Self-adjoint
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, and more specifically in
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''a ...
, an element ''x'' of a *-algebra is self-adjoint if x^*=x. A self-adjoint element is also
Hermitian {{Short description, none Numerous things are named after the French mathematician Charles Hermite (1822–1901): Hermite * Cubic Hermite spline, a type of third-degree spline * Gauss–Hermite quadrature, an extension of Gaussian quadrature m ...
, though the reverse doesn't necessarily hold. A collection ''C'' of elements of a star-algebra is self-adjoint if it is closed under the
involution Involution may refer to: * Involute, a construction in the differential geometry of curves * '' Agricultural Involution: The Processes of Ecological Change in Indonesia'', a 1963 study of intensification of production through increased labour inpu ...
operation. For example, if x^*=y then since y^*=x^=x in a star-algebra, the set is a self-adjoint set even though ''x'' and ''y'' need not be self-adjoint elements. In
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Defini ...
, a
linear operator In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pre ...
A : H \to H on a
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
is called self-adjoint if it is equal to its own
adjoint In mathematics, the term ''adjoint'' applies in several situations. Several of these share a similar formalism: if ''A'' is adjoint to ''B'', then there is typically some formula of the type :(''Ax'', ''y'') = (''x'', ''By''). Specifically, adjoin ...
''A''. See
self-adjoint operator In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map ''A'' (from ''V'' to its ...
for a detailed discussion. If the Hilbert space is
finite-dimensional In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to disti ...
and an
orthonormal basis In mathematics, particularly linear algebra, an orthonormal basis for an inner product space ''V'' with finite dimension is a basis for V whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, ...
has been chosen, then the operator ''A'' is self-adjoint if and only if the
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
describing ''A'' with respect to this basis is Hermitian, i.e. if it is equal to its own
conjugate transpose In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \boldsymbol is an n \times m matrix obtained by transposing \boldsymbol and applying complex conjugate on each entry (the complex con ...
. Hermitian matrices are also called self-adjoint. In a
dagger category In category theory, a branch of mathematics, a dagger category (also called involutive category or category with involution) is a category equipped with a certain structure called ''dagger'' or ''involution''. The name dagger category was coined ...
, a
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms a ...
f is called self-adjoint if f=f^\dagger; this is possible only for an
endomorphism In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a g ...
f\colon a \to a.


See also

*
Hermitian matrix In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th ...
*
Normal element In mathematics, an element ''x'' of a *-algebra is normal if it satisfies x x^ = x^ x. This definition stems from the definition of a normal linear operator in functional analysis, where a linear operator ''A'' from a Hilbert space into itself ...
*
Symmetric matrix In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, Because equal matrices have equal dimensions, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with re ...
*
Self-adjoint operator In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map ''A'' (from ''V'' to its ...
*
Unitary element In mathematics, an element ''x'' of a *-algebra is unitary if it satisfies x^* = x^. In functional analysis, a linear operator ''A'' from a Hilbert space into itself is called unitary if it is invertible and its inverse is equal to its own a ...


References

* * {{DEFAULTSORT:Self-Adjoint Abstract algebra Linear algebra