
Absolute zero is the lowest possible
temperature
Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
, a state at which a system's
internal energy
The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accoun ...
, and in ideal cases
entropy
Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
, reach their minimum values. The absolute zero is defined as 0 K on the
Kelvin scale
The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
, equivalent to −273.15 °C on the
Celsius scale
The degree Celsius is the unit of temperature on the Celsius temperature scale "Celsius temperature scale, also called centigrade temperature scale, scale based on 0 ° for the melting point of water and 100 ° for the boiling point ...
,
and −459.67 °F on the
Fahrenheit scale. The Kelvin and Rankine temperature scales set their zero points at absolute zero by design. This limit can be estimated by extrapolating the
ideal gas law
The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stat ...
to the temperature at which the volume or pressure of a classical gas becomes zero.
At absolute zero, there is no
thermal motion. However, due to
quantum effects
Quantum mechanics is the fundamental physical theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is the foundation of a ...
, the particles still exhibit minimal motion mandated by the
Heisenberg uncertainty principle
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position a ...
and, for a system of fermions, the
Pauli exclusion principle. Even if absolute zero could be achieved, this residual quantum motion would persist.
Although absolute zero can be approached, it cannot be reached. Some
isentropic process
An isentropic process is an idealized thermodynamic process that is both Adiabatic process, adiabatic and Reversible process (thermodynamics), reversible. The work (physics), work transfers of the system are friction, frictionless, and there is ...
es, such as
adiabatic expansion, can lower the system's temperature without relying on a colder medium. Nevertheless, the
third law of thermodynamics
The third law of thermodynamics states that the entropy of a closed system at thermodynamic equilibrium approaches a constant value when its temperature approaches absolute zero. This constant value cannot depend on any other parameters characte ...
implies that no physical process can reach absolute zero in a finite number of steps. As a system nears this limit, further reductions in temperature become increasingly difficult, regardless of the cooling method used. In the 21st century, scientists have achieved temperatures below 100 picokelvin (pK). At low temperatures, matter displays exotic quantum phenomena such as
superconductivity
Superconductivity is a set of physical properties observed in superconductors: materials where Electrical resistance and conductance, electrical resistance vanishes and Magnetic field, magnetic fields are expelled from the material. Unlike an ord ...
,
superfluidity
Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
, and
Bose–Einstein condensation.
Ideal gas laws

For an
ideal gas
An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is ...
, the pressure at constant volume decreases linearly with temperature, and the volume at constant pressure also decreases linearly with temperature. When these relationships are expressed using the Celsius scale, both pressure and volume extrapolate to zero at approximately −273.15 °C. This implies the existence of a lower bound on temperature, beyond which the gas would have negative pressure or volume—an unphysical result.
To resolve this, the concept of absolute temperature is introduced, with 0 kelvins defined as the point at which pressure or volume would vanish in an ideal gas. This temperature corresponds to −273.15 °C, and is referred to as absolute zero. The ideal gas law is therefore formulated in terms of absolute temperature to remain consistent with observed gas behavior and physical limits.
Absolute temperature scales
Absolute temperature
Thermodynamic temperature, also known as absolute temperature, is a physical quantity which measures temperature starting from absolute zero, the point at which particles have minimal thermal motion.
Thermodynamic temperature is typically expres ...
is conventionally measured in
Kelvin scale
The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
(using
Celsius
The degree Celsius is the unit of temperature on the Celsius temperature scale "Celsius temperature scale, also called centigrade temperature scale, scale based on 0 ° for the melting point of water and 100 ° for the boiling point ...
-scaled increments)
and, more rarely, in
Rankine scale
The Rankine scale ( ) is an absolute scale of thermodynamic temperature named after the University of Glasgow engineer and physicist Macquorn Rankine, who proposed it in 1859.
History
Similar to the Kelvin scale, which was first proposed in ...
(using
Fahrenheit
The Fahrenheit scale () is a scale of temperature, temperature scale based on one proposed in 1724 by the German-Polish physicist Daniel Gabriel Fahrenheit (1686–1736). It uses the degree Fahrenheit (symbol: °F) as the unit. Several accou ...
-scaled increments). Absolute temperature measurement is uniquely determined by a multiplicative constant which specifies the size of the ''degree'', so the ''ratios'' of two absolute temperatures, ''T''
2/''T''
1, are the same in all scales.
