Direct Integral
   HOME
*





Direct Integral
In mathematics and functional analysis a direct integral is a generalization of the concept of direct sum. The theory is most developed for direct integrals of Hilbert spaces and direct integrals of von Neumann algebras. The concept was introduced in 1949 by John von Neumann in one of the papers in the series ''On Rings of Operators''. One of von Neumann's goals in this paper was to reduce the classification of (what are now called) von Neumann algebras on separable Hilbert spaces to the classification of so-called factors. Factors are analogous to full matrix algebras over a field, and von Neumann wanted to prove a continuous analogue of the Artin–Wedderburn theorem classifying semi-simple rings. Results on direct integrals can be viewed as generalizations of results about finite-dimensional C*-algebras of matrices; in this case the results are easy to prove directly. The infinite-dimensional case is complicated by measure-theoretic technicalities. Direct integral theory was als ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Masamichi Takesaki
Masamichi Takesaki (竹崎 正道; born July 18, 1933 in Sendai) is a Japanese mathematician working in the theory of operator algebras. Takesaki studied at Tohoku University, earning a bachelor's degree in 1956, a master's degree in 1958 and a doctorate in 1965. Beginning in 1958 he was a research assistant at the Tokyo Institute of Technology and from 1965 to 1968 he was an associate professor at Tohoku University. From 1968 to 1969 he was a visiting associate professor at the University of Pennsylvania. In 1970, he became a professor at the University of California, Los Angeles. He was also a visiting professor at Aix-Marseille University (1973–74) and Bielefeld University (1975–76). He is known for the Tomita–Takesaki theory, which is about modular automorphisms of von Neumann algebras. This theory was initially developed by Minoru Tomita until 1967, but his work was published only partially (in Japanese) and was quite difficult to understand, drawing little notice, bef ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intertwining Operator
In mathematics, equivariance is a form of symmetry for functions from one space with symmetry to another (such as symmetric spaces). A function is said to be an equivariant map when its domain and codomain are acted on by the same symmetry group, and when the function commutes with the action of the group. That is, applying a symmetry transformation and then computing the function produces the same result as computing the function and then applying the transformation. Equivariant maps generalize the concept of invariants, functions whose value is unchanged by a symmetry transformation of their argument. The value of an equivariant map is often (imprecisely) called an invariant. In statistical inference, equivariance under statistical transformations of data is an important property of various estimation methods; see invariant estimator for details. In pure mathematics, equivariance is a central object of study in equivariant topology and its subtopics equivariant cohomology and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Center (algebra)
The term center or centre is used in various contexts in abstract algebra to denote the set of all those elements that commutative operation, commute with all other elements. * The center of a group ''G'' consists of all those elements ''x'' in ''G'' such that ''xg'' = ''gx'' for all ''g'' in ''G''. This is a normal subgroup of ''G''. * The similarly named notion for a semigroup is defined likewise and it is a subsemigroup. * The center (ring theory), center of a ring (mathematics), ring (or an associative algebra) ''R'' is the subset of ''R'' consisting of all those elements ''x'' of ''R'' such that ''xr'' = ''rx'' for all ''r'' in ''R''., Exercise 22.22 The center is a commutative ring, commutative subring of ''R''. * The center of a Lie algebra ''L'' consists of all those elements ''x'' in ''L'' such that [''x'',''a''] = 0 for all ''a'' in ''L''. This is an ideal (ring theory), ideal of the Lie algebra ''L''. See also *Centralizer and normalizer *Center (category theory) Refere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Almost Everywhere
In measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to the concept of measure zero, and is analogous to the notion of ''almost surely'' in probability theory. More specifically, a property holds almost everywhere if it holds for all elements in a set except a subset of measure zero, or equivalently, if the set of elements for which the property holds is conull. In cases where the measure is not complete, it is sufficient that the set be contained within a set of measure zero. When discussing sets of real numbers, the Lebesgue measure is usually assumed unless otherwise stated. The term ''almost everywhere'' is abbreviated ''a.e.''; in older literature ''p.p.'' is used, to stand for the equivalent French language phrase ''presque partout''. A set with full measure is one whose complement i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Standard Borel Space
In mathematics, a standard Borel space is the Borel space associated to a Polish space. Discounting Borel spaces of discrete Polish spaces, there is, up to isomorphism of measurable spaces, only one standard Borel space. Formal definition A measurable space (X, \Sigma) is said to be "standard Borel" if there exists a metric on X that makes it a complete separable metric space in such a way that \Sigma is then the Borel σ-algebra. Standard Borel spaces have several useful properties that do not hold for general measurable spaces. Properties * If (X, \Sigma) and (Y, T) are standard Borel then any bijective measurable mapping f : (X, \Sigma) \to (Y, \Tau) is an isomorphism (that is, the inverse mapping is also measurable). This follows from Souslin's theorem, as a set that is both analytic and coanalytic is necessarily Borel. * If (X, \Sigma) and (Y, T) are standard Borel spaces and f : X \to Y then f is measurable if and only if the graph of f is Borel. * The product and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Null Set
In mathematical analysis, a null set N \subset \mathbb is a measurable set that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length. The notion of null set should not be confused with the empty set as defined in set theory. Although the empty set has Lebesgue measure zero, there are also non-empty sets which are null. For example, any non-empty countable set of real numbers has Lebesgue measure zero and therefore is null. More generally, on a given measure space M = (X, \Sigma, \mu) a null set is a set S\in\Sigma such that \mu(S) = 0. Example Every finite or countably infinite subset of the real numbers is a null set. For example, the set of natural numbers and the set of rational numbers are both countably infinite and therefore are null sets when considered as subsets of the real numbers. The Cantor set is an example of an uncountable null set. Definition Suppose A is a subset ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polish Space
In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians— Sierpiński, Kuratowski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory. Common examples of Polish spaces are the real line, any separable Banach space, the Cantor space, and the Baire space. Additionally, some spaces that are not complete metric spaces in the usual metric may be Polish; e.g., the open interval (0, 1) is Polish. Between any two uncountable Polish spaces, there is a Borel isomorphism; that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Measurable Space
In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. Definition Consider a set X and a σ-algebra \mathcal A on X. Then the tuple (X, \mathcal A) is called a measurable space. Note that in contrast to a measure space, no measure is needed for a measurable space. Example Look at the set: X = \. One possible \sigma-algebra would be: \mathcal A_1 = \. Then \left(X, \mathcal A_1\right) is a measurable space. Another possible \sigma-algebra would be the power set on X: \mathcal A_2 = \mathcal P(X). With this, a second measurable space on the set X is given by \left(X, \mathcal A_2\right). Common measurable spaces If X is finite or countably infinite, the \sigma-algebra is most often the power set on X, so \mathcal A = \mathcal P(X). This leads to the measurable space (X, \mathcal P(X)). If X is a topological space In mathematics, a topological space is, rou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]