HOME

TheInfoList



OR:

Functional analysis is a branch of
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
, the core of which is formed by the study of
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
s endowed with some kind of limit-related structure (e.g. inner product, norm,
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, etc.) and the
linear function In mathematics, the term linear function refers to two distinct but related notions: * In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For di ...
s defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations. The usage of the word '' functional'' as a noun goes back to the
calculus of variations The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions t ...
, implying a function whose argument is a function. The term was first used in Hadamard's 1910 book on that subject. However, the general concept of a functional had previously been introduced in 1887 by the Italian mathematician and physicist Vito Volterra. The theory of nonlinear functionals was continued by students of Hadamard, in particular Fréchet and Lévy. Hadamard also founded the modern school of linear functional analysis further developed by Riesz and the group of Polish mathematicians around Stefan Banach. In modern introductory texts on functional analysis, the subject is seen as the study of vector spaces endowed with a topology, in particular infinite-dimensional spaces. In contrast,
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matric ...
deals mostly with finite-dimensional spaces, and does not use topology. An important part of functional analysis is the extension of the theory of measure,
integration Integration may refer to: Biology * Multisensory integration * Path integration * Pre-integration complex, viral genetic material used to insert a viral genome into a host genome *DNA integration, by means of site-specific recombinase technolo ...
, and
probability Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and ...
to infinite dimensional spaces, also known as infinite dimensional analysis.


Normed vector spaces

The basic and historically first class of spaces studied in functional analysis are complete
normed vector space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "leng ...
s over the real or
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s. Such spaces are called
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between ve ...
s. An important example is a
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natu ...
, where the norm arises from an inner product. These spaces are of fundamental importance in many areas, including the mathematical formulation of quantum mechanics,
machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
,
partial differential equations In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to ...
, and Fourier analysis. More generally, functional analysis includes the study of
Fréchet space In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces ( normed vector spaces that are complete with respect ...
s and other topological vector spaces not endowed with a norm. An important object of study in functional analysis are the continuous linear operators defined on Banach and Hilbert spaces. These lead naturally to the definition of C*-algebras and other operator algebras.


Hilbert spaces

Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natu ...
s can be completely classified: there is a unique Hilbert space up to isomorphism for every
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
of the
orthonormal basis In mathematics, particularly linear algebra, an orthonormal basis for an inner product space ''V'' with finite dimension is a basis for V whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For ex ...
. Finite-dimensional Hilbert spaces are fully understood in
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matric ...
, and infinite-dimensional separable Hilbert spaces are isomorphic to \ell^(\aleph_0)\,. Separability being important for applications, functional analysis of Hilbert spaces consequently mostly deals with this space. One of the open problems in functional analysis is to prove that every bounded linear operator on a Hilbert space has a proper invariant subspace. Many special cases of this invariant subspace problem have already been proven.


Banach spaces

General
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between ve ...
s are more complicated than Hilbert spaces, and cannot be classified in such a simple manner as those. In particular, many Banach spaces lack a notion analogous to an
orthonormal basis In mathematics, particularly linear algebra, an orthonormal basis for an inner product space ''V'' with finite dimension is a basis for V whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For ex ...
. Examples of Banach spaces are L^p-spaces for any real number Given also a measure \mu on set then sometimes also denoted L^p(X,\mu) or has as its vectors equivalence classes ,f\,/math> of
measurable function In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is i ...
s whose absolute value's p-th power has finite integral; that is, functions f for which one has :\int_\left, f(x)\^p\,d\mu(x) < +\infty. If \mu is the counting measure, then the integral may be replaced by a sum. That is, we require :\sum_\left, f(x)\^p<+\infty . Then it is not necessary to deal with equivalence classes, and the space is denoted written more simply \ell^p in the case when X is the set of non-negative
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s. In Banach spaces, a large part of the study involves the
dual space In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by con ...
: the space of all continuous linear maps from the space into its underlying field, so-called functionals. A Banach space can be canonically identified with a subspace of its bidual, which is the dual of its dual space. The corresponding map is an isometry but in general not onto. A general Banach space and its bidual need not even be isometrically isomorphic in any way, contrary to the finite-dimensional situation. This is explained in the dual space article. Also, the notion of
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
can be extended to arbitrary functions between Banach spaces. See, for instance, the Fréchet derivative article.


