Nitrogen Monofluoride
   HOME
*





Nitrogen Monofluoride
Nitrogen monofluoride (fluoroimidogen) is a metastable species that has been observed in laser studies. It is isoelectronic with O2. Like boron monofluoride, it is an instance of the rare multiply-bonded fluorine atom. It is unstable with respect to its formal dimer, dinitrogen difluoride, as well as to its elements, nitrogen and fluorine. Nitrogen monofluoride is produced when radical species (H, O, N, CH3) abstract a fluorine atom from nitrogen difluoride (NF2). Stoichiometrically, the reaction is extremely efficient, regenerating a radical for long-lasting chain propagation. However, radical impurities in the end product also catalyze that product's decomposition. Azide decomposition offers a less-efficient but more pure technique: fluorine azide (which can be formed ''in situ'' via reaction of atomic fluorine with hydrazoic acid) decomposes upon shock into NF and N2. Many NF-producing reactions give the product in an excited state with characteristic chemiluminescence. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dioxygen
There are several known allotropes of oxygen. The most familiar is molecular oxygen (O2), present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone (O3). Others are: *Atomic oxygen (O1), a free radical. *Singlet oxygen (O2*), one of two metastable states of molecular oxygen. *Tetraoxygen (O4), another metastable form. *Solid oxygen, existing in six variously colored phases, of which one is and another one metallic. Atomic oxygen Atomic oxygen, denoted O(3P) or O(3P), is very reactive, as the single atoms of oxygen tend to quickly bond with nearby molecules. On Earth's surface, it exists naturally for a very short time. In outer space, the presence of ample ultraviolet radiation results in a low Earth orbit atmosphere in which 96% of the oxygen occurs in atomic form. Ryan D. McCulla, Saint Louis University (2010). /acswebcontent.acs.org/prfar/2010/reports/P11141.html "Atomic Oxygen O(3P): Photog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nitrogen Difluoride
Nitrogen difluoride, also known as difluoroamino, is a reactive radical molecule with formula . This small molecule is in equilibrium with its dimer dinitrogen tetrafluoride. : As the temperature increases the proportion of increases. The molecule is unusual in that it has an odd number of electrons, yet is stable enough to study experimentally. Properties The energy needed to break the N–N bond in is , with an entropy change of 38.6  eu. molecule dimensions and angles For comparison, the dissociation energy of the N–N bond is in , in , and in . The enthalpy of formation of (Δ''H''f) is . At room temperature is mostly associated with only 0.7% in the form of at pressure. When the temperature rises to 225 Â°C, it mostly dissociates with 99% in the form of . In , the N–F bond length is 1.3494  Ã… and the angle subtended at F–N–F is 103.33°. In the infrared spectrum the N–F bond in has a symmetrical stretching frequency of 1075 cm∠...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chemical Laser
A chemical laser is a laser that obtains its energy from a chemical reaction. Chemical lasers can reach continuous wave output with power reaching to megawatt levels. They are used in industry for cutting and drilling. Common examples of chemical lasers are the chemical oxygen iodine laser (COIL), all gas-phase iodine laser (AGIL), and the hydrogen fluoride (HF) and deuterium fluoride (DF) lasers, all operating in the mid-infrared region. There is also a DF–CO2 laser ( deuterium fluoride–carbon dioxide), which, like COIL, is a "transfer laser." The HF and DF lasers are unusual, in that there are several molecular energy transitions with sufficient energy to cross the threshold required for lasing. Since the molecules do not collide frequently enough to re-distribute the energy, several of these laser modes operate either simultaneously, or in extremely rapid succession, so that an HF or DF laser appears to operate simultaneously on several wavelengths unless a wavelen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chemiluminescence
Chemiluminescence (also chemoluminescence) is the emission of light (luminescence) as the result of a chemical reaction. There may also be limited emission of heat. Given reactants A and B, with an excited intermediate â—Š, : + -> lozenge -> roducts+ light For example, if is luminol and is hydrogen peroxide in the presence of a suitable catalyst we have: :\underset + \underset -> 3-APAlozenge-> + light where: * 3-APA is 3-aminophthalate * 3-APA ''â—Šis the vibronic excited state fluorescing as it decays to a lower energy level. General description The decay of this excited state ''â—Što a lower energy level causes light emission. In theory, one photon of light should be given off for each molecule of reactant. This is equivalent to the Avogadro number of photons per mole of reactant. In actual practice, non-enzymatic reactions seldom exceed 1% QC, quantum efficiency. In a chemical reaction, reactants collide to form a transition state, the enthalpic maximum in a r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Excited State
In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to an increase in energy level above a chosen starting point, usually the ground state, but sometimes an already excited state. The temperature of a group of particles is indicative of the level of excitation (with the notable exception of systems that exhibit negative temperature). The lifetime of a system in an excited state is usually short: spontaneous or induced emission of a quantum of energy (such as a photon or a phonon) usually occurs shortly after the system is promoted to the excited state, returning the system to a state with lower energy (a less excited state or the ground state). This return to a lower energy level is often loosely described as decay and is the inverse of excitation. Long-lived excited states are often called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fluorine Azide
Fluorine azide or triazadienyl fluoride is a yellow green gas composed of nitrogen and fluorine with formula . It is counted as an interhalogen compound, as the azide functional group is termed a pseudohalogen. It resembles , , and in this respect. The bond between the fluorine atom and the nitrogen is very weak, leading to this substance being very unstable and prone to explosion. Calculations show the F–N–N angle to be around 102° with a straight line of 3 nitrogen atoms. The gas boils at –30° and melts at –139 Â°C. It was first made by John F. Haller in 1942. Reactions Fluorine azide can be made by reacting hydrazoic acid and fluorine gas. Another way to form it is by reacting sodium azide with fluorine. Fluorine azide decomposes without explosion at normal temperatures to make dinitrogen difluoride: :. At higher temperatures such as 1000 Â°C fluorine azide breaks up into nitrogen monofluoride radical: : The FN itself dimerizes on cooling. : Sol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Azide
In chemistry, azide is a linear, polyatomic anion with the formula and structure . It is the conjugate base of hydrazoic acid . Organic azides are organic compounds with the formula , containing the azide functional group. The dominant application of azides is as a propellant in air bags. Preparation Sodium azide is made industrially by the reaction of nitrous oxide, with sodium amide in liquid ammonia as solvent: : Many inorganic azides can be prepared directly or indirectly from sodium azide. For example, lead azide, used in detonators, may be prepared from the metathesis reaction between lead nitrate and sodium azide. An alternative route is direct reaction of the metal with silver azide dissolved in liquid ammonia. Some azides are produced by treating the carbonate salts with hydrazoic acid. Bonding Azide is isoelectronic with carbon dioxide , cyanate , nitrous oxide , nitronium ion and cyanogen fluoride NCF. Per valence bond theory, azide can be described ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chain Propagation
Chain propagation (sometimes referred to as propagation) is a process in which a reactive intermediate is continuously regenerated during the course of a chemical chain reaction. For example, in the chlorination of methane, there is a two-step propagation cycle involving as chain carriers a chlorine atom and a methyl radicalChain reaction
IUPAC Gold Book which are regenerated alternately: :•Cl + CH4 → HCl + •CH3 :•CH3 + Cl2 → CH3Cl + •Cl The two steps add to give the equation for the overall chain reaction: :CH4 + Cl2 → CH3Cl + HCl.