Absolute temperature also emerges naturally in
statistical mechanics
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applicati ...
. In the
Maxwell–Boltzmann,
Fermi–Dirac, and
Bose–Einstein distributions, absolute temperature appears in the exponential factor that determines how particles populate energy states. Specifically, the relative number of particles at a given energy ''E'' depends exponentially on ''E/kT'', where ''k'' is the
Boltzmann constant
The Boltzmann constant ( or ) is the proportionality factor that relates the average relative thermal energy of particles in a ideal gas, gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the ...
and ''T'' is the absolute temperature.
Unattainability of absolute zero
The
third law of thermodynamics
The third law of thermodynamics states that the entropy of a closed system at thermodynamic equilibrium approaches a constant value when its temperature approaches absolute zero. This constant value cannot depend on any other parameters characte ...
concerns the behavior of
entropy
Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
as temperature approaches absolute zero. It states that the entropy of a system approaches a constant minimum at 0 K. For a perfect crystal, this minimum is taken to be zero, since the system would be in a state of perfect order with only one
microstate
A microstate or ministate is a sovereign state having a very small population or land area, usually both. However, the meanings of "state" and "very small" are not well-defined in international law. Some recent attempts to define microstates ...
available. In some systems, there may be more than one microstate at minimum energy and there is some residual entropy at 0 K.
Several other formulations of the third law exist.
Nernst heat theorem holds that the change in entropy for any constant-temperature process tends to zero as the temperature approaches zero.
A key consequence is that absolute zero cannot be reached, since removing heat becomes increasingly inefficient and entropy changes vanish. This unattainability principle means no physical process can cool a system to absolute zero in a finite number of steps or finite time.
Thermal properties at low temperatures
Using the
Debye model, the
specific heat
In thermodynamics, the specific heat capacity (symbol ) of a substance is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. It is also referred to as massic heat ...
and entropy of a pure crystal are proportional to ''T''
3, while the
enthalpy
Enthalpy () is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant extern ...
and
chemical potential
In thermodynamics, the chemical potential of a Chemical specie, species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potent ...
are proportional to ''T''
4 (Guggenheim, p. 111). These quantities drop toward their ''T'' = 0 limiting values and approach with ''zero'' slopes. For the specific heats at least, the limiting value itself is definitely zero, as borne out by experiments to below 10 K. Even the less detailed
Einstein model shows this curious drop in specific heats. In fact, all specific heats vanish at absolute zero, not just those of crystals. Likewise for the coefficient of
thermal expansion
Thermal expansion is the tendency of matter to increase in length, area, or volume, changing its size and density, in response to an increase in temperature (usually excluding phase transitions).
Substances usually contract with decreasing temp ...
.
Maxwell's relations show that various other quantities also vanish. These phenomena were unanticipated.
One model that estimates the properties of an
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
gas at absolute zero in metals is the
Fermi gas
A Fermi gas is an idealized model, an ensemble of many non-interacting fermions. Fermions are particles that obey Fermi–Dirac statistics, like electrons, protons, and neutrons, and, in general, particles with half-integer spin. These statis ...
. The electrons, being
fermion
In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s, must be in different quantum states, which leads the electrons to get very high typical
velocities, even at absolute zero. The maximum energy that electrons can have at absolute zero is called the
Fermi energy
The Fermi energy is a concept in quantum mechanics usually referring to the energy difference between the highest and lowest occupied single-particle states in a quantum system of non-interacting fermions at absolute zero temperature.
In a Fermi ga ...
. The Fermi temperature is defined as this maximum energy divided by the Boltzmann constant, and is on the order of 80,000 K for typical electron densities found in metals. For temperatures significantly below the Fermi temperature, the electrons behave in almost the same way as at absolute zero. This explains the failure of the classical
equipartition theorem
In classical physics, classical statistical mechanics, the equipartition theorem relates the temperature of a system to its average energy, energies. The equipartition theorem is also known as the law of equipartition, equipartition of energy, ...
for metals that eluded classical physicists in the late 19th century.
Gibbs free energy
Since the relation between changes in
Gibbs free energy
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol is a thermodynamic potential that can be used to calculate the maximum amount of Work (thermodynamics), work, other than Work (thermodynamics)#Pressure–v ...
