HOME
*



picture info

CUORE
The Cryogenic Underground Observatory for Rare Events (CUORE , also ) is a particle physics facility located underground at the Laboratori Nazionali del Gran Sasso in Assergi, Italy. CUORE was designed primarily as a search for neutrinoless double beta decay in 130Te, a process that has never been observed. It uses tellurium dioxide (TeO2) crystals as both the source of the decay and as bolometers to detect the resulting electrons. CUORE searches for the characteristic signal of neutrinoless double beta decay, a small peak in the observed energy spectrum around the known decay energy; for 130Te, this is ''Q'' = 2527.518 ± 0.013 keV. CUORE can also search for signals from dark matter candidates, such as axions and WIMPs. An observation of neutrinoless double beta decay would conclusively show that neutrinos are Majorana fermions; that is, they are their own antiparticles. This is relevant to many topics in particle physics, including lepton number conservation, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CUORE Experiment Inaugurated Octorber 23 2017
The Cryogenic Underground Observatory for Rare Events (CUORE , also ) is a particle physics facility located underground at the Laboratori Nazionali del Gran Sasso in Assergi, Italy. CUORE was designed primarily as a search for neutrinoless double beta decay in 130Te, a process that has never been observed. It uses tellurium dioxide (TeO2) crystals as both the source of the decay and as bolometers to detect the resulting electrons. CUORE searches for the characteristic signal of neutrinoless double beta decay, a small peak in the observed energy spectrum around the known decay energy; for 130Te, this is ''Q'' = 2527.518 ± 0.013 keV. CUORE can also search for signals from dark matter candidates, such as axions and WIMPs. An observation of neutrinoless double beta decay would conclusively show that neutrinos are Majorana fermions; that is, they are their own antiparticles. This is relevant to many topics in particle physics, including lepton number conservation, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




