Open Book Decomposition
   HOME
*





Open Book Decomposition
In mathematics, an open book decomposition (or simply an open book) is a decomposition of a closed oriented 3-manifold ''M'' into a union of surfaces (necessarily with boundary) and solid tori. Open books have relevance to contact geometry, with a famous theorem of Emmanuel Giroux (given below) that shows that contact geometry can be studied from an entirely topological viewpoint. Definition and construction Definition. An ''open book decomposition'' of a 3-dimensional manifold ''M'' is a pair (''B'', π) where :*''B'' is an oriented link in ''M'', called the binding of the open book; :*π: ''M'' \ ''B'' → ''S''1 is a fibration of the complement of ''B'' such that for each θ ∈ ''S''1, π−1(θ) is the interior of a compact surface Σ ⊂ ''M'' whose boundary is ''B''. The surface Σ is called the page of the open book. This is the special case ''m'' = 3 of an open book decomposition of an ''m''-dimensional manifold, for any ''m''. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Witt Group
In mathematics, a Witt group of a field (mathematics), field, named after Ernst Witt, is an abelian group whose elements are represented by symmetric bilinear form, symmetric bilinear forms over the field. Definition Fix a field ''k'' of characteristic (algebra), characteristic not equal to two. All vector spaces will be assumed to be finite-dimension (vector space), dimensional. We say that two spaces equipped with symmetric bilinear forms are equivalent if one can be obtained from the other by adding a metabolic quadratic space, that is, zero or more copies of a hyperbolic plane (quadratic forms), hyperbolic plane, the non-degenerate two-dimensional symmetric bilinear form with a norm 0 vector.Milnor & Husemoller (1973) p. 14 Each class is represented by the core form of a Witt decomposition.Lorenz (2008) p. 30 The Witt group of ''k'' is the abelian group ''W''(''k'') of equivalence classes of non-degenerate symmetric bilinear forms, with the group operation correspo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

3-manifolds
In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below. Introduction Definition A topological space ''X'' is a 3-manifold if it is a second-countable Hausdorff space and if every point in ''X'' has a neighbourhood that is homeomorphic to Euclidean 3-space. Mathematical theory of 3-manifolds The topological, piecewise-linear, and smooth categories are all equivalent in three dimensions, so little distinction is made in whether we are dealing with say, topological 3-manifolds, or smooth 3-manifolds. Phenomena in three dimensions can be strikingly different from phenomena in other dimensions, and so there is a prevalence of very specialized techniques that do not generalize to dimensions gre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Twist (mathematics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity (mathematics), continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopy, homotopies. A property that is invariant under such deformations is a topological property. Basic exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Contact Topology
In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given (at least locally) as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for ' complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem. Contact geometry is in many ways an odd-dimensional counterpart of symplectic geometry, a structure on certain even-dimensional manifolds. Both contact and symplectic geometry are motivated by the mathematical formalism of classical mechanics, where one can consider either the even-dimensional phase space of a mechanical sys ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dehn Twist
In geometric topology, a branch of mathematics, a Dehn twist is a certain type of self-homeomorphism of a surface (two-dimensional manifold). Definition Suppose that ''c'' is a simple closed curve in a closed, orientable surface ''S''. Let ''A'' be a tubular neighborhood of ''c''. Then ''A'' is an annulus, homeomorphic to the Cartesian product of a circle and a unit interval ''I'': :c \subset A \cong S^1 \times I. Give ''A'' coordinates (''s'', ''t'') where ''s'' is a complex number of the form e^ with \theta \in , 2\pi and . Let ''f'' be the map from ''S'' to itself which is the identity outside of ''A'' and inside ''A'' we have :f(s, t) = \left(se^, t\right). Then ''f'' is a Dehn twist about the curve ''c''. Dehn twists can also be defined on a non-orientable surface ''S'', provided one starts with a 2-sided simple closed curve ''c'' on ''S''. Example Consider the torus represented by a fundamental polygon with edges ''a'' and ''b'' :\mathbb^2 \cong \mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Handle Decomposition
In mathematics, a handle decomposition of an ''m''-manifold ''M'' is a union \emptyset = M_ \subset M_0 \subset M_1 \subset M_2 \subset \dots \subset M_ \subset M_m = M where each M_i is obtained from M_ by the attaching of i-handles. A handle decomposition is to a manifold what a CW complex, CW-decomposition is to a topological space—in many regards the purpose of a handle decomposition is to have a language analogous to CW-complexes, but adapted to the world of smooth manifolds. Thus an ''i''-handle is the smooth analogue of an ''i''-cell. Handle decompositions of manifolds arise naturally via Morse theory. The modification of handle structures is closely linked to Cerf theory. Motivation Consider the standard CW-complex, CW-decomposition of the ''n''-sphere, with one zero cell and a single ''n''-cell. From the point of view of smooth manifolds, this is a degenerate decomposition of the sphere, as there is no natural way to see the smooth structure of S^n from the eyes of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ambient Isotopy
In the mathematical subject of topology, an ambient isotopy, also called an ''h-isotopy'', is a kind of continuous distortion of an ambient space, for example a manifold, taking a submanifold to another submanifold. For example in knot theory, one considers two knots the same if one can distort one knot into the other without breaking it. Such a distortion is an example of an ambient isotopy. More precisely, let N and M be manifolds and g and h be embeddings of N in M. A continuous map :F:M \times ,1\rightarrow M is defined to be an ambient isotopy taking g to h if F_0 is the identity map, each map F_t is a homeomorphism from M to itself, and F_1 \circ g = h. This implies that the orientation must be preserved by ambient isotopies. For example, two knots that are mirror images of each other are, in general, not equivalent. See also * Isotopy * Regular homotopy *Regular isotopy References *M. A. Armstrong, ''Basic Topology'', Springer-Verlag Springer Science+Business Med ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Up To
Two Mathematical object, mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R'' * if ''a'' and ''b'' are related by ''R'', that is, * if ''aRb'' holds, that is, * if the equivalence classes of ''a'' and ''b'' with respect to ''R'' are equal. This figure of speech is mostly used in connection with expressions derived from equality, such as uniqueness or count. For example, ''x'' is unique up to ''R'' means that all objects ''x'' under consideration are in the same equivalence class with respect to the relation ''R''. Moreover, the equivalence relation ''R'' is often designated rather implicitly by a generating condition or transformation. For example, the statement "an integer's prime factorization is unique up to ordering" is a concise way to say that any two lists of prime factors of a given integer are equivalent with respect to the relation ''R'' that relates two lists if one can be obtained by reordering (permutation) from the other. As anot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Contact Structure
In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given (at least locally) as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for ' complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem. Contact geometry is in many ways an odd-dimensional counterpart of symplectic geometry, a structure on certain even-dimensional manifolds. Both contact and symplectic geometry are motivated by the mathematical formalism of classical mechanics, where one can consider either the even-dimensional phase space of a mechanical sys ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bijection
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function is a one-to-one (injective) and onto (surjective) mapping of a set ''X'' to a set ''Y''. The term ''one-to-one correspondence'' must not be confused with ''one-to-one function'' (an injective function; see figures). A bijection from the set ''X'' to the set ''Y'' has an inverse function from ''Y'' to ''X''. If ''X'' and ''Y'' are finite sets, then the existence of a bijection means they have the same number of elements. For infinite sets, the picture is more complicated, leading to the concept of cardinal number—a way to distinguish the various sizes of infinite sets. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]