(''G''), the enthalpy (''H'') and the entropy is
:
thus, as ''T'' decreases, Δ''G'' and Δ''H'' approach each other (so long as Δ''S'' is bounded). Experimentally, it is found that all spontaneous processes (including
chemical reaction
A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
s) result in a decrease in ''G'' as they proceed toward
equilibrium. If Δ''S'' and/or ''T'' are small, the condition Δ''G'' < 0 may imply that Δ''H'' < 0, which would indicate an
exothermic
In thermodynamics, an exothermic process () is a thermodynamic process or reaction that releases energy from the system to its surroundings, usually in the form of heat, but also in a form of light (e.g. a spark, flame, or flash), electricity (e ...
reaction. However, this is not required;
endothermic
An endothermic process is a chemical or physical process that absorbs heat from its surroundings. In terms of thermodynamics, it is a thermodynamic process with an increase in the enthalpy (or internal energy ) of the system.Oxtoby, D. W; Gillis, ...
reactions can proceed spontaneously if the ''T''Δ''S'' term is large enough.
Moreover, the slopes of the
derivative
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
s of Δ''G'' and Δ''H'' converge and are equal to zero at ''T'' = 0. This ensures that Δ''G'' and Δ''H'' are nearly the same over a considerable range of temperatures and justifies the approximate
empirical
Empirical evidence is evidence obtained through sense experience or experimental procedure. It is of central importance to the sciences and plays a role in various other fields, like epistemology and law.
There is no general agreement on how t ...
Principle of Thomsen and Berthelot, which states that ''the equilibrium state to which a system proceeds is the one that evolves the greatest amount of heat'', i.e., an actual process is the ''most exothermic one'' (Callen, pp. 186–187).
Zero-point energy

Even at absolute zero, a quantum system retains a minimum amount of energy due to the
Heisenberg uncertainty principle
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position a ...
, which prevents particles from having both perfectly defined position and momentum. This residual energy is known as
zero-point energy
Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly Quantum fluctuation, fluctuate in their lowest energy state as described by the Heisen ...
. In the case of the
quantum harmonic oscillator
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, ...
, a standard model for vibrations in atoms and molecules, the uncertainty in a particle's momentum implies it must retain some
kinetic energy
In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion.
In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
, while the uncertainty in its position contributes to
potential energy
In physics, potential energy is the energy of an object or system due to the body's position relative to other objects, or the configuration of its particles. The energy is equal to the work done against any restoring forces, such as gravity ...
. As a result, such a system has a nonzero energy at absolute zero.
Zero-point energy helps explain certain physical phenomena. For example,
liquid helium
Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity.
At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
does not solidify at normal pressure, even at temperatures near absolute zero. The large zero-point motion of helium atoms, caused by their low mass and weak interatomic forces, prevents them from settling into a solid structure. Only under high pressure does helium solidify, as the atoms are forced closer together and the interatomic forces grow stronger.
History

One of the first to discuss the possibility of an absolute minimal temperature was
Robert Boyle
Robert Boyle (; 25 January 1627 – 31 December 1691) was an Anglo-Irish natural philosopher, chemist, physicist, Alchemy, alchemist and inventor. Boyle is largely regarded today as the first modern chemist, and therefore one of the foun ...
. His 1665 ''New Experiments and Observations touching Cold'', articulated the dispute known as the ''primum frigidum''. The concept was well known among naturalists of the time. Some contended an absolute minimum temperature occurred within earth (as one of the four
classical element
The classical elements typically refer to Earth (classical element), earth, Water (classical element), water, Air (classical element), air, Fire (classical element), fire, and (later) Aether (classical element), aether which were proposed to ...
s), others within water, others air, and some more recently within
nitre. But all of them seemed to agree that, "There is some body or other that is of its own nature supremely cold and by participation of which all other bodies obtain that quality."
Limit to the "degree of cold"
The question of whether there is a limit to the degree of coldness possible, and, if so, where the zero must be placed, was first addressed by the French physicist
Guillaume Amontons
Guillaume Amontons (31 August 1663 – 11 October 1705) was a French scientific instrument inventor and physicist. He was one of the pioneers in studying the problem of friction, which is the resistance to motion when bodies make contact. He is ...
in 1703, in connection with his improvements in the
air thermometer
A thermometer is a device that measures temperature (the hotness or coldness of an object) or temperature gradient (the rates of change of temperature in space). A thermometer has two important elements: (1) a temperature sensor (e.g. the bulb ...