Polymerization

In a chain-growth polymerization ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radical (chemistry)
In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes. A notable example of a radical is the hydroxyl radical (HO·), a molecule that has one unpaired electron on the oxygen atom. Two other examples are triplet oxygen and triplet carbene (꞉) which have two unpaired electrons. Radicals may be generated in a number of ways, but typical methods involve redox reactions. Ionizing radiation, heat, electrical discharges, and electrolysis are known to produce radicals. Radicals are intermediates in many chemical reactions, more so than is apparent from the balanced equations. Radicals are important in combustion, atmospheric chemistry, polymerization, plasma chemistry, biochemistry, and many other chemical processes. A majority of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nitroxyl Anion
Nitroxyl (common name) or azanone (IUPAC name) is the chemical compound HNO. It is well known in the gas phase. Nitroxyl can be formed as a short-lived intermediate in the solution phase. The conjugate base, NO−, nitroxide anion, is the reduced form of nitric oxide (NO) and is isoelectronic with dioxygen. The bond dissociation energy of H−NO is , which is unusually weak for a bond to the hydrogen atom. Generation Nitroxyl is produced from the reagents Angeli's salt (Na2N2O3) and Piloty's acid (PhSO2NHOH). Other notable studies on the production of HNO exploit cycloadducts of acyl nitroso species, which are known to decompose via hydrolysis to HNO and acyl acid. Upon photolysis these compounds release the acyl nitroso species which then further decompose. HNO is generated via organic oxidation of cyclohexanone oxime with lead tetraacetate to form 1-nitrosocyclohexyl acetate: : This compound can be hydrolyzed under basic conditions in a phosphate buffer to HNO, acetic aci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluorine
Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative reactive element, it is extremely reactive, as it reacts with all other elements except for the light inert gases. Among the elements, fluorine ranks 24th in universal abundance and 13th in terrestrial abundance. Fluorite, the primary mineral source of fluorine which gave the element its name, was first described in 1529; as it was added to metal ores to lower their melting points for smelting, the Latin verb meaning 'flow' gave the mineral its name. Proposed as an element in 1810, fluorine proved difficult and dangerous to separate from its compounds, and several early experimenters died or sustained injuries from their attempts. Only in 1886 did French chemist Henri Moissan isolate elemental fluorine using low-temperature electrolysis, a process still employed for modern pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nitrogen
Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colorless and odorless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant uncombined element. Nitrogen occurs in all organisms, primarily in amino acids (and thus proteins), in the nucleic acids ( DNA and RNA) and in the energy transfer molecule adenosine triphosphate. The human body contains about 3% nitrogen by mass, the fourth most abundant element in the body after oxygen, carbon, and hydrogen. The nitrogen cycle describes the movement of the element from the air, into the biosphere and organic compounds, then back into the atmosphere. Many indus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]