.g. inner product, norm, topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, etc.) and the linear operators acting upon these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform
A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations.
Harmonic analysis
Harmonic analysis is a branch of mathematical analysis concerned with the representation of functions and signals as the superposition of basic wave
In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (r ...
s. This includes the study of the notions of Fourier series
A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or '' ...
and Fourier transform
A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
s ( Fourier analysis), and of their generalizations. Harmonic analysis has applications in areas as diverse as music theory, number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
, representation theory, signal processing
Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing '' signals'', such as sound, images, and scientific measurements. Signal processing techniques are used to optimize transmissions, ...
, quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, q ...
, tidal analysis, and neuroscience
Neuroscience is the science, scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions and disorders. It is a Multidisciplinary approach, multidisciplinary science that combines physiology, an ...
.
Differential equations
A differential equation is a mathematical
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
equation for an unknown function of one or several variables that relates the values of the function itself and its derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
s of various orders
Order, ORDER or Orders may refer to:
* Categorization, the process in which ideas and objects are recognized, differentiated, and understood
* Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of ...
. Differential equations play a prominent role in engineering
Engineering is the use of scientific method, scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad rang ...
, physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
, economics
Economics () is the social science that studies the production, distribution, and consumption of goods and services.
Economics focuses on the behaviour and interactions of economic agents and how economies work. Microeconomics analy ...
, biology
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditar ...
, and other disciplines.
Differential equations arise in many areas of science and technology, specifically whenever a deterministic relation involving some continuously varying quantities (modeled by functions) and their rates of change in space or time (expressed as derivatives) is known or postulated. This is illustrated in classical mechanics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
, where the motion of a body is described by its position and velocity as the time value varies. Newton's laws allow one (given the position, velocity, acceleration and various forces acting on the body) to express these variables dynamically as a differential equation for the unknown position of the body as a function of time. In some cases, this differential equation (called an equation of motion) may be solved explicitly.
Measure theory
A measure on a set is a systematic way to assign a number to each suitable subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
of that set, intuitively interpreted as its size. In this sense, a measure is a generalization of the concepts of length, area, and volume. A particularly important example is the Lebesgue measure
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides ...
on a Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
, which assigns the conventional length, area
Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open su ...
, and volume
Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
of Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
to suitable subsets of the -dimensional Euclidean space . For instance, the Lebesgue measure of the interval