. His instrument indicated temperatures by the height at which a certain mass of air sustained a column of mercury—the pressure, or "spring" of the air varying with temperature. Amontons therefore argued that the zero of his thermometer would be that temperature at which the spring of the air was reduced to nothing. He used a scale that marked the boiling point of water at +73 and the melting point of ice at +, so that the zero was equivalent to about −240 on the Celsius scale.
Amontons held that the absolute zero cannot be reached, so never attempted to compute it explicitly. The value of −240 °C, or "431 divisions
n Fahrenheit's thermometerbelow the cold of freezing water" was published by
George Martine in 1740.
This close approximation to the modern value of −273.15 °C
for the zero of the air thermometer was further improved upon in 1779 by
Johann Heinrich Lambert
Johann Heinrich Lambert (; ; 26 or 28 August 1728 – 25 September 1777) was a polymath from the Republic of Mulhouse, at that time allied to the Switzerland, Swiss Confederacy, who made important contributions to the subjects of mathematics, phys ...
, who observed that might be regarded as absolute cold.
Values of this order for the absolute zero were not, however, universally accepted about this period.
Pierre-Simon Laplace
Pierre-Simon, Marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French polymath, a scholar whose work has been instrumental in the fields of physics, astronomy, mathematics, engineering, statistics, and philosophy. He summariz ...
and
Antoine Lavoisier
Antoine-Laurent de Lavoisier ( ; ; 26 August 17438 May 1794), When reduced without charcoal, it gave off an air which supported respiration and combustion in an enhanced way. He concluded that this was just a pure form of common air and that i ...
, in their 1780 treatise on heat, arrived at values ranging from 1,500 to 3,000 below the freezing point of water, and thought that in any case it must be at least 600 below.
John Dalton
John Dalton (; 5 or 6 September 1766 – 27 July 1844) was an English chemist, physicist and meteorologist. He introduced the atomic theory into chemistry. He also researched Color blindness, colour blindness; as a result, the umbrella term ...
in his ''Chemical Philosophy'' gave ten calculations of this value, and finally adopted −3,000 °C as the natural zero of temperature.
Charles's law
From 1787 to 1802, it was determined by
Jacques Charles
Jacques Alexandre César Charles (12 November 1746 – 7 April 1823) was a French people, French inventor, scientist, mathematician, and balloonist.
Charles wrote almost nothing about mathematics, and most of what has been credited to him was due ...
(unpublished),
John Dalton
John Dalton (; 5 or 6 September 1766 – 27 July 1844) was an English chemist, physicist and meteorologist. He introduced the atomic theory into chemistry. He also researched Color blindness, colour blindness; as a result, the umbrella term ...
, and
Joseph Louis Gay-Lussac
Joseph Louis Gay-Lussac ( , ; ; 6 December 1778 – 9 May 1850) was a French chemist and physicist. He is known mostly for his discovery that water is made of two parts hydrogen and one part oxygen by volume (with Alexander von Humboldt), f ...
that, at constant pressure, ideal gases expanded or contracted their volume linearly (
Charles's law
Charles's law (also known as the law of volumes) is an experimental gas law that describes how gases tend to expand when heated. A modern statement of Charles's law is:
When the pressure on a sample of a dry gas is held constant, the Kelvin ...
) by about 1/273 parts per degree Celsius of temperature's change up or down, between 0° and 100° C. This suggested that the volume of a gas cooled at about −273 °C would reach zero.
Lord Kelvin's work
After
James Prescott Joule had determined the mechanical equivalent of heat,
Lord Kelvin
William Thomson, 1st Baron Kelvin (26 June 182417 December 1907), was a British mathematician, Mathematical physics, mathematical physicist and engineer. Born in Belfast, he was the Professor of Natural Philosophy (Glasgow), professor of Natur ...
approached the question from an entirely different point of view, and in 1848 devised a scale of absolute temperature that was independent of the properties of any particular substance and was based on
Carnot's theory of the Motive Power of Heat and data published by
Henri Victor Regnault. It followed from the principles on which this scale was constructed that its zero was placed at −273 °C, at almost precisely the same point as the zero of the air thermometer,
where the air volume would reach "nothing". This value was not immediately accepted; values ranging from to , derived from laboratory measurements and observations of
astronomical refraction, remained in use in the early 20th century.