Linear functional analysis


Major and foundational results

There are four major theorems which are sometimes called the four pillars of functional analysis: the Hahn–Banach theorem, the open mapping theorem, the closed graph theorem and the
uniform boundedness principle In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the corners ...
, also known as the Banach–Steinhaus theorem. Important results of functional analysis include:


Uniform boundedness principle

The
uniform boundedness principle In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the corners ...
or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators) whose domain is a
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between ve ...
, pointwise boundedness is equivalent to uniform boundedness in operator norm. The theorem was first published in 1927 by Stefan Banach and Hugo Steinhaus but it was also proven independently by Hans Hahn.
Theorem (Uniform Boundedness Principle). Let X be a
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between ve ...
and Y be a
normed vector space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "leng ...
. Suppose that F is a collection of continuous linear operators from X to Y. If for all x in X one has :\sup\nolimits_ \, T(x)\, _Y < \infty, then :\sup\nolimits_ \, T\, _ < \infty.


Spectral theorem

There are many theorems known as the
spectral theorem In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful b ...
, but one in particular has many applications in functional analysis.
Spectral theorem. Let A be a bounded self-adjoint operator on a Hilbert space H. Then there is a measure space (X,\Sigma,\mu) and a real-valued essentially bounded measurable function f on X and a unitary operator U:H\to L^2_\mu(X) such that : U^* T U = A \; where ''T'' is the multiplication operator: : \varphix) = f(x) \varphi(x). \; and \, T\, = \, f\, _\infty.
This is the beginning of the vast research area of functional analysis called operator theory; see also the
spectral measure In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his diss ...
. There is also an analogous spectral theorem for bounded normal operators on Hilbert spaces. The only difference in the conclusion is that now f may be complex-valued.


Hahn–Banach theorem

The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a subspace of some
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every
normed vector space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "leng ...
to make the study of the
dual space In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by con ...
"interesting".
Hahn–Banach theorem: If p:V\to\mathbb is a sublinear function, and \varphi:U\to\mathbb is a
linear functional In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars (often, the real numbers or the complex numbers). If is a vector space over a field , th ...
on a linear subspace U\subseteq V which is dominated by p on U; that is, :\varphi(x) \leq p(x)\qquad\forall x \in U then there exists a linear extension \psi:V\to\mathbb of \varphi to the whole space V which is dominated by p on V; that is, there exists a linear functional \psi such that :\psi(x)=\varphi(x)\qquad\forall x\in U, :\psi(x) \le p(x)\qquad\forall x\in V.


Open mapping theorem

The open mapping theorem, also known as the Banach–Schauder theorem (named after Stefan Banach and Juliusz Schauder), is a fundamental result which states that if a continuous linear operator between
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between ve ...
s is surjective then it is an open map. More precisely,: : Open mapping theorem. If X and Y are Banach spaces and A:X\to Y is a surjective continuous linear operator, then A is an open map (that is, if U is an
open set In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that a ...
in X, then A(U) is open in Y). The proof uses the Baire category theorem, and completeness of both X and Y is essential to the theorem. The statement of the theorem is no longer true if either space is just assumed to be a
normed space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "lengt ...
, but is true if X and Y are taken to be
Fréchet space In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces ( normed vector spaces that are complete with respect ...
s.


Closed graph theorem

The closed graph theorem states the following: If X is a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
and Y is a compact Hausdorff space, then the graph of a linear map T from X to Y is closed if and only if T is continuous.


Other topics


Foundations of mathematics considerations

Most spaces considered in functional analysis have infinite dimension. To show the existence of a vector space basis for such spaces may require Zorn's lemma. However, a somewhat different concept,
Schauder basis In mathematics, a Schauder basis or countable basis is similar to the usual ( Hamel) basis of a vector space; the difference is that Hamel bases use linear combinations that are finite sums, while for Schauder bases they may be infinite sums. Th ...
, is usually more relevant in functional analysis. Many very important theorems require the Hahn–Banach theorem, usually proved using the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
, although the strictly weaker Boolean prime ideal theorem suffices. The Baire category theorem, needed to prove many important theorems, also requires a form of axiom of choice.


