Self-adjoint
   HOME
*





Self-adjoint
In mathematics, and more specifically in abstract algebra, an element ''x'' of a *-algebra is self-adjoint if x^*=x. A self-adjoint element is also Hermitian, though the reverse doesn't necessarily hold. A collection ''C'' of elements of a star-algebra is self-adjoint if it is closed under the involution operation. For example, if x^*=y then since y^*=x^=x in a star-algebra, the set is a self-adjoint set even though ''x'' and ''y'' need not be self-adjoint elements. In functional analysis, a linear operator A : H \to H on a Hilbert space is called self-adjoint if it is equal to its own adjoint ''A''. See self-adjoint operator for a detailed discussion. If the Hilbert space is finite-dimensional and an orthonormal basis has been chosen, then the operator ''A'' is self-adjoint if and only if the matrix describing ''A'' with respect to this basis is Hermitian, i.e. if it is equal to its own conjugate transpose. Hermitian matrices are also called self-adjoint. In a dagger categor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Self-adjoint Operator
In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. If ''V'' is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of ''A'' is a Hermitian matrix, i.e., equal to its conjugate transpose ''A''. By the finite-dimensional spectral theorem, ''V'' has an orthonormal basis such that the matrix of ''A'' relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension. Self-adjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in the Dirac–von Neumann formulation of quantum mechanics, in which physical observables such as positi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Self-adjoint Operator
In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. If ''V'' is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of ''A'' is a Hermitian matrix, i.e., equal to its conjugate transpose ''A''. By the finite-dimensional spectral theorem, ''V'' has an orthonormal basis such that the matrix of ''A'' relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension. Self-adjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in the Dirac–von Neumann formulation of quantum mechanics, in which physical observables such as positi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dagger Category
In category theory, a branch of mathematics, a dagger category (also called involutive category or category with involution) is a category equipped with a certain structure called ''dagger'' or ''involution''. The name dagger category was coined by Peter Selinger. Formal definition A dagger category is a category \mathcal equipped with an involutive contravariant endofunctor \dagger which is the identity on objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an .... In detail, this means that: * for all morphisms f: A \to B, there exist its Hermitian adjoint, adjoint f^\dagger: B \to A * for all morphisms f, (f^\dagger)^\dagger = f * for all objects A, \mathrm_A^\dagger = \mathrm_A * for all f: A \to B and g: B \to C, (g \circ f)^\dagger = f^\dagger \circ g^\dagger: C \to A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Adjoint Operator
In mathematics, specifically in operator theory, each linear operator A on a Euclidean vector space defines a Hermitian adjoint (or adjoint) operator A^* on that space according to the rule :\langle Ax,y \rangle = \langle x,A^*y \rangle, where \langle \cdot,\cdot \rangle is the inner product on the vector space. The adjoint may also be called the Hermitian conjugate or simply the Hermitian after Charles Hermite. It is often denoted by in fields like physics, especially when used in conjunction with bra–ket notation in quantum mechanics. In finite dimensions where operators are represented by matrices, the Hermitian adjoint is given by the conjugate transpose (also known as the Hermitian transpose). The above definition of an adjoint operator extends verbatim to bounded linear operators on Hilbert spaces H. The definition has been further extended to include unbounded '' densely defined'' operators whose domain is topologically dense in—but not necessarily equal to—H. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


*-algebra
In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra) is a mathematical structure consisting of two involutive rings and , where is commutative and has the structure of an associative algebra over . Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert's space and Hermitian adjoints. However, it may happen that an algebra admits no involution. Definitions *-ring In mathematics, a *-ring is a ring with a map that is an antiautomorphism and an involution. More precisely, is required to satisfy the following properties: * * * * for all in . This is also called an involutive ring, involutory ring, and ring with involution. The third axiom is implied by the second and fourth axioms, making it redundant. Elements such that are called ''self-adjo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermitian Matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th row and -th column, for all indices and : or in matrix form: A \text \quad \iff \quad A = \overline . Hermitian matrices can be understood as the complex extension of real symmetric matrices. If the conjugate transpose of a matrix A is denoted by A^\mathsf, then the Hermitian property can be written concisely as Hermitian matrices are named after Charles Hermite, who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real eigenvalues. Other, equivalent notations in common use are A^\mathsf = A^\dagger = A^\ast, although note that in quantum mechanics, A^\ast typically means the complex conjugate only, and not the conjugate transpose. Alternative characterizations Hermit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Star-algebra
In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra) is a mathematical structure consisting of two involutive rings and , where is commutative and has the structure of an associative algebra over . Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert's space and Hermitian adjoints. However, it may happen that an algebra admits no involution. Definitions *-ring In mathematics, a *-ring is a ring with a map that is an antiautomorphism and an involution. More precisely, is required to satisfy the following properties: * * * * for all in . This is also called an involutive ring, involutory ring, and ring with involution. The third axiom is implied by the second and fourth axioms, making it redundant. Elements such that are called ''self-adjoi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conjugate Transpose
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \boldsymbol is an n \times m matrix obtained by transposing \boldsymbol and applying complex conjugate on each entry (the complex conjugate of a+ib being a-ib, for real numbers a and b). It is often denoted as \boldsymbol^\mathrm or \boldsymbol^* or \boldsymbol'. H. W. Turnbull, A. C. Aitken, "An Introduction to the Theory of Canonical Matrices," 1932. For real matrices, the conjugate transpose is just the transpose, \boldsymbol^\mathrm = \boldsymbol^\mathsf. Definition The conjugate transpose of an m \times n matrix \boldsymbol is formally defined by where the subscript ij denotes the (i,j)-th entry, for 1 \le i \le n and 1 \le j \le m, and the overbar denotes a scalar complex conjugate. This definition can also be written as :\boldsymbol^\mathrm = \left(\overline\right)^\mathsf = \overline where \boldsymbol^\mathsf denotes the transpose and \overline denotes the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Matrix
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, Because equal matrices have equal dimensions, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with respect to the main diagonal. So if a_ denotes the entry in the ith row and jth column then for all indices i and j. Every square diagonal matrix is symmetric, since all off-diagonal elements are zero. Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative. In linear algebra, a real symmetric matrix represents a self-adjoint operator represented in an orthonormal basis over a real inner product space. The corresponding object for a complex inner product space is a Hermitian matrix with complex-valued entries, which is equal to its conjugate transpose. Therefore, in linear algebra over the complex numbers, it is often assumed that a symmetric matrix refe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]