The race to absolute zero

With a better theoretical understanding of absolute zero, scientists were eager to reach this temperature in the lab.
By 1845,
Michael Faraday
Michael Faraday (; 22 September 1791 – 25 August 1867) was an English chemist and physicist who contributed to the study of electrochemistry and electromagnetism. His main discoveries include the principles underlying electromagnetic inducti ...
had managed to liquefy most gases then known to exist, and reached a new record for lowest temperatures by reaching . Faraday believed that certain gases, such as oxygen, nitrogen, and
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
, were permanent gases and could not be liquefied. Decades later, in 1873 Dutch theoretical scientist
Johannes Diderik van der Waals
Johannes Diderik van der Waals (; 23 November 1837 – 8 March 1923) was a Dutch theoretical physicist who received the Nobel Prize in Physics in 1910 "for his work on the equation of state for gases and liquids". Van der Waals started his car ...
demonstrated that these gases could be liquefied, but only under conditions of very high pressure and very low temperatures. In 1877,
Louis Paul Cailletet in France and
Raoul Pictet in Switzerland succeeded in producing the first droplets of
liquid air
Liquid Air was the marque of an automobile planned by Liquid Air Power and Automobile Co. of Boston and New York City in 1899. page 1432
A factory location was acquired in Boston, Massachusetts in 1899 and Liquid Air claimed they would constr ...
at . This was followed in 1883 by the production of liquid oxygen by the Polish professors
Zygmunt Wróblewski and
Karol Olszewski.
Scottish chemist and physicist
James Dewar and Dutch physicist
Heike Kamerlingh Onnes
Heike Kamerlingh Onnes (; 21 September 1853 – 21 February 1926) was a Dutch Experimental physics, experimental physicist. After studying in Groningen and Heidelberg, he became Professor of Experimental Physics at Leiden University, where he tau ...
took on the challenge to liquefy the remaining gases, hydrogen and
helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
. In 1898, after 20 years of effort, Dewar was the first to liquefy hydrogen, reaching a new low-temperature record of . However, Kamerlingh Onnes, his rival, was the first to liquefy helium, in 1908, using several precooling stages and the
Hampson–Linde cycle. He lowered the temperature to the boiling point of helium . By reducing the pressure of the liquid helium, he achieved an even lower temperature, near 1.5 K. These were the
coldest temperatures achieved on Earth at the time and his achievement earned him the
Nobel Prize
The Nobel Prizes ( ; ; ) are awards administered by the Nobel Foundation and granted in accordance with the principle of "for the greatest benefit to humankind". The prizes were first awarded in 1901, marking the fifth anniversary of Alfred N ...
in 1913.
Kamerlingh Onnes would continue to study the properties of materials at temperatures near absolute zero, describing
superconductivity
Superconductivity is a set of physical properties observed in superconductors: materials where Electrical resistance and conductance, electrical resistance vanishes and Magnetic field, magnetic fields are expelled from the material. Unlike an ord ...
and
superfluids for the first time.
Negative temperatures
Temperatures below zero on the Celsius or Fahrenheit scales are simply colder than the zero points of those scales. In contrast, certain isolated systems can achieve
negative thermodynamic temperatures (in kelvins), which are not colder than absolute zero, but paradoxically hotter than any positive temperature. If a negative-temperature system and a positive-temperature system come in contact, heat flows from the negative to the positive-temperature system.
Negative temperatures can only occur in systems that have an upper limit to the energy they can contain. In these cases, adding energy can decrease
entropy
Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
, reversing the usual relationship between energy and temperature. This leads to a negative thermodynamic temperature. However, such conditions only arise in specialized, quasi-equilibrium systems such as collections of
spins
The spins (as in having "the spins") is an adverse reaction of Substance intoxication, intoxication that causes a state of vertigo and nausea, causing one to feel as if "spinning out of control", especially when lying down. It is most commonly as ...
in a magnetic field. In contrast, ordinary systems with translational or vibrational motion have no upper energy limit, so their temperatures are always positive.
Very low temperatures

The average temperature of the universe today is approximately , based on measurements of
cosmic microwave background
The cosmic microwave background (CMB, CMBR), or relic radiation, is microwave radiation that fills all space in the observable universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dar ...
radiation. Standard models of the
future expansion of the universe predict that the average temperature of the universe is decreasing over time. This temperature is calculated as the mean density of energy in space; it should not be confused with the mean
electron temperature (total energy divided by particle count) which has increased over time.