Points of view

Functional analysis in its includes the following tendencies: *''Abstract analysis''. An approach to analysis based on topological groups, topological rings, and topological vector spaces. *''Geometry of
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between ve ...
s'' contains many topics. One is combinatorial approach connected with Jean Bourgain; another is a characterization of Banach spaces in which various forms of the
law of large numbers In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials sho ...
hold. *'' Noncommutative geometry''. Developed by Alain Connes, partly building on earlier notions, such as George Mackey's approach to ergodic theory. *''Connection with
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, q ...
''. Either narrowly defined as in
mathematical physics Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and t ...
, or broadly interpreted by, for example, Israel Gelfand, to include most types of representation theory.


See also

*
List of functional analysis topics This is a list of functional analysis topics, by Wikipedia page. See also: Glossary of functional analysis. Hilbert space Functional analysis, classic results Operator theory Banach space examples * Lp space *Hardy space *Sobolev space ...
* Spectral theory


References


Further reading

* Aliprantis, C.D., Border, K.C.: ''Infinite Dimensional Analysis: A Hitchhiker's Guide'', 3rd ed., Springer 2007, . Online (by subscription) * Bachman, G., Narici, L.: ''Functional analysis'', Academic Press, 1966. (reprint Dover Publications) * Banach S.br>''Theory of Linear Operations''
Volume 38, North-Holland Mathematical Library, 1987, * Brezis, H.: ''Analyse Fonctionnelle'', Dunod or * Conway, J. B.: ''A Course in Functional Analysis'', 2nd edition, Springer-Verlag, 1994, * Dunford, N. and Schwartz, J.T.: ''Linear Operators, General Theory, John Wiley & Sons'', and other 3 volumes, includes visualization charts * Edwards, R. E.: ''Functional Analysis, Theory and Applications'', Hold, Rinehart and Winston, 1965. * Eidelman, Yuli, Vitali Milman, and Antonis Tsolomitis: ''Functional Analysis: An Introduction'', American Mathematical Society, 2004. * Friedman, A.: ''Foundations of Modern Analysis'', Dover Publications, Paperback Edition, July 21, 2010 * Giles, J.R.: ''Introduction to the Analysis of Normed Linear Spaces'', Cambridge University Press, 2000 * Hirsch F., Lacombe G. - "Elements of Functional Analysis", Springer 1999. * Hutson, V., Pym, J.S., Cloud M.J.: ''Applications of Functional Analysis and Operator Theory'', 2nd edition, Elsevier Science, 2005, * Kantorovitz, S.,''Introduction to Modern Analysis'', Oxford University Press, 2003,2nd ed.2006. * Kolmogorov, A.N and Fomin, S.V.: ''Elements of the Theory of Functions and Functional Analysis'', Dover Publications, 1999 * Kreyszig, E.: ''Introductory Functional Analysis with Applications'', Wiley, 1989. * Lax, P.: ''Functional Analysis'', Wiley-Interscience, 2002, * Lebedev, L.P. and Vorovich, I.I.: ''Functional Analysis in Mechanics'', Springer-Verlag, 2002 * Michel, Anthony N. and Charles J. Herget: ''Applied Algebra and Functional Analysis'', Dover, 1993. * Pietsch, Albrecht: ''History of Banach spaces and linear operators'', Birkhäuser Boston Inc., 2007, * Reed, M., Simon, B.: "Functional Analysis", Academic Press 1980. * Riesz, F. and Sz.-Nagy, B.: ''Functional Analysis'', Dover Publications, 1990 * Rudin, W.: ''Functional Analysis'', McGraw-Hill Science, 1991 * Saxe, Karen: ''Beginning Functional Analysis'', Springer, 2001 * Schechter, M.: ''Principles of Functional Analysis'', AMS, 2nd edition, 2001 * Shilov, Georgi E.: ''Elementary Functional Analysis'', Dover, 1996. * Sobolev, S.L.: ''Applications of Functional Analysis in Mathematical Physics'', AMS, 1963 * Vogt, D., Meise, R.: ''Introduction to Functional Analysis'', Oxford University Press, 1997. * Yosida, K.: ''Functional Analysis'', Springer-Verlag, 6th edition, 1980


External links

*
Topics in Real and Functional Analysis
by Gerald Teschl, University of Vienna.
Lecture Notes on Functional Analysis
by Yevgeny Vilensky, New York University.
Lecture videos on functional analysis
b
Greg Morrow
from University of Colorado Colorado Springs {{Authority control