CUORE Cryostat Construction
The Cryogenic Underground Observatory for Rare Events (CUORE , also ) is a particle physics facility located underground at the Laboratori Nazionali del Gran Sasso in Assergi, Italy. CUORE was designed primarily as a search for neutrinoless double beta decay in 130Te, a process that has never been observed. It uses tellurium dioxide (TeO2) crystals as both the source of the decay and as bolometers to detect the resulting electrons. CUORE searches for the characteristic signal of neutrinoless double beta decay, a small peak in the observed energy spectrum around the known decay energy; for 130Te, this is ''Q'' = 2527.518 ± 0.013 keV. CUORE can also search for signals from dark matter candidates, such as axions and WIMPs. An observation of neutrinoless double beta decay would conclusively show that neutrinos are Majorana fermions; that is, they are their own antiparticles. This is relevant to many topics in particle physics, including lepton number conservation, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Double Beta Decay
In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move closer to the optimal ratio of protons and neutrons. As a result of this transformation, the nucleus emits two detectable beta particles, which are electrons or positrons. The literature distinguishes between two types of double beta decay: ''ordinary'' double beta decay and ''neutrinoless'' double beta decay. In ordinary double beta decay, which has been observed in several isotopes, two electrons and two electron antineutrinos are emitted from the decaying nucleus. In neutrinoless double beta decay, a hypothesized process that has never been observed, only electrons would be emitted. History The idea of double beta decay was first proposed by M. Goeppert-Mayer in 1935. In 1937, E. Majorana demonstrated that all results of beta decay ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutrino
A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected. Weak interactions create neutrinos in one of three leptonic flavors: electron neutrinos muon neutrinos (), or tau neutrinos (), in association with the corresponding charged lepton. Although neutrinos were long believed to be massless, it is now known that there are three discrete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Laboratori Nazionali Del Gran Sasso
Laboratori Nazionali del Gran Sasso (LNGS) is the largest underground research center in the world. Situated below Gran Sasso mountain in Italy, it is well known for particle physics research by the INFN. In addition to a surface portion of the laboratory, there are extensive underground facilities beneath the mountain. The nearest towns are L'Aquila and Teramo. The facility is located about 120 km from Rome. The primary mission of the laboratory is to host experiments that require a low background environment in the fields of astroparticle physics and nuclear astrophysics and other disciplines that can profit of its characteristics and of its infrastructures. The LNGS is, like the three other European underground astroparticle laboratories (Laboratoire Souterrain de Modane, Laboratorio subterráneo de Canfranc, and Boulby Underground Laboratory), a member of the coordinating group ILIAS. Facilities The laboratory consists of a surface facility, located within the Gran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Assergi
Assergi is a frazione of the comune of L'Aquila, located about from the capital. With a population of just over 500, it is situated at an altitude of approximately 1,000 meters, below the western slope of the Gran Sasso in a small plain called the ''Piana di Assergi ''(Plain of Assergi). Assergi was formerly included in the comune of Camarda, which is directly to its south. Assergi is located entirely within the Gran Sasso e Monti della Laga National Park, and also contains the Istituto Nazionale di Fisica Nucleare, a national laboratory of nuclear physics. Also in Assergi is the base of the Funivia del Gran Sasso d'Italia, a cable car that leads to the Campo Imperatore. History The area around Assergi was settled by the Vestini, a local tribe. These origins are evident in the ruins of the town of ''Prifernum'', situated near the current site of Assergi. Likely abandoned by the second century BC, it was reestablished in Roman times as the small village of ''Castrum Asserici'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Istituto Nazionale Di Fisica Nucleare
The Istituto Nazionale di Fisica Nucleare (INFN; "National Institute for Nuclear Physics") is the coordinating institution for nuclear, particle, theoretical and astroparticle physics in Italy. History INFN was founded on 8 August 1951, to further the nuclear physics research tradition initiated by Enrico Fermi in Rome, in the 1930s. The INFN collaborates with CERN, Fermilab and various other laboratories in the world. In recent years it has provided important contributions to grid computing. During the latter half of the 1950s, the INFN designed and constructed the first Italian electron accelerator—the electron synchrotron developed in Frascati. In the early 1960s, it also constructed in Frascati the first ever electron-positron collider (ADA - ''Anello Di Accumulazione''), under the scientific leadership of Bruno Touschek. In 1968, Frascati began operating ADONE (''big'' AdA), which was the first high-energy particle collider, having a beam energy of 1.5 GeV. During the sa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chinese Academy Of Sciences
The Chinese Academy of Sciences (CAS); ), known by Academia Sinica in English until the 1980s, is the national academy of the People's Republic of China for natural sciences. It has historical origins in the Academia Sinica during the Republican era and was formerly also known by that name. Collectively known as the "Two Academies (两院)" along with the Chinese Academy of Engineering, it functions as the national scientific think tank and academic governing body, providing advisory and appraisal services on issues stemming from the national economy, social development, and science and technology progress. It is headquartered in Xicheng District, Beijing, with branch institutes all over mainland China. It has also created hundreds of commercial enterprises, Lenovo being one of the most famous. CAS is the world's largest research organization. It had 60,000 researchers in 2018 and 114 institutes in 2016, and has been consistently ranked among the top research organizations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radioactive Contamination
Radioactive contamination, also called radiological pollution, is the deposition of, or presence of radioactive substances on surfaces or within solids, liquids, or gases (including the human body), where their presence is unintended or undesirable (from the International Atomic Energy Agency (IAEA) definition). Such contamination presents a hazard because the radioactive decay of the contaminants, produces ionizing radiation (namely alpha, beta, gamma rays and free neutrons). The degree of hazard is determined by the concentration of the contaminants, the energy of the radiation being emitted, the type of radiation, and the proximity of the contamination to organs of the body. It is important to be clear that the contamination gives rise to the radiation hazard, and the terms "radiation" and "contamination" are not interchangeable. The sources of radioactive pollution can be classified into two groups: natural and man-made. Following an atmospheric nuclear weapon discharge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Rays
A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (), it imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation ''gamma rays'' based on their relatively strong penetration of matter; in 1900 he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power. Gamma rays from radioactive decay are in the energy range from a few kiloelectronvolts (keV) to approximately 8 megaelectronvolts (MeV), corresponding to the typical energy levels in nuclei with reasonably long lif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Decay Chain
In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay directly to a stable state, but rather undergo a series of decays until eventually a stable isotope is reached. Decay stages are referred to by their relationship to previous or subsequent stages. A ''parent isotope'' is one that undergoes decay to form a ''daughter isotope''. One example of this is uranium (atomic number 92) decaying into thorium (atomic number 90). The daughter isotope may be stable or it may decay to form a daughter isotope of its own. The daughter of a daughter isotope is sometimes called a ''granddaughter isotope''. The time it takes for a single parent atom to decay to an atom of its daughter isotope can vary widely, not only between different parent-daughter pairs, but also randomly between identical pairings of parent a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thorium
Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high melting point. Thorium is an electropositive actinide whose chemistry is dominated by the +4 oxidation state; it is quite reactive and can ignite in air when finely divided. All known thorium isotopes are unstable. The most stable isotope, 232Th, has a half-life of 14.05 billion years, or about the age of the universe; it decays very slowly via alpha decay, starting a decay chain named the thorium series that ends at stable 208 Pb. On Earth, thorium and uranium are the only significantly radioactive elements that still occur naturally in large quantities as primordial elements. Thorium is estimated to be over three times as abundant as uranium in the Earth's crust, and is chiefly refined from monazite sands as a by-product of extracti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]