Absolute zero cannot be achieved, although it is possible to reach temperatures close to it through the use of
evaporative cooling
An evaporative cooler (also known as evaporative air conditioner, swamp cooler, swamp box, desert cooler and wet air cooler) is a device that cools air through the evaporation of water. Evaporative cooling differs from other air conditioning sy ...
,
cryocooler
A cryocooler is a refrigerator designed to reach cryogenic temperatures (below 120 K, -153 °C, -243.4 °F). The term is most often used for smaller systems, typically table-top size, with input powers less than about 20 kW. Some can have inpu ...
s,
dilution refrigerators, and
nuclear adiabatic demagnetization. The use of
laser cooling
Laser cooling includes several techniques where atoms, molecules, and small mechanical systems are cooled with laser light. The directed energy of lasers is often associated with heating materials, e.g. laser cutting, so it can be counterintuit ...
has produced temperatures of less than a billionth of a kelvin. At very low temperatures in the vicinity of absolute zero, matter exhibits many unusual properties, including
superconductivity
Superconductivity is a set of physical properties observed in superconductors: materials where Electrical resistance and conductance, electrical resistance vanishes and Magnetic field, magnetic fields are expelled from the material. Unlike an ord ...
,
superfluidity
Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
, and
Bose–Einstein condensation. To study such
phenomena
A phenomenon ( phenomena), sometimes spelled phaenomenon, is an observable Event (philosophy), event. The term came into its modern Philosophy, philosophical usage through Immanuel Kant, who contrasted it with the noumenon, which ''cannot'' be ...
, scientists have worked to obtain even lower temperatures.
* In November 2000,
nuclear spin
Nuclear may refer to:
Physics
Relating to the nucleus of the atom:
* Nuclear engineering
* Nuclear physics
* Nuclear power
* Nuclear reactor
* Nuclear weapon
* Nuclear medicine
*Radiation therapy
*Nuclear warfare
Mathematics
* Nuclear space
* ...
temperatures below were reported for an experiment at the
Helsinki University of Technology
Helsinki University of Technology (TKK; ; , HUT in international usage) was a technical university in Finland. It was located in Otaniemi, Espoo in the Helsinki metropolitan area, and it was one of the three universities from which the modern d ...
's Low Temperature Lab in
Espoo
Espoo (, ; ) is a city in Finland. It is located to the west of the capital, Helsinki, in southern Uusimaa. The population is approximately . It is the most populous Municipalities of Finland, municipality in Finland. Espoo is part of the Helsi ...
,
Finland
Finland, officially the Republic of Finland, is a Nordic country in Northern Europe. It borders Sweden to the northwest, Norway to the north, and Russia to the east, with the Gulf of Bothnia to the west and the Gulf of Finland to the south, ...
. However, this was the temperature of one particular
degree of freedom—a
quantum
In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
property called nuclear spin—not the overall average
thermodynamic temperature
Thermodynamic temperature, also known as absolute temperature, is a physical quantity which measures temperature starting from absolute zero, the point at which particles have minimal thermal motion.
Thermodynamic temperature is typically expres ...
for all possible degrees in freedom.
* In February 2003, the
Boomerang Nebula was observed to have been releasing gases at a speed of for the last 1,500 years. This has cooled it down to approximately 1 K, as deduced by astronomical observation, which is the lowest natural temperature ever recorded.
* In November 2003,
90377 Sedna was discovered and is one of the coldest known objects in the Solar System, with an average surface temperature of , due to its extremely far orbit of 903
astronomical unit
The astronomical unit (symbol: au or AU) is a unit of length defined to be exactly equal to . Historically, the astronomical unit was conceived as the average Earth-Sun distance (the average of Earth's aphelion and perihelion), before its m ...
s.
* In May 2005, the
European Space Agency
The European Space Agency (ESA) is a 23-member International organization, international organization devoted to space exploration. With its headquarters in Paris and a staff of around 2,547 people globally as of 2023, ESA was founded in 1975 ...
proposed research in space to achieve
femtokelvin temperatures.
* In May 2006, the Institute of Quantum Optics at the
University of Hannover gave details of technologies and benefits of femtokelvin research in space.
* In January 2013, physicist Ulrich Schneider of the
University of Munich
The Ludwig Maximilian University of Munich (simply University of Munich, LMU or LMU Munich; ) is a public university, public research university in Munich, Bavaria, Germany. Originally established as the University of Ingolstadt in 1472 by Duke ...
in Germany reported to have achieved temperatures formally below absolute zero ("
negative temperature
Certain system (thermodynamics), systems can achieve negative thermodynamic temperature; that is, their Thermodynamic temperature, temperature can be expressed as a negative number, negative quantity on the Kelvin or Rankine scale, Rankine scale ...
") in gases. The gas is artificially forced out of equilibrium into a high potential energy state, which is, however, cold. When it then emits radiation it approaches the equilibrium, and can continue emitting despite reaching formal absolute zero; thus, the temperature is formally negative.
* In September 2014, scientists in the
CUORE collaboration at the
Laboratori Nazionali del Gran Sasso in Italy cooled a copper vessel with a volume of one cubic meter to for 15 days, setting a record for the lowest temperature in the known universe over such a large contiguous volume.
* In June 2015, experimental physicists at
MIT
The Massachusetts Institute of Technology (MIT) is a private research university in Cambridge, Massachusetts, United States. Established in 1861, MIT has played a significant role in the development of many areas of modern technology and sc ...
cooled molecules in a gas of sodium potassium to a temperature of 500 nanokelvin, and it is expected to exhibit an exotic state of matter by cooling these molecules somewhat further.
* In 2017,
Cold Atom Laboratory (CAL), an experimental instrument was developed for launch to the
International Space Station
The International Space Station (ISS) is a large space station that was Assembly of the International Space Station, assembled and is maintained in low Earth orbit by a collaboration of five space agencies and their contractors: NASA (United ...
(ISS) in 2018.
The instrument has created extremely cold conditions in the
microgravity
Weightlessness is the complete or near-complete absence of the sensation of weight, i.e., zero apparent weight. It is also termed zero g-force, or zero-g (named after the g-force) or, incorrectly, zero gravity.
Weight is a measurement of the fo ...
environment of the ISS leading to the formation of
Bose–Einstein condensate
In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low Density, densities is cooled to temperatures very close to absolute zero#Relation with Bose–Einste ...
s. In this space-based laboratory, temperatures as low as are projected to be achievable, and it could further the exploration of unknown
quantum mechanical phenomena and test some of the most fundamental
laws of physics.
* The current world record for effective temperatures was set in 2021 at through matter-wave lensing of rubidium
Bose–Einstein condensate
In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low Density, densities is cooled to temperatures very close to absolute zero#Relation with Bose–Einste ...
s.
See also
*
Degenerate matter
*
Kelvin
The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
(unit of temperature)
*
Charles's law
Charles's law (also known as the law of volumes) is an experimental gas law that describes how gases tend to expand when heated. A modern statement of Charles's law is:
When the pressure on a sample of a dry gas is held constant, the Kelvin ...
*
Heat
In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
*
International Temperature Scale of 1990
The International Temperature Scale of 1990 (ITS-90) is an equipment calibration standard specified by the CIPM, International Committee of Weights and Measures (CIPM) for making measurements on the Kelvin and Degree Celsius, Celsius temperature s ...
*
Orders of magnitude (temperature)
*
Thermodynamic temperature
Thermodynamic temperature, also known as absolute temperature, is a physical quantity which measures temperature starting from absolute zero, the point at which particles have minimal thermal motion.
Thermodynamic temperature is typically expres ...
*
Triple point
In thermodynamics, the triple point of a substance is the temperature and pressure at which the three Phase (matter), phases (gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium.. It is that temperature and pressure at ...
*
Ultracold atom
*
Kinetic energy
In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion.
In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
*
Entropy
Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
*
Planck temperature and
Hagedorn temperature
The Hagedorn temperature, ''T''H, is the temperature in theoretical physics where hadronic matter (i.e. ordinary matter) is no longer stable, and must either "evaporate" or convert into quark matter; as such, it can be thought of as the "boiling p ...
, hypothetical upper limits to the thermodynamic temperature scale
References
Further reading
*
*
*
*
BIPM Mise en pratique - Kelvin - Appendix 2 - SI Brochure
External links
"Absolute zero" a two part ''
NOVA'' episode
originally aired January 2008
"What is absolute zero?"''Lansing State Journal''
{{DEFAULTSORT:Absolute Zero
Cold
Cryogenics